Biological Importance and Therapeutic Potential of Calycopterin from Dracocephalum kotschyi: An Overview of Current Scientific Research Work


Cite item

Full Text

Abstract

Background:Dracocephalum kotschyi Boiss is an important medicinal plant of Asia, Europe and Iran. The therapeutic potential of Dracocephalum kotschyi has been mentioned in traditional as well as in modern medicine, mainly due to its therapeutic effectiveness against different types of human disorders and associated secondary complications. Calycopterin is a flavonoid class phytochemical commonly called 5,4-dihydroxy-3,6,7,8- tetramethoxyflavone, which has been isolated from Dracocephalum kotschyi. It is widely used for the treatment of human disorders and associated secondary complications. Medicinal importance and therapeutic potential of calycopterin was investigated in the present work through scientific data analysis of different research works. Scientific data on calycopterin published in different research articles were collected from PubMed, Google, Google Scholar, Science Direct, SpringerLink, and Scopus and analyzed in the present work. Further, scientific data was also collected from books and book chapters. Analytical data on calycopterin was also collected and analyzed in the present work. Scientific data analysis of different research work revealed the biological importance and therapeutic potential of calycopterin. Calycopterin showed therapeutic effectiveness against different types of cancerous disorders, including human prostate cancer, breast cancer, cervical cancer, lymphocyte proliferation and hepatoblastoma cancer. Moreover, the biological effectiveness of calycopterin on neuroprotection and Pseudomonas aeruginosa has also been discussed in the present work with their pharmacokinetic parameters. Nevertheless, more scientific investigations must be conducted to explore the health-beneficial aspects of calycopterin in medicine. Present work signified the biological importance and therapeutic potential of calycopterin for the treatment of human disorders and complications, including different types of cancerous disorders.

About the authors

Dinesh Patel

Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences

Author for correspondence.
Email: info@benthamscience.net

Kanika Patel

Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences

Email: info@benthamscience.net

References

  1. Manaf HH, Rabie KAE, Abd El-Aal MS. Impact of UV-B radiation on some biochemical changes and growth parameters in Echinacea purpurea callus and suspension culture. Ann Agric Sci 2016; 61(2): 207-16. doi: 10.1016/j.aoas.2016.08.001
  2. Hossain MA, Sohail AM, Said S, Al-Abri THA. Two new flavonoids from Adenium obesum grown in Oman. J King Saud Univ Sci 2017; 29(1): 62-9. doi: 10.1016/j.jksus.2016.04.004
  3. Patel K, Jain A, Patel DK. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J Acute Dis 2013; 2(3): 169-78. doi: 10.1016/S2221-6189(13)60123-7
  4. Patel K, Rahman M, Kumar V, Verma A, Patel DK. Visnagin: A new perspective of medicinal importance, physiological functions, phytochemistry, pharmacology and analytical aspects of active phytoconstituents of Ammi visnaga. Nat Prod J 2019; 9(3): 197-206. doi: 10.2174/2210315508666180327154245
  5. Patel K, Kumar V, Verma A, Rahman M, Patel DK. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention "A concise report of its phytopharmaceutical importance". Curr Tradit Med 2017; 3(3): 168-77. doi: 10.2174/2215083803666170615111759
  6. Mai LH, Chabot GG, Grellier P, et al. Antivascular and anti-parasite activities of natural and hemisynthetic flavonoids from New Caledonian Gardenia species (Rubiaceae). Eur J Med Chem 2015; 93: 93-100. doi: 10.1016/j.ejmech.2015.01.012 PMID: 25659770
  7. Fattahi M, Nazeri V, Torras-Claveria L, et al. Identification and quantification of leaf surface flavonoids in wild-growing populations of Dracocephalum kotschyi by LC–DAD–ESI-MS. Food Chem 2013; 141(1): 139-46. doi: 10.1016/j.foodchem.2013.03.019 PMID: 23768339
  8. Ghavam M, Manconi M, Manca ML, Bacchetta G. Extraction of essential oil from Dracocephalum kotschyi Boiss. (Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties. J Ethnopharmacol 2021; 267: 113513. doi: 10.1016/j.jep.2020.113513 PMID: 33172599
  9. Li Y, Shen Y, Liang YC, Dan G. Quality assessment of herbal medicines based on chemical fingerprints combined with chemometrics approach: A review. J Pharm Biomed Anal 2020.
  10. Chen L, Mulder PPJ, Peijnenburg A, Rietjens IMCM. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem Toxicol 2019; 130: 142-53. doi: 10.1016/j.fct.2019.05.024 PMID: 31112705
  11. Akour A, Kasabri V, Bulatova N, et al. Patterns and perceived efficacy of herbal medicine for weight loss and maintenance: A cross-sectional survey from Jordan. Eur J Integr Med 2020; 35: 101086. doi: 10.1016/j.eujim.2020.101086
  12. Siahaan OG, Sibarani R, Lubis S, Purwoko A. Herbal medicines for women and children’s health in Tipang Village, District Humbang Hasundutan, North Sumatera. Gac Sanit 2021; 35 (Suppl. 2): S564-6. doi: 10.1016/j.gaceta.2021.10.101 PMID: 34929902
  13. Yang CM, Chien MY, Chao PC, Huang CM, Chen CH. Investigation of toxic heavy metals content and estimation of potential health risks in Chinese herbal medicine. J Hazard Mater 2021; 412: 125142. doi: 10.1016/j.jhazmat.2021.125142 PMID: 33516113
  14. Xin S, Huang F, Liu X, Mi T, Xu Q. Torrefaction of herbal medicine wastes: Characterization of the physicochemical properties and combustion behaviors. Bioresour Technol 2019; 287: 121408. doi: 10.1016/j.biortech.2019.121408 PMID: 31085428
  15. Guo C, Gong L, Wang W, et al. Rapid screening and identification of targeted or non-targeted antitussive adulterants in herbal medicines by Q-Orbitrap HRMS and screening database. Int J Mass Spectrom 2020; 447: 116250. doi: 10.1016/j.ijms.2019.116250
  16. Zhou DB, Han F, Ding L, et al. Magnetic C60 nanospheres based solid-phase extraction coupled with isotope dilution gas chromatography-mass spectrometry method for the determination of sixteen polycyclic aromatic hydrocarbons in Chinese herbal medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1144: 122076. doi: 10.1016/j.jchromb.2020.122076 PMID: 32222675
  17. Moradi H, Ghavam M, Tavili A. Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotechnol Rep 2020; 25: e00408. doi: 10.1016/j.btre.2019.e00408 PMID: 32140440
  18. Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, et al. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci 2020; 255: 117481. doi: 10.1016/j.lfs.2020.117481 PMID: 32135183
  19. Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28. doi: 10.1016/j.ejmech.2017.07.034 PMID: 28793973
  20. Patel DK. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab Lett 2021; 14(2): 117-25. doi: 10.2174/1872312814666210726112910 PMID: 34313205
  21. Patel K, Patel DK. Health beneficial potential of pectolinarigenin on human diseases: An updated review of medicinal importance and pharmacological activity. Nat Prod J 2021; 11(1): 3-12. doi: 10.2174/2210315509666191111110901
  22. Patel K, Patel DK. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Curr Bioact Compd 2021; 17(9): e190721190770. doi: 10.2174/1573407217666210127091221
  23. Patel K, Kumar V, Rahman M, Verma A, Patel DK. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni Suef Univ J Basic Appl Sci 2018; 7(1): 31-42. doi: 10.1016/j.bjbas.2017.05.009
  24. Patel DK. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr Metab Immune Disord Drug Targets 2021; 21(11): 1974-81. doi: 10.2174/1871530321666210108122924 PMID: 33423654
  25. Patel K, Singh GK, Patel DK. A review on pharmacological and analytical aspects of naringenin. Chin J Integr Med 2018; 24(7): 551-60. doi: 10.1007/s11655-014-1960-x PMID: 25501296
  26. Lotfizadeh R, Sepehri H, Attari F, Delphi L. Flavonoid calycopterin induces apoptosis in human prostate cancer cells in vitro. Iran J Pharm Res 2020; 19(3): 391-401. PMID: 33680039
  27. Patel DK, Patel K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects. Curr Cancer Ther Rev 2022; 18(1): 41-50. doi: 10.2174/1573394717666210831163322
  28. Patel K, Patel DK. The beneficial role of rutin, a naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In: Bioactive food as dietary interventions for arthritis and relat inflammatory diseases. Amsterdam: Elsevier 2019; pp. 457-79.
  29. Sodeifian G, Sajadian SA, Saadati Ardestani N. Extraction of Dracocephalum kotschyi Boiss using supercritical carbon dioxide: Experimental and optimization. J Supercrit Fluids 2016; 107: 137-44. doi: 10.1016/j.supflu.2015.09.005
  30. Sodeifian G, Sajadian SA, Saadati Ardestani N. Supercritical fluid extraction of omega-3 from Dracocephalum kotschyi seed oil: Process optimization and oil properties. J Supercrit Fluids 2017; 119: 139-49. doi: 10.1016/j.supflu.2016.08.019
  31. Fallah S, Mouguee S, Rostaei M, Adavi Z, Lorigooini Z, Shahbazi E. Productivity and essential oil quality of Dracocephalum kotschyi under organic and chemical fertilization conditions. J Clean Prod 2020; 255: 120189. doi: 10.1016/j.jclepro.2020.120189
  32. Nejad-Sadeghi M, Taji S, Goodarznia I. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran. J Chromatogr A 2015; 1422: 73-81. doi: 10.1016/j.chroma.2015.10.040 PMID: 26522747
  33. Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanadian M, Talebi M, Ghanati F. Melatonin and calcium modulate the production of rosmarinic acid, luteolin, and apigenin in Dracocephalum kotschyi under salinity stress. Phytochemistry 2020; 177: 112422. doi: 10.1016/j.phytochem.2020.112422 PMID: 32593901
  34. Selenge E, Murata T, Tanaka S, Sasaki K, Batkhuu J, Yoshizaki F. Monoterpene glycosides, phenylpropanoids, and acacetin glycosides from Dracocephalum foetidum. Phytochemistry 2014; 101: 91-100. doi: 10.1016/j.phytochem.2014.02.007 PMID: 24582463
  35. Kamali H, Khodaverdi E, Hadizadeh F, Ghaziaskar SH. Optimization of phenolic and flavonoid content and antioxidants capacity of pressurized liquid extraction from Dracocephalum kotschyi via circumscribed central composite. J Supercrit Fluids 2016; 107: 307-14. doi: 10.1016/j.supflu.2015.09.028
  36. Ebrahim Sajjadi S, Movahedian Atar A, Yektaian A. Antihyperlipidemic effect of hydroalcoholic extract, and polyphenolic fraction from Dracocephalum kotschyi Boiss. Pharm Acta Helv 1998; 73(3): 167-70. doi: 10.1016/S0031-6865(98)00016-8 PMID: 9713260
  37. Sarvestani NN, Khodagholi F, Ansari N, Farimani MM. Involvement of p-CREB and phase II detoxifying enzyme system in neuroprotection mediated by the flavonoid calycopterin isolated from Dracocephalum kotschyi. Phytomedicine 2013; 20(10): 939-46. doi: 10.1016/j.phymed.2013.03.013 PMID: 23639191
  38. Saleh NAM, Mansour RMA, El-Kareemy ZAR, Fayed AA. The chemosystematics of local members of the subtribe gnaphaliinae (Compositae). Biochem Syst Ecol 1988; 16(7-8): 615-7. doi: 10.1016/0305-1978(88)90072-5
  39. Lewin G, Shridhar NB, Aubert G, Thoret S, Dubois J, Cresteil T. Synthesis of antiproliferative flavones from calycopterin, major flavonoid of Calycopteris floribunda Lamk. Bioorg Med Chem 2011; 19(1): 186-96. doi: 10.1016/j.bmc.2010.11.035 PMID: 21146994
  40. Munshi S, Dahl R. Cytoprotective small molecule modulators of endoplasmic reticulum stress. Bioorg Med Chem 2016; 24(11): 2382-8. doi: 10.1016/j.bmc.2016.03.045 PMID: 27091069
  41. Fattahi M, Nazeri V, Torras-Claveria L, et al. A new biotechnological source of rosmarinic acid and surface flavonoids: Hairy root cultures of Dracocephalum kotschyi Boiss. Ind Crops Prod 2013; 50: 256-63. doi: 10.1016/j.indcrop.2013.07.029
  42. Moradi M, Gholipour H, Sepehri H, et al. Flavonoid calycopterin triggers apoptosis in triple-negative and ER-positive human breast cancer cells through activating different patterns of gene expression. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(11): 2145-56. doi: 10.1007/s00210-020-01917-y PMID: 32617603
  43. Esmaeili MA, Farimani MM, Kiaei M. Anticancer effect of calycopterin via PI3K/Akt and MAPK signaling pathways, ROS-mediated pathway and mitochondrial dysfunction in hepatoblastoma cancer (HepG2) cells. Mol Cell Biochem 2014; 397(1-2): 17-31. doi: 10.1007/s11010-014-2166-4 PMID: 25060910
  44. Moridi FM, Namazi SN, Ansari N, Khodagholi F. Calycopterin promotes survival and outgrowth of neuron-like PC12 cells by attenuation of oxidative- and ER-stress-induced apoptosis along with inflammatory response. Chem Res Toxicol 2011; 24(12): 2280-92. doi: 10.1021/tx200420a PMID: 22081883
  45. Sreekanth P, Narayana K, Shridhar NB, Bhat A. Toxicity studies of Calycopteris floribunda Lam. in calf, rabbit and rat. J Ethnopharmacol 2006; 107(2): 229-33. doi: 10.1016/j.jep.2006.03.016 PMID: 16677787
  46. Zamani SS, Hossieni M, Etebari M, Salehian P, Ebrahimi SA. Pharmacokinetics of calycopterin and xanthmicrol, two polymethoxylated hydroxyflavones with anti-angiogenic activities from Dracocephalum kotschyi Bioss. Daru 2016; 24(1): 22. doi: 10.1186/s40199-016-0161-x PMID: 27716340
  47. Moghaddam G, Ebrahimi SA, Rahbar-Roshandel N, Foroumadi A. Antiproliferative activity of flavonoids: influence of the sequential methoxylation state of the flavonoid structure. Phytother Res 2012; 26(7): 1023-8. doi: 10.1002/ptr.3678 PMID: 22184071
  48. Moridi Farimani M, Nazarianpoor E, Rustaie A, Akhbari M. Phytochemical constituents and biological activities of Cleome iberica DC. Nat Prod Res 2017; 31(11): 1329-32. doi: 10.1080/14786419.2016.1239093 PMID: 27731648
  49. Abbaszadeh H, Ebrahimi SA, Akhavan MM. Antiangiogenic activity of xanthomicrol and calycopterin, two polymethoxylated hydroxyflavones in both in vitro and ex vivo models. Phytother Res 2014; 28(11): 1661-70. doi: 10.1002/ptr.5179 PMID: 24895220
  50. Faham N, Javidnia K, Bahmani M, Amirghofran Z. Calycopterin, an immunoinhibitory compound from the extract of Dracocephalum kotschyi. Phytother Res 2008; 22(9): 1154-8. doi: 10.1002/ptr.2382 PMID: 18683896
  51. Froes TQ, Nicastro GG, de Oliveira Pereira T, et al. Calycopterin, a major flavonoid from Marcetia latifolia, modulates virulence-related traits in Pseudomonas aeruginosa. Microb Pathog 2020; 144: 104142. doi: 10.1016/j.micpath.2020.104142 PMID: 32173496
  52. Saeidnia S, Gohari AR, Ito M, Kiuchi F, Honda G. Bioactive constituents from Dracocephalum subcapitatum (O. Kuntze) lipsky. Z Naturforsch C J Biosci 2005; 60(1-2): 22-4. doi: 10.1515/znc-2005-1-204 PMID: 15787238

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers