COVID-19 Study, Diagnostic and Therapeutic Transition


Cite item

Full Text

Abstract

Introduction:The outbreak of coronavirus (severe acute respiratory syndrome coronavirus2, COVID-19, SARS-CoV-2) in Wuhan, China occurred three years ago. However, the healthcare state and legislature for COVID-19 varied greatly worldwide. After three years, the social life of most countries worldwide is gradually back to normal. Diagnosis and therapeutics worldwide are formalized now. Improvement of the knowledge about this devastating disease will shed new light on its management and spawn the development of new counter measures. Due to the differences in socioeconomic conditions and policies worldwide, the diagnostic and therapeutic transition should be established. The schedules and techniques of vaccines, drugs, or other therapeutic strategies could be formalized in the future. The origin and hidden nature of COVID-19 biology (relationship between viral strain and drug targeting) should be further investigated. Knowledge and opinion breakthroughs may significantly heighten the quality of preventive and therapeutic strategies against COVID-19. To further stabilize the global situation, the issues of viral spread and induced mortality should be emphasized. Existing animal models, pathophysiological knowledge, and therapeutics for different infected patients played vital roles. The diagnostic widening, variants of COVID, and therapeutic selection worldwide totally solve the complex outcomes and promote the curability for infected patients. Different diagnostic platforms can reach different therapeutic selections, responses, and benefits in the clinic. It will provide advanced diagnostic dimensions, therapeutic paradigms, and drug selection strategies for the purpose of the greatest benefiting and recoveries of COVID-19 patients. To speed up the global fight against COVID-19, biomedical knowledge, prophylactic vaccines, and therapeutic paradigms should be updated in dynamic states.

About the authors

Da-Yong Lu

School of Life Sciences, Shanghai University

Author for correspondence.
Email: info@benthamscience.net

Ting-Ren Lu

College of Science, Shanghai University

Email: info@benthamscience.net

References

  1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med 2020; 382(8): 727-33. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  2. Ciotti M, Angeletti S, Minieri M, et al. COVID-19 outbreak: An overview. Chemotherapy 2020; 64(5-6): 215-23. doi: 10.1159/000507423 PMID: 32259829
  3. Lu DY, Che JY, Lu TR, Wu HY. Coronavirus (COVID-19), origin, infectivity, epidemics, therapeutics and global impacts. EC Pharmacol Toxicol 2021; 9(3): 100-7.
  4. Momtaz YA. The COVID-19 and ageism in social media. Coronaviruses 2020; 1(1): 7-8. doi: 10.2174/2666796701999200621203144
  5. Varala R, Bollikolla H. nCOVID-19 in 2020: From despair to hope. Coronaviruses 2020; 1(1): 9-12. doi: 10.2174/2666796701999200621202839
  6. Barupal T, Tak PK, Meena M. COVID-19: Morphology, characteristics, symptoms, prevention, clinical diagnosis and current scenario. Coronaviruses 2020; 1(1): 82-9. doi: 10.2174/2666796701999200617161348
  7. Ping X, Weiyang Y, Jianwei C, Xiang L. Antiviral activities against influenza virus (FM1) of bioactive fractions and representative compounds extracted from Banlangen (Radix Isatidis). J Tradit Chin Med 2016; 36(3): 369-76. doi: 10.1016/S0254-6272(16)30051-6 PMID: 27468553
  8. Sytar O, Brestic M, Hajihashemi S, et al. COVID-19 prophylaxis efforts based on natural antiviral plant extracts and their compounds. Molecules 2021; 26(3): 727. doi: 10.3390/molecules26030727 PMID: 33573318
  9. Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19. Immunity 2020; 52(5): 737-41. doi: 10.1016/j.immuni.2020.04.012 PMID: 32433946
  10. Morens DM. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin Infect Dis 1994; 19(3): 500-12. doi: 10.1093/clinids/19.3.500 PMID: 7811870
  11. Katta M, Rapaka S, Adireddi R, Emandi JR. A preliminary review on novel coronavirus diseases: COVID-19. Coronaviruses 2020; 1(1): 90-7. doi: 10.2174/2666796701999200615155630
  12. Naqvi IH, Rizvi SNZ. The comprehensive appresal of COVID-19: Its clinical panorama from virology till management and beyond. Coronaviruses 2020; 1(1): 57-72. doi: 10.2174/2666796701999200701132336
  13. Raj S, Chandel V, Rathi B, Kumar D. Understanding the molecular mechanisms of SARS-CoV-2 infection and propagation in human to discover potential preventive and therapeutic approach. Coronaviruses 2020; 1(1): 73-81. doi: 10.2174/2666796701999200617155013
  14. Doshi GM, Ved HS, Thakkar AP. Critical insight into the attributes of emerging novel coronavirus (COVID-19) in India and across the world. Coronaviruses 2020; 1(1): 49-56. doi: 10.2174/2666796701999200623172631
  15. Banday AH, Shah SA, Ajaz SJ. Potential immunotherapy against SARS-CoV-2, strategy and status. Coronaviruses 2020; 1(1): 23-31. doi: 10.2174/2666796701999200625212040
  16. Li M, Wang H, Tian L, et al. COVID-19 vaccine development: milestones, lessons and prospects. Sign Transduct Target Ther 2022; 7(1): 146. doi: 10.1038/s41392-022-00996-y PMID: 35504917
  17. Liu T, Tian Y, Zheng A, Cui C. Design strategies for and stability of mRNA-lipid nanoparticle COVID-19 vaccines. Polymers 2022; 14(19): 4195. doi: 10.3390/polym14194195 PMID: 36236141
  18. Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: Development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33(1): 1-22. doi: 10.1007/s13337-022-00755-1 PMID: 35127995
  19. Tian Y, Deng Z, Yang P. mRNA vaccines: A novel weapon to control infectious diseases. Front Microbiol 2022; 13: 1008684. doi: 10.3389/fmicb.2022.1008684
  20. Fang E, Liu X, Li M, et al. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7(1): 94. doi: 10.1038/s41392-022-00950-y
  21. Hameed SA, Paul S, Dellosa GKY, Jaraquemada D, Bello MB. Towards the future exploration of mucosal mRNA vaccines against emerging viral diseases; Lessons from existing next-generation mucosal vaccine strategies. NPJ Vaccines 2022; 7(1): 71. doi: 10.1038/s41541-022-00485-x PMID: 35764661
  22. Carvalho T. Intranasal COVID-19 vaccine fails to induce mucosal immunity. Nat Med 2022; 28(12): 2439-40. doi: 10.1038/d41591-022-00106-z PMID: 36329319
  23. Houston S. SARS-CoV-2 mucosal vaccine. Nat Immunol 2023; 24(1): 1. doi: 10.1038/s41590-022-01405-w PMID: 36596900
  24. Clever S, Volz A. Mouse models in COVID-19 research: Analyzing the adaptive immune response. Med Microbiol Immunol 2023; 212(2): 165-83. doi: 10.1007/s00430-022-00735-8
  25. Lu Dy. Lu Tr. COVID-19 Vaccine Development, Emergency Workflow. EC Emerg Medic Critic Care 2021; 5(9): 23-5.
  26. AbdelMassih AF, Mahrous R, Taha A, et al. The potential use of ABO blood group system for risk stratification of COVID-19. Med Hypotheses 2020; 145: 110343. doi: 10.1016/j.mehy.2020.110343 PMID: 33086161
  27. Crowe D. SARS-steroid and Ribavirin Scandal. In:The Infectious Myth. 2020.
  28. Ledford H. How does COVID-19 kill? Uncertainty is hampering doctors’ ability to choose treatments. Nature 2020; 580(7803): 311-2. doi: 10.1038/d41586-020-01056-7 PMID: 32273618
  29. Kebede T, Kumar D, Sharma PK. Potential drug option for treatment of COVID-19: A review. Coronaviruses 2020; 1(1): 42-8. doi: 10.2174/2666796701999200701131604
  30. Kim YK. RNA therapy: Rich history, various applications and unlimited future prospects. Exp Mol Med 2022; 54(4): 455-65. doi: 10.1038/s12276-022-00757-5 PMID: 35440755
  31. Nooraei S, Bahrulolum H, Hoseini ZS, et al. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnol 2021; 19(1): 59. doi: 10.1186/s12951-021-00806-7 PMID: 33632278
  32. Vlatkovic I. Non-immunotherapy application of LNP-mRNA: maximizing efficacy and safety. Biomedicines 2021; 9(5): 530. doi: 10.3390/biomedicines9050530 PMID: 34068715
  33. Maxmen A. How blood from coronavirus survivors might save lives. Nature 2020; 580(7801): 16-7. doi: 10.1038/d41586-020-00895-8 PMID: 32214238
  34. Lu DY, Che JY. Holistic COVID-19 emergency practice. EC Emerg Medic Critic Care 2022; 6(6): 2-4.
  35. Parasuraman S. Herbal drug discovery: Challenges and perspectives. Curr Pharmacogen Person Med 2018; 16(1): 63-8. doi: 10.2174/1875692116666180419153313
  36. Zhao Q, Weber E, Yang H. Recent developments on coronavirus main protease/3C like protease inhibitors. Recent Patents Anti-Infect Drug Disc 2013; 8(2): 150-6. doi: 10.2174/1574891X113089990017 PMID: 23879823
  37. Liu W, Zhu HL, Duan Y. Effective chemicals against novel coronavirus (COVID-19) in China. Curr Top Med Chem 2020; 20(8): 603-5. doi: 10.2174/18734294MTA16MDQBx PMID: 32133962
  38. Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: An update. Antiviral Res 2014; 107: 84-94. doi: 10.1016/j.antiviral.2014.04.006 PMID: 24769245
  39. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69. doi: 10.1186/1743-422X-2-69 PMID: 16115318
  40. Putta S, Yarla NS, Peluso I, et al. Anthocyanins: Possible role as multitarget therapeutic agents for prevention and therapy of chronic diseases. Curr Pharm Des 2017; 23(30): 4475-83. PMID: 28831925
  41. Mani JS, Johnson JB, Steel JC, et al. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res 2020; 284: 197989. doi: 10.1016/j.virusres.2020.197989 PMID: 32360300
  42. Chojnacka K, Witek-Krowiak A, Skrzypczak D, Mikula K. Młynarz P. Phytochemicals containing biologically active polyphenols as an effective agent against COVID-19-inducing coronavirus. J Funct Foods 2020; 73: 104146. doi: 10.1016/j.jff.2020.104146 PMID: 32834835
  43. Lu DY, Lu TR, Lu Y, Sastry N, Wu HY. Discover natural chemical drugs in modern medicines. Metabolomics 2016; 6(3): 181.
  44. Omotayo AO, Otekunrin OA, Fasina FO, Otekunrin O, Akram M. COVID-19 in Nigeria: Why continuous spike in cases? Asian Pac J Trop Med 2021; 14(1): 1-4. doi: 10.4103/1995-7645.304292
  45. Pattanayak S. Alternative to antibiotics from herbal origin-outline of a comprehensive research project. Curr Pharmacogenomics Person Med 2018; 16(1): 9-62. doi: 10.2174/1875692116666180419154033
  46. Wang YX, Ma JR, Wang SQ, et al. Utilizing integrating network pharmacological approaches to investigate the potential mechanism of Ma Xing Shi Gan Decoction in treating COVID-19. Eur Rev Med Pharmacol Sci 2020; 24(6): 3360-84. PMID: 32271454
  47. Lu DY, Lu TR. Herbal medicine in new era. Hospice Palliat Medic Int J 2019; 3(4): 125-30. doi: 10.15406/hpmij.2019.03.00165
  48. Chen PX, Wang S, Nie S, Marcone M. Properties of Cordyceps Sinensis: A review. J Funct Foods 2013; 5(2): 550-69. doi: 10.1016/j.jff.2013.01.034 PMID: 32288794
  49. Silveira D, Prieto-Garcia JM, Boylan F, et al. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 2020; 11: 581840. doi: 10.3389/fphar.2020.581840 PMID: 33071794
  50. Nyamwamu NC, Okari OJ, Gisesa WNQ. A survey of medicinal plants used by the Gusii community in the treatment of digestive disorders and other inflammatory conditions. J Medicin Plants stud 2020; 8(3): 21-332.
  51. Mazzaedoost S, Behhudi G, Mousavi SM, Hashemi SA. COVID-19 treatment by plant compounds. J Adv Appl NanoBio Tech 2020; 2(1): 23-33.
  52. Pattanayak S. Plants in healthcare: Past, present and future. Explor Anim Med Res 2021; 11(2): 140-4. doi: 10.52635/EAMR/11.2.140-144
  53. Yin L, Gao Y, Li Z, Wang M, Chen K. Analysis of Chinese herbal formulae recommended for COVID-19 in different schemes in China: A data mining approach. Comb Chem High Throughput Screen 2021; 24(7): 957-67. doi: 10.2174/18755402MTEwqMzclw PMID: 33001008
  54. Lu DY. HIV/AIDS treatments, fight for a cure LAMBERT academic publishing. Germany: ISBN 2017.
  55. Lu DY, Lu TR, Wu HY. Avian flu, pathogenesis and therapy. Antiinfect Agents 2012; 10(2): 124-9. doi: 10.2174/2211362611208020124
  56. Lu DY, Hy Wu, Lu TR, Xu B, Ding J. Ebola therapeutic study and future trends. Infect Disord Drug Targets 2019; 19(1): 17-29. doi: 10.2174/1871526518666180813160348 PMID: 30101721
  57. Mahamid F, Bdier D, Berte D. Psychometric properties of the fear of COVID-19 scale (FCV-19S) in a Palestinian context. J Muslim Ment Health 2022; 16(1): 45-58. doi: 10.3998/jmmh.400
  58. Carvalho APA, Conte-Junior CA. Recent advances on nanomaterials to COVID-19 management; A systematic review on antiviral/virucidal agents and mechanisms of SARS-CoV-2 inhibition/inactivation. Glob Chall 2021; 5(5): 2000115. doi: 10.1002/gch2.202000115 PMID: 33786199
  59. Behl T, Rocchetti G, Chadha S, et al. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals 2021; 14(4): 381. doi: 10.3390/ph14040381 PMID: 33921724
  60. Gopal M, Bhaskaran A, Khalife W, Barbagelata A. Heart disease in patients with HIV/AIDS-an emerging clinical problem. Curr Cardiol Rev 2009; 5(2): 149-54. doi: 10.2174/157340309788166705 PMID: 20436855
  61. Garg H, Joshi A, Mukherjee D. Cardiovascular complications of HIV infection and treatment. Cardiovasc Hematol Agents Med Chem 2013; 11(1): 58-66. doi: 10.2174/1871525711311010010 PMID: 22946901
  62. Sukasem C, Sungkanuparph S. Would a CYP2B6 test help HIV patients being treated with efavirenz? Pharmacogenomics 2013; 14(9): 999-1001. doi: 10.2217/pgs.13.69 PMID: 23837472
  63. Sánchez Martín A, Cabrera Figueroa S, Cruz Guerrero R, Hurtado LP, Hurlé ADG, Carracedo Álvarez Á. Impact of pharmacogenetics on CNS side effects related to efavirenz. Pharmacogenomics 2013; 14(10): 1167-78. doi: 10.2217/pgs.13.111 PMID: 23859571
  64. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell 2015; 161(1): 119-32. doi: 10.1016/j.cell.2015.03.008 PMID: 25815990
  65. Lu DY, Che JY, Wu HY, et al. Obesity, risks and managements. Metabolomics 2018; 8(1): e155.
  66. Brestoff JR, Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell 2015; 161(1): 146-60. doi: 10.1016/j.cell.2015.02.022 PMID: 25815992
  67. Quarta C, Schneider R, Tschöp MH. Epigenetic ON/OFF switches for obesity. Cell 2016; 164(3): 341-2. doi: 10.1016/j.cell.2016.01.006 PMID: 26824648
  68. Lu DY, Che JY, Lu TR, et al. Pathology and treatments of obesity. Trends Medic 2018; 8(5): 157.
  69. Lu DY, Che JY, Yarla NS, et al. Type 2 diabetes study, introduction and perspective. Open Diabetes J 2018; 8(1): 13-21. doi: 10.2174/1876524601808010013
  70. Putta S, Peluso I, Yarla NS, et al. Diabetes mellitus and male aging, pharmacotherapeutics and clinical implications. Curr Pharm Des 2017; 23(41): 6321-46. doi: 10.2174/1381612823666170519151801 PMID: 28741457
  71. Lu DY, Che JY, Yarla NS, et al. Type 2 diabetes treatment and drug development study. Open Diabetes J 2018; 8(1): 22-33. doi: 10.2174/1876524601808010022
  72. Lu DY, Lu Y. COVID-19 infection for metabolic abnormal human beings. Nursing & Care Open Access J 2022; 8(2): 72-3. doi: 10.15406/ncoaj.2022.08.00241
  73. Downes DJ, Cross AR, Hua P, et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet 2021; 53(11): 1606-15. doi: 10.1038/s41588-021-00955-3 PMID: 34737427
  74. Schröder ARW, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110(4): 521-9. doi: 10.1016/S0092-8674(02)00864-4 PMID: 12202041
  75. Lu DY, Ding J. Sequencing the whole genome of infected human cells obtained from diseased patients a proposed strategy for understanding and overcoming AIDS or other deadest virus-infected diseases. Med Hypotheses 2007; 68(4): 826-7. doi: 10.1016/j.mehy.2006.08.042 PMID: 17055187
  76. Smith AE, Helenius A. How viruses enter animal cells. Science 2004; 304(5668): 237-42. doi: 10.1126/science.1094823 PMID: 15073366
  77. Taha H, Morgan J, Das A, Das S. Parenteral patent drug S/GSK1265744 has the potential to be an effective agent in pre-exposure prophylaxis against HIV infection. Recent Patents Anti-Infect Drug Disc 2014; 8(3): 213-8. doi: 10.2174/1574891X09666140417154727 PMID: 24738551
  78. Huang W, Petropoulos CJ. Methods and compositions for determining virus susceptibility to integrase inhibitors. E 2014.Patent: EP2678453A1,
  79. Rao DV, Dattatreya A, Dan MM, Sarangi T, Sasidhar K, Rahul J. Translational approach in emerging infectious disease treatment: An update. Biomed Res 2017; 28(13): 5678-86.
  80. Lu DY, Lu TR, Yarla NS, Xu B, Ding J. HIV in human genomes and therapeutics. HIV: Curr Res 2017; 2(1): 121.
  81. Kalidasan V, Ravichantar N, Muhd BA, et al. Latent HIV-1 provirus in vitro suppression using combinatorial CRISPR/Cas9 strategy. Gene Rep 2022; 29: 101686. doi: 10.1016/j.genrep.2022.101686
  82. Ferreira LLG, Andricopulo AD. COVID-19: Small-molecule clinical trial landscape. Curr Top Med Chem 2020; 20(18): 1577-80. doi: 10.2174/156802662018200703154334 PMID: 32862824
  83. Kneller DW, Phillips G, Weiss KL, Zhang Q, Coates L, Kovalevsky A. Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography. J Med Chem 2021; 64(8): 4991-5000. doi: 10.1021/acs.jmedchem.1c00058 PMID: 33755450
  84. Zhao Y, Du X, Duan Y, et al. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein Cell 2021; 12(11): 877-88. doi: 10.1007/s13238-021-00836-9 PMID: 33864621
  85. Lu DY, Lu TR, Chen EH, et al. Keep up the pace of drug development evolution and expenditure. Cancer Rep Rev 2018; 2(5): 165. doi: 10.15761/CRR.1000165
  86. Mpiana PT, Ngbolua KTN, Tshibangu DST, et al. Aloe vera (L.) Burm F as a potential of anti-COVID-19 plant: A mini-review of its antiviral activity. European J Med Plants 2020; 31(8): 86-93. doi: 10.9734/ejmp/2020/v31i830261
  87. Hafez Ghoran S, El-Shazly M, Sekeroglu N, Kijjoa A. Natural products from medicinal plants with anti-human coronavirus activities. Molecules 2021; 26(6): 1754. doi: 10.3390/molecules26061754 PMID: 33800977
  88. Ho MW, Li TM, Li JP, et al. Chinese herbal medicine usage reduces overall mortality in HIV-infected patients with osteoporosis or fractures. Front Pharmacol 2021; 12: 593434. doi: 10.3389/fphar.2021.593434 PMID: 33935696
  89. Akram M, Michael S, Saeed M, et al. In: Ethnopharmacological properties of Asian medicinal plants during conflict-related blockades Phytochemistry, the Military and Health. (Chapter 5.). Elsevier 2021; 53: p. 68.
  90. Brenbdler T, Al-Harrasi A, Bauer R, et al. Batanical drugs and supplements affecting the immune response in the time of COVID-19: Implication for research and clinical practice. Phytother Res 2020; 1: 19. doi: 10.1002/ptr.7008
  91. Inkoto CL, Ngbolua KTN, Kilembe JT, et al. A mini review on the phytochemistry and pharmacology of Aframomum alboviolaceum (zingiberaceae). South Asian Res J Natural Products 2021; 4(3): 24-35.
  92. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Topics Microbiol Immunol 2018; 419: 1-42.
  93. Viana JO, Félix MB, Maia MS, Serafim VL, Scotti L, Scotti MT. Drug discovery and computational strategies in the multitarget drugs era. Braz J Pharm Sci 2018; 54(spe): e01010. doi: 10.1590/s2175-97902018000001010
  94. Scotti L, Ishiki H, Mendonca FJB, Silva MS, Scotti MT. In silico analyses of natural products on leishmania enzyme targets. Mini Rev Med Chem 2015; 15(3): 253-69. doi: 10.2174/138955751503150312141854 PMID: 25769973
  95. Landhuis E. Deep learning takes on tumours. Nature 2020; 580(7804): 551-3. doi: 10.1038/d41586-020-01128-8 PMID: 32317799
  96. Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical free energy force field with charge-based desolvation. J Comput Chem 2007; 28(6): 1145-52. doi: 10.1002/jcc.20634 PMID: 17274016
  97. Morris GM, Goodsell DS, Halliday RS, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 1998; 19(14): 1639-62. doi: 10.1002/(SICI)1096-987X(19981115)19:143.0.CO;2-B
  98. Kalirajan R. Activity of some novel chalcone-substituted 9-anilinoacridines against coronavirus (COVID-19): A computational approach. Coronaviruses 2020; 1(1): 13-22. doi: 10.2174/2666796701999200625210746
  99. Bhatia R, Narang RK, Rawal RK. Repurposing of RdRp inhibitors against SARS-CoV-2 through molecular docking tools. Coronaviruses 2020; 1(1): 108-16. doi: 10.2174/2666796701999200617155629
  100. Dutta M, Nezam M, Chowdhury S, et al. Appraisals of the Bangladeshi medicinal plant Calotropies gigantean used by folk medicine practitioners in the management of COVID-19: biochemical and computational approach. Front Mol Biosci 2021; 8: 625391. doi: 10.3389/fmolb.2021.625391 PMID: 34124140
  101. Freedman DH. Hunting for new drugs with AI. Nature 2019; 576(7787): S49-53. doi: 10.1038/d41586-019-03846-0 PMID: 31853074
  102. Raghav N, Sharma MR, Kennedy JF. Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydr Polym Technol Appl 2021; 2: 100031. doi: 10.1016/j.carpta.2020.100031
  103. Lu DY, Lu TR, Wu HY, Yarla NS, Ding J, Xu B. HIV/AIDS curable study, new forms of therapeutic trinity. Recent Patents Anti-Infect Drug Disc 2019; 13(3): 217-27. doi: 10.2174/1574891X13666181026094526 PMID: 30362422
  104. Lu DY, Wu HY, Yarla NS, Xu B, Ding J, Lu TR. HAART in HIV/AIDS treatments, future trends. Infect Disord Drug Targets 2018; 18(1): 15-22. doi: 10.2174/1871526517666170505122800 PMID: 28474549
  105. Lu DY, Lu TR, Cao S. Drug combinations in cancer treatment. Clin Exp Pharmacol 2013; 3(4): 134.
  106. Morad I, Itzhaki H. Matato©-a novel concept for curing cancer. J Cancer Ther 2020; 11(2): 55-73. doi: 10.4236/jct.2020.112006
  107. Lu DY, Chen EH, Wu HY, Lu TR, Xu B, Ding J. Anticancer drug combination, how far we can go through? Anticancer Agents Med Chem 2017; 17(1): 21-8. doi: 10.2174/1871520616666160404112028 PMID: 27039923
  108. Lu DY, Lu TR, Yarla NS, et al. Drug combination in clinical cancer treatment. Rev Recent Clin Trials 2017; 12(3): 202-11. PMID: 28782482
  109. Pariak C, Alver O, Ouma CNM, Rhyman L, Ramasami P. Can the antivirals remdesivir and favipiravir work jointly? in silico insights. Drug Res 2022; 72(01): 34-40. doi: 10.1055/a-1585-1323 PMID: 34535038

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers