The role of the serotoninergic system in functional recovery after spinal cord injury
- Autores: Konovalova S.P.1, Sysoev Y.I.1,2,3, Vetlugina A.1, Arsentiev K.A.1, Musienko P.E.1,4,5
-
Afiliações:
- Sirius University of Science and Technology
- Pavlov Institute of Physiology of the Russian Academy of Sciences
- Saint Petersburg State University
- Life Improvement by Future Technologies Center “LIFT”
- Federal Center of Brain Research and Neurotechnologies
- Edição: Volume 110, Nº 9 (2024)
- Páginas: 1294-1315
- Seção: REVIEW
- URL: https://vietnamjournal.ru/0869-8139/article/view/651741
- DOI: https://doi.org/10.31857/S0869813924090027
- EDN: https://elibrary.ru/AKGKFA
- ID: 651741
Citar
Resumo
The serotoninergic system plays an essential role in the modulation of the spinal networks activity involved in the control of motor, sensory, and visceral functions. Spinal cord injury (SCI) can induce a state of overexcitation that contributes to pain, spasticity, and dysregulation of autonomic functions. At the same time, 5-NT axons are known to adapt faster than others to pathophysiologic changes and leave the ability to sprout and regenerate after injury. A number of experimental animal studies as well as some clinical observations suggest that the serotoninergic system is a key endogenous resource for posttraumatic recovery after SCI. Specific therapy may include administration of serotoninergic drugs and intraspinal transplantation of 5-NT neurons. This review discusses the role of the serotoninergic system in functional recovery after SCI and the prospects for the use of serotoninergic drugs in neurorehabilitation.
Texto integral

Sobre autores
S. Konovalova
Sirius University of Science and Technology
Email: musienko.pe@talantiuspeh.ru
Scientific Center of Genetics and Life Sciences, Department of Neurobiology
Rússia, Federal Territory of SiriusY. Sysoev
Sirius University of Science and Technology; Pavlov Institute of Physiology of the Russian Academy of Sciences; Saint Petersburg State University
Email: musienko.pe@talantiuspeh.ru
Scientific Center of Genetics and Life Sciences, Department of Neurobiology; Institute of Translational Biomedicine
Rússia, Federal Territory of Sirius; St. Petersburg; St. PetersburgA. Vetlugina
Sirius University of Science and Technology
Email: musienko.pe@talantiuspeh.ru
Scientific Center of Genetics and Life Sciences, Department of Neurobiology
Rússia, Federal Territory of SiriusK. Arsentiev
Sirius University of Science and Technology
Email: musienko.pe@talantiuspeh.ru
Scientific Center of Genetics and Life Sciences, Department of Neurobiology
Rússia, Federal Territory of SiriusP. Musienko
Sirius University of Science and Technology; Life Improvement by Future Technologies Center “LIFT”; Federal Center of Brain Research and Neurotechnologies
Autor responsável pela correspondência
Email: musienko.pe@talantiuspeh.ru
Scientific Center of Genetics and Life Sciences, Department of Neurobiology
Rússia, Federal Territory of Sirius; Moscow; MoscowBibliografia
- Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 10: 282. https://doi.org/10.3389/fneur.2019.00282
- Chen Y, Tang Y, Vogel LC, Devivo MJ (2013) Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 19(1): 1–8. https://doi.org/10.1310/sci1901-1
- Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 21(20). https://doi.org/10.3390/ijms21207533
- Yang T, Dai Y, Chen G, Cui S (2020) Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Front. Cell Neurosci 14. https://doi.org/10.3389/fncel.2020.00078
- Wheeler TL, de Groat W, Eisner K, Emmanuel A, French J, Grill W, Kennelly MJ, Krassioukov A, Gallo Santacruz B, Biering-Sørensen F, Kleitman N (2018) Translating promising strategies for bowel and bladder management in spinal cord injury. Exp Neurol 306: 169–176. https://doi.org/10.1016/j.expneurol.2018.05.006
- Farhad A, Soolmaz K (2017) Infectious Complications after Spinal Cord Injury. In: Yannis D, (ed). Essentials of Spinal Cord Injury Medicine. Rijeka. IntechOpen. Ch 5.
- Claydon VE, Steeves JD, Krassioukov A (2006) Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord 44(6): 341–351. https://doi.org/10.1038/sj.sc.3101855
- Cardozo CP (2007) Respiratory complications of spinal cord injury. J Spinal Cord Med 30(4): 307–308. https://doi.org/10.1080/10790268.2007.11753945
- Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86(2): 142–152. https://doi.org/10.1097/PHM.0b013e31802f0247
- Budd MA, Gater DR, Jr, Channell I (2022) Psychosocial Consequences of Spinal Cord Injury: A Narrative Review. J Pers Med 12(7). https://doi.org/10.3390/jpm12071178
- Nas K, Yazmalar L, Şah V, Aydın A, Öneş K (2015) Rehabilitation of spinal cord injuries. World J Orthop 6(1): 8–16. https://doi.org/10.5312/wjo.v6.i1.8
- Gerin CG, Hill A, Hill S, Smith K, Privat A (2010) Serotonin release variations during recovery of motor function after a spinal cord injury in rats. Synapse 64(11): 855–861. https://doi.org/10.1002/syn.20802
- Moshonkina TR, Shapkova EY, Sukhotina IA, Emeljannikov DV, Gerasimenko YP (2016) Effect of Combination of Non-Invasive Spinal Cord Electrical Stimulation and Serotonin Receptor Activation in Patients with Chronic Spinal Cord Lesion. Bull Exp Biol Med 161(6): 749–754. https://doi.org/10.1007/s10517-016-3501-4
- Perrin FE, Noristani HN (2019) Serotonergic mechanisms in spinal cord injury. Exp Neurol 318: 174–191. https://doi.org/10.1016/j.expneurol.2019.05.007
- Fauss GNK, Hudson KE, Grau JW (2022) Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. Biology (Basel) 11(2). https://doi.org/10.3390/biology11020234
- Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34(6): 535–546. https://doi.org/10.1179/204577211x13207446293695
- Anjum A, Yazid MDi, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, Ismail OHR, Athi Kumar RK, Lokanathan Y (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 21(20): 7533.
- Quadri SA, Farooqui M, Ikram A, Zafar A, Khan MA, Suriya SS, Claus CF, Fiani B, Rahman M, Ramachandran A, Armstrong IIT, Taqi MA, Mortazavi MM (2020) Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev 43(2): 425–441. https://doi.org/10.1007/s10143-018-1008-3
- Bonner S, Smith C (2013) Initial management of acute spinal cord injury. CEACCP 13(6): 224–231. https://doi.org/10.1093/bjaceaccp/mkt021
- McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359(9304): 417–425. https://doi.org/10.1016/s0140-6736(02)07603-1
- Bilgen M, Abbe R, Liu S-J, Narayana PA (2000) Spatial and temporal evolution of hemorrhage in the hyperacute phase of experimental spinal cord injury: In vivo magnetic resonance imaging. Magn Reson Med 43(4): 594–600. https://doi.org/https://doi.org/10.1002/(SICI)1522-2594(200004)43:4<594:: AID-MRM15>3.0.CO;2-1
- Von Leden RE, Yauger YJ, Khayrullina G, Byrnes KR (2017) Central Nervous System Injury and Nicotinamide Adenine Dinucleotide Phosphate Oxidase: Oxidative Stress and Therapeutic Targets. J Neurotrauma 34(4): 755–764. https://doi.org/10.1089/neu.2016.4486
- Fehlings MG, Vaccaro A, Wilson JR, Singh A, D WC, Harrop JS, Aarabi B, Shaffrey C, Dvorak M, Fisher C, Arnold P, Massicotte EM, Lewis S, Rampersaud R (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7(2): e32037. https://doi.org/10.1371/journal.pone.0032037
- Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 100(3): 639–649. https://doi.org/10.1111/j.1471-4159.2006.04312.x
- Salim S (2017) Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther 360(1): 201–205. https://doi.org/10.1124/jpet.116.237503
- Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS (2021) Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammat 18(1): 284. https://doi.org/10.1186/s12974-021-02337-2
- Garcia E, Aguilar-Cevallos J, Silva-Garcia R, Ibarra A (2016) Cytokine and Growth Factor Activation In Vivo and In Vitro after Spinal Cord Injury. Mediat Inflamm 2016: 9476020. https://doi.org/10.1155/2016/9476020
- Schwartz G, Fehlings MG (2002) Secondary injury mechanisms of spinal cord trauma: a novel therapeutic approach for the management of secondary pathophysiology with the sodium channel blocker riluzole. Prog Brain Res 137: 177–190. https://doi.org/10.1016/s0079-6123(02)37016-x
- Yuan YM, He C (2013) The glial scar in spinal cord injury and repair. Neurosci Bull 29(4): 421–435. https://doi.org/10.1007/s12264-013-1358-3
- Rooney GE, Endo T, Ameenuddin S, Chen B, Vaishya S, Gross L, Schiefer TK, Currier BL, Spinner RJ, Yaszemski MJ, Windebank AJ (2009) Importance of the vasculature in cyst formation after spinal cord injury. J Neurosurg Spine 11(4): 432–437. https://doi.org/10.3171/2009.4.spine08784
- Kalpakjian CZ, Bombardier CH, Schomer K, Brown PA, Johnson KL (2009) Measuring depression in persons with spinal cord injury: a systematic review. J Spinal Cord Med 32(1): 6–24. https://doi.org/10.1080/10790268.2009.11760748
- Kennedy P, Garmon-Jones L (2017) Self-harm and suicide before and after spinal cord injury: a systematic review. Spinal Cord 55(1): 2–7. https://doi.org/10.1038/sc.2016.135
- Maas AIR, Peul W, Thomé C (2021) Surgical decompression in acute spinal cord injury: earlier is better. The Lancet Neurol 20(2): 84–86. https://doi.org/https://doi.org/10.1016/S1474-4422(20)30478-6
- Flynn J, Dunn L, Galea M, Callister R, Callister R, Rank M (2013) Exercise Training after Spinal Cord Injury Selectively Alters Synaptic Properties in Neurons in Adult Mouse Spinal Cord. J Neurotrauma 30. https://doi.org/10.1089/neu.2012.2714
- Timoszyk WK, Nessler JA, Acosta C, Roy RR, Edgerton VR, Reinkensmeyer DJ, de Leon R (2005) Hindlimb loading determines stepping quantity and quality following spinal cord transection. Brain Res 1050(1–2): 180189. https://doi.org/10.1016/j.brainres.2005.05.041
- Kreydin E, Zhong H, Latack K, Ye S, Edgerton VR, Gad P (2020) Transcutaneous Electrical Spinal Cord Neuromodulator (TESCoN) Improves Symptoms of Overactive Bladder. Front Syst Neurosci 14: 1. https://doi.org/10.3389/fnsys.2020.00001
- Doherty S, Vanhoestenberghe A, Duffell L, Hamid R, Knight S (2019) A Urodynamic Comparison of Neural Targets for Transcutaneous Electrical Stimulation to Acutely Suppress Detrusor Contractions Following Spinal Cord Injury. Front Neurosci 13: 1360. https://doi.org/10.3389/fnins.2019.01360
- Gerasimenko Y, Sayenko D, Gad P, Kozesnik J, Moshonkina T, Grishin A, Pukhov A, Moiseev S, Gorodnichev R, Selionov V, Kozlovskaya I, Edgerton VR (2018) Electrical Spinal Stimulation, and Imagining of Lower Limb Movements to Modulate Brain-Spinal Connectomes That Control Locomotor-Like Behavior. Front Physiol 9: 1196. https://doi.org/10.3389/fphys.2018.01196
- Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV (2018) An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J Neurotrauma 35(3): 446–451. https://doi.org/10.1089/neu.2017.5082
- Moraud EM, Capogrosso M, Formento E, Wenger N, DiGiovanna J, Courtine G, Micera S (2016) Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron 89(4): 814–828. https://doi.org/10.1016/j.neuron.2016.01.009
- Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot J-B, Buse N, Gandar J, Barraud Q, Xing D, Rey E, Duis S, Jianzhong Y, Ko WKD, Li Q, Detemple P, Denison T, Micera S, Bezard E, Bloch J, Courtine G (2016) A brain–spine interface alleviating gait deficits after spinal cord injury in primates. Nature 539(7628): 284–248. https://doi.org/10.1038/nature20118
- Barra B, Conti S, Perich MG, Zhuang K, Schiavone G, Fallegger F, Galan K, James ND, Barraud Q, Delacombaz M, Kaeser M, Rouiller EM, Milekovic T, Lacour S, Bloch J, Courtine G, Capogrosso M (2022) Epidural electrical stimulation of the cervical dorsal roots restores voluntary upper limb control in paralyzed monkeys. Nat Neurosci 25(7): 924–934. https://doi.org/10.1038/s41593-022-01106-5
- Rushton DN (2003) Functional electrical stimulation and rehabilitation. Med Eng Phys 25(1): 75–78. https://doi.org/10.1016/s1350-4533(02)00040-1
- Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60: 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802
- Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR (2019) Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr Rev 40(4): 1092–1107. https://doi.org/10.1210/er.2018-00283
- McKinney J, Knappskog PM, Haavik J (2005) Different properties of the central and peripheral forms of human tryptophan hydroxylase. J Neurochem 92(2): 311–320. https://doi.org/10.1111/j.1471-4159.2004.02850.x
- Cai Z (2014) Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer's disease (Review). Mol Med Rep 9(5): 1533–1541. https://doi.org/10.3892/mmr.2014.2040
- Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl: Suppl 232: 1–55.
- Dorocic IP, Fürth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlén M, Meletis K (2014) A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei. Neuron 83: 663–678.
- Hornung JP (2003) The human raphe nuclei and the serotonergic system. J Chem Neuroanat 26(4): 331–343. https://doi.org/10.1016/j.jchemneu.2003.10.002
- Gianni G, Pasqualetti M (2023) Wiring and Volume Transmission: An Overview of the Dual Modality for Serotonin Neurotransmission. ACS Chem Neurosci 14(23): 4093–4104. https://doi.org/10.1021/acschemneuro.3c00648
- Hochman S, Garraway S, Machacek DW, Shay BL (2001) 5-HT receptors and the neuromodulatory control of spinal cord function. In: Motor Neurobiology of the Spinal Cord. (ed) Cope TC. London. CRC Press. 47–87.
- Beato M, Nistri A (1998) Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class. Proc Biol Sci 265(1410): 2073–2080. https://doi.org/10.1098/rspb.1998.0542
- Perrier JF, Rasmussen HB, Jørgensen LK, Berg RW (2017) Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism. Front Neural Circuits 11: 111. https://doi.org/10.3389/fncir.2017.00111
- Perrier JF, Cotel F (2015) Serotonergic modulation of spinal motor control. Curr Opin Neurobiol 33: 1–7. https://doi.org/10.1016/j.conb.2014.12.008
- Perrier JF, Rasmussen HB, Christensen RK, Petersen AV (2013) Modulation of the intrinsic properties of motoneurons by serotonin. Curr Pharm Des 19(24): 4371–4384. https://doi.org/10.2174/13816128113199990341
- Zhong G, Díaz-Ríos M, Harris-Warrick RM (2006) Intrinsic and functional differences among commissural interneurons during fictive locomotion and serotonergic modulation in the neonatal mouse. J Neurosci 26(24): 6509–6517. https://doi.org/10.1523/jneurosci.1410–06.2006
- Ghosh M, Pearse DD (2014) The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 8: 151. https://doi.org/10.3389/fncir.2014.00151
- Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9(6): 453–466. https://doi.org/10.1038/nrn2401
- Griffiths D, Tadic SD, Schaefer W, Resnick NM (2007) Cerebral control of the bladder in normal and urge-incontinent women. Neuroimage 37(1): 1–7. https://doi.org/10.1016/j.neuroimage.2007.04.061
- Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7): 398–399. https://doi.org/10.1007/bf02147990
- Ahn J, Saltos T, Tom V, Hou S (2018) Transsynaptic tracing to dissect supraspinal serotonergic input regulating the bladder reflex in rats. Neurourol Urodyn 37. https://doi.org/10.1002/nau.23762
- McMahon SB, Spillane K (1982) Brain stem influences on the parasympathetic supply to the urinary bladder of the cat. Brain Res 234(2): 237–249. https://doi.org/10.1016/0006-8993(82)90865-4
- Ramage AG (2006) The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br J Pharmacol 147 Suppl 2 (Suppl 2): S120–S131. https://doi.org/10.1038/sj.bjp.0706504
- Cheng CL, de Groat WC (2010) Role of 5-HT1A receptors in control of lower urinary tract function in anesthetized rats. Am J Physiol Renal Physiol 298(3): F771–F778. https://doi.org/10.1152/ajprenal.00266.2009
- Ishizuka O, Gu B, Igawa Y, Nishizawa O, Pehrson R, Andersson KE (2002) Role of supraspinal serotonin receptors for micturition in normal conscious rats. Neurourol Urodyn 21(3): 225–230. https://doi.org/10.1002/nau.10043
- Lychkova AE, Pavone LM (2013) Role of Serotonin Receptors in Regulation of Contractile Activity of Urinary Bladder in Rabbits. Urology 81(3): e13–e18. https://doi.org/https://doi.org/10.1016/j.urology.2012.11.029
- Thor KB, Katofiasc MA, Danuser H, Springer J, Schaus JM (2002) The role of 5-HT(1A) receptors in control of lower urinary tract function in cats. Brain Res 946(2): 290–297. https://doi.org/10.1016/s0006-8993(02)02897-4
- Hayashi Y, Jacob-Vadakot S, Dugan EA, McBride S, Olexa R, Simansky K, Murray M, Shumsky JS (2010) 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats. Exp Neurol 221(1): 68–78. https://doi.org/10.1016/j.expneurol.2009.10.003
- Holmes GM, Van Meter MJ, Beattie MS, Bresnahan JC (2005) Serotonergic fiber sprouting to external anal sphincter motoneurons after spinal cord contusion. Exp Neurol 193(1): 29–42. https://doi.org/10.1016/j.expneurol.2005.01.002
- Hawthorne AL, Hu H, Kundu B, Steinmetz MP, Wylie CJ, Deneris ES, Silver J (2011) The unusual response of serotonergic neurons after CNS Injury: lack of axonal dieback and enhanced sprouting within the inhibitory environment of the glial scar. J Neurosci 31(15): 5605–5616. https://doi.org/10.1523/jneurosci.6663-10.2011
- Tran AP, Sundar S, Yu M, Lang BT, Silver J (2018) Modulation of Receptor Protein Tyrosine Phosphatase Sigma Increases Chondroitin Sulfate Proteoglycan Degradation through Cathepsin B Secretion to Enhance Axon Outgrowth. J Neurosci 38(23): 5399–5414. https://doi.org/10.1523/jneurosci.3214-17.2018
- Donovan SL, Mamounas LA, Andrews AM, Blue ME, McCasland JS (2002) GAP-43 Is Critical for Normal Development of the Serotonergic Innervation in Forebrain. Neurosci J 22(9): 3543–3552. https://doi.org/10.1523/jneurosci.22-09-03543.2002
- Geoffroy CG, Zheng B (2014) Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 27: 31–38. https://doi.org/10.1016/j.conb.2014.02.012
- Mehta NR, Nguyen T, Bullen JW, Jr., Griffin JW, Schnaar RL (2010) Myelin-associated glycoprotein (MAG) protects neurons from acute toxicity using a ganglioside-dependent mechanism. ACS Chem Neurosci 1(3): 215–222. https://doi.org/10.1021/cn900029p
- Li S, Strittmatter SM (2003) Delayed Systemic Nogo-66 Receptor Antagonist Promotes Recovery from Spinal Cord Injury. Neurosci J 23(10): 4219–4227. https://doi.org/10.1523/jneurosci.23-10-04219.2003
- Cooke P, Janowitz H, Dougherty SE (2022) Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Front Cell Neurosci 16. https://doi.org/10.3389/fncel.2022.872501
- Li Y, Li L, Stephens MJ, Zenner D, Murray KC, Winship IR, Vavrek R, Baker GB, Fouad K, Bennett DJ (2014) Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats. J Neurophysiol 111(1): 145–163. https://doi.org/10.1152/jn.00508.2013
- Wienecke J, Ren LQ, Hultborn H, Chen M, Møller M, Zhang Y, Zhang M (2014) Spinal cord injury enables aromatic L-amino acid decarboxylase cells to synthesize monoamines. J Neurosci 34(36): 11984–2000. https://doi.org/10.1523/jneurosci.3838-13.2014
- Miner LH, Schroeter S, Blakely RD, Sesack SR (2000) Ultrastructural localization of the serotonin transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to dopamine terminals. J Comp Neurol 427(2): 220–234. https://doi.org/10.1002/1096-9861(20001113)427:2<220:: aid-cne5>3.0.co;2-p
- Hains BC, Johnson KM, McAdoo DJ, Eaton MJ, Hulsebosch CE (2001) Engraftment of serotonergic precursors enhances locomotor function and attenuates chronic central pain behavior following spinal hemisection injury in the rat. Exp Neurol 171(2): 361–378. https://doi.org/10.1006/exnr.2001.7751
- Feraboli-Lohnherr D, Barthe JY, Orsal D (1999) Serotonin-induced activation of the network for locomotion in adult spinal rats. J Neurosci Res 55: 87–98. https://doi.org/10.1002/(SICI)1097-4547(19990101)55:13.3.CO;2-R
- Barbeau H, Rossignol S (1987) Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412(1): 84–95. https://doi.org/https://doi.org/10.1016/0006-8993(87)91442-9
- Nozaki M, Bell JA, Vaupel DB, Martin WR (1977) Responses of the flexor reflex to LSD, tryptamine, 5-hydroxytryptophan, methoxamine, and d-amphetamine in acute and chronic spinal rats. Psychopharmacology (Berl) 55(1): 13–18. https://doi.org/10.1007/bf00432811
- Barbeau H, Rossignol S (1990) The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res 514(1): 55–67. https://doi.org/10.1016/0006-8993(90)90435-e
- Ma L, Tang J-Y, Zhou J-Y, Zhu C, Zhang X, Zhou P, Yu Q, Wang Y, Gu X-J (2021) Fluoxetine, a selective serotonin reuptake inhibitor used clinically, improves bladder function in a mouse model of moderate spinal cord injury. Neural Regen Res 16(10): 2093–2098. https://doi.org/10.4103/1673-5374.308667
- Ryu Y, Ogata T, Nagao M, Sawada Y, Nishimura R, Fujita N (2021) Early escitalopram administration as a preemptive treatment strategy against spasticity after contusive spinal cord injury in rats. Sci Rep 11(1): 7120. https://doi.org/10.1038/s41598-021-85961-5
- Lima R, Monteiro S, Gomes ED, Vasconcelos NL, Assunção-Silva R, Morais M, Salgado AJ, Silva NA (2020) Citalopram Administration Does Not Promote Function or Histological Recovery after Spinal Cord Injury. Int J Mol Sci 21(14): 5062. https://doi.org/10.3390/ijms21145062
- Musienko P, van den Brand R, Märzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling specific locomotor behaviors through multidimensional monoaminergic modulation of spinal circuitries. J Neurosci 31(25): 9264–9278. https://doi.org/10.1523/jneurosci.5796-10.2011
- Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12(10): 1333–1342. https://doi.org/10.1038/nn.2401
- Eaton MJ, Berrocal Y, Wolfe SQ (2012) Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines. Pain Res Treat 2012: 356412. https://doi.org/10.1155/2012/356412
- Ribotta MG, Provencher J, Feraboli-Lohnherr D, Rossignol S, Privat A, Orsal D (2000) Activation of Locomotion in Adult Chronic Spinal Rats Is Achieved by Transplantation of Embryonic Raphe Cells Reinnervating a Precise Lumbar Level. J Neurosci 20(13): 5144–5152. https://doi.org/10.1523/jneurosci.20-13-05144.2000
- Gimenez y Ribotta M, Orsal D, Feraboli-Lohnherr D, Privat A (1998) Recovery of locomotion following transplantation of monoaminergic neurons in the spinal cord of paraplegic rats. Ann N Y Acad Sci 860: 393–411. https://doi.org/10.1111/j.1749-6632.1998.tb09064.x
- Ramer LM, Au E, Richter MW, Liu J, Tetzlaff W, Roskams AJ (2004) Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury. J Comp Neurol 473(1): 1–15. https://doi.org/10.1002/cne.20049
- Hains BC, Johnson KM, Eaton MJ, Willis WD, Hulsebosch CE (2003) Serotonergic neural precursor cell grafts attenuate bilateral hyperexcitability of dorsal horn neurons after spinal hemisection in rat. Neuroscience 116(4): 1097–1110. https://doi.org/10.1016/s0306-4522(02)00729-7
- Feraboli-Lohnherr D, Orsal D, Yakovleff A, Giménez y Ribotta M, Privat A (1997) Recovery of locomotor activity in the adult chronic spinal rat after sublesional transplantation of embryonic nervous cells: specific role of serotonergic neurons. Exp Brain Res 113(3): 443–454. https://doi.org/10.1007/pl00005597
- Eaton MJ, Pearse DD, McBroom JS, Berrocal YA (2008) The combination of human neuronal serotonergic cell implants and environmental enrichment after contusive SCI improves motor recovery over each individual strategy. Behav Brain Res 194(2): 236–241. https://doi.org/10.1016/j.bbr.2008.07.001
- Bayoumi AB, Ikizgul O, Karaali CN, Bozkurt S, Konya D, Toktas ZO (2019) Antidepressants in Spine Surgery: A Systematic Review to Determine Benefits and Risks. Asian Spine J 13(6): 1036–1046. https://doi.org/10.31616/asj.2018.0237
- Wei K, Glaser JI, Deng L, Thompson CK, Stevenson IH, Wang Q, Hornby TG, Heckman CJ, Kording KP (2014) Serotonin Affects Movement Gain Control in the Spinal Cord. J Neurosci 34(38): 12690–12700. https://doi.org/10.1523/jneurosci.1855-14.2014
- Thompson CK, Hornby TG (2013) Divergent modulation of clinical measures of volitional and reflexive motor behaviors following serotonergic medications in human incomplete spinal cord injury. J Neurotrauma 30(6): 498–502. https://doi.org/10.1089/neu.2012.2515
- Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, Mann JJ, Brunner D, Hen R (1998) Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci U S A 95(24): 14476–14481. https://doi.org/10.1073/pnas.95.24.14476
- Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A 95(25): 15049–15054. https://doi.org/10.1073/pnas.95.25.15049
- Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci U S A 95(18): 10734–10739. https://doi.org/10.1073/pnas.95.18.10734
- Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634): 805–809. https://doi.org/10.1126/science.1083328
- Rusanescu G, Mao J (2015) Immature spinal cord neurons are dynamic regulators of adult nociceptive sensitivity. J Cell Mol Med 19(10): 2352–2364. https://doi.org/10.1111/jcmm.12648
- Havelikova K, Smejkalova B, Jendelova P (2022) Neurogenesis as a Tool for Spinal Cord Injury. Int J Mol Sci 23(7). https://doi.org/10.3390/ijms23073728
- Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A (2021) Neurogenesis after Spinal Cord Injury: State of the Art. Cells 10(6): 1499.
- Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K (2010) Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 120(9): 3255–3266. https://doi.org/10.1172/jci42957
- Lukovic D, Moreno-Manzano V, Lopez-Mocholi E, Rodriguez-Jiménez FJ, Jendelova P, Sykova E, Oria M, Stojkovic M, Erceg S (2015) Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci Rep 5: 9640. https://doi.org/10.1038/srep09640
- Zaniewska M, Mosienko V, Bader M, Alenina N (2022) Tph2 Gene Expression Defines Ethanol Drinking Behavior in Mice. Cells 11(5). https://doi.org/10.3390/cells11050874
- Kulikova EA, Kulikov AV (2019) Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: focus on animal models. Expert Opin Ther Targets 23(8): 655–667. https://doi.org/10.1080/14728222.2019.1634691
- Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Disease Models & Mechanisms 9(10): 1125–1137. https://doi.org/10.1242/dmm.025833
- Onifer SM, Nunn CD, Decker JA, Payne BN, Wagoner MR, Puckett AH, Massey JM, Armstrong J, Kaddumi EG, Fentress KG, Wells MJ, West RM, Calloway CC, Schnell JT, Whitaker CM, Burke DA, Hubscher CH (2007) Loss and spontaneous recovery of forelimb evoked potentials in both the adult rat cuneate nucleus and somatosensory cortex following contusive cervical spinal cord injury. Exp Neurol 207(2): 238–247. https://doi.org/10.1016/j.expneurol.2007.06.012
- Minakov AN, Chernov AS, Asutin DS, Konovalov NA, Telegin GB (2018) Experimental Models of Spinal Cord Injury in Laboratory Rats. Acta Naturae 10(3): 4–10. https://doi.org/10.32607/20758251-2018-10-3-4-10
- Kaplan K, Echert AE, Massat B, Puissant MM, Palygin O, Geurts AM, Hodges MR (2016) Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats. J Appl Physiol (1985) 120(9): 1070–1081. https://doi.org/10.1152/japplphysiol.01015.2015
- Sidorova M, Kronenberg G, Matthes S, Petermann M, Hellweg R, Tuchina O, Bader M, Alenina N, Klempin F (2021) Enduring Effects of Conditional Brain Serotonin Knockdown, Followed by Recovery, on Adult Rat Neurogenesis and Behavior. Cells 10(11). https://doi.org/10.3390/cells10113240
- Meng X, Grandjean J, Sbrini G, Schipper P, Hofwijks N, Stoop J, Calabrese F, Homberg J (2022) Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem Neurosci 13(20): 2974–2981. https://doi.org/10.1021/acschemneuro.2c00448
Arquivos suplementares
