Analyses of Rodent Grooming and its Behavioral Microstructure in Modern Neurobiological Studies
- Authors: Apukhtin K.V.1, Shevlyakov A.D.1, Kotova M.M.1, Amikishiev S.V.1, Riga V.D.1, Volgin A.D.1, Kalueff A.V.1,2,3
-
Affiliations:
- Sirius University of Science and Technology
- Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation
- St. Petersburg State University
- Issue: Vol 110, No 6 (2024)
- Pages: 889-914
- Section: REVIEW
- URL: https://vietnamjournal.ru/0869-8139/article/view/651627
- DOI: https://doi.org/10.31857/S0869813924060022
- EDN: https://elibrary.ru/BFDDUM
- ID: 651627
Cite item
Abstract
Grooming is a complex innate animal behavior used as an indicator of the physiological state of rodents under stress. Here, we analyze the impact of various experimental factors, including genetic, pharmacological and physiological, on self-grooming behavior of laboratory mice and rats. Analysis of grooming microstructure assesses not only the amount, but also the frequency, sequence, localization and consistency of this behavior, and can serve as a sensitive marker of changes in the brain, its response to stress, and predisposition to pathological conditions that model human mental illnesses, such as obsessive-compulsive disorder, autism and depression. Studying rodent self-grooming microstructure can provide valuable information about the mechanisms of brain pathogenesis and has multiple important translational implications for neuroscience research.
Full Text

About the authors
K. V. Apukhtin
Sirius University of Science and Technology
Author for correspondence.
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences
Russian Federation, Federal Territory SiriusA. D. Shevlyakov
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences
Russian Federation, Federal Territory SiriusM. M. Kotova
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences
Russian Federation, Federal Territory SiriusS. V. Amikishiev
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences
Russian Federation, Federal Territory SiriusV. D. Riga
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences
Russian Federation, Federal Territory SiriusA. D. Volgin
Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences
Russian Federation, Federal Territory SiriusA. V. Kalueff
Sirius University of Science and Technology; Almazov National Medical Research Center, Ministry of Healthcare of Russian Federation; St. Petersburg State University
Email: avkalueff@gmail.com
Neurobiology Program, Scientific Center for Genetics and Life Sciences, Institute of Experimental Medicine, Institute of Translational Biomedicine, World-class Scientific Center “Center for Personalized Medicine”
Russian Federation, Federal Territory Sirius; St. Petersburg; St. PetersburgReferences
- Kalueff AV, Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC (2016) Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci 17(1): 45–59. https://10.1038/nrn.2015.8
- Klenowski PM, Zhao-Shea R, Freels TG, Molas S, Zinter M, M'Angale P, Xiao C, Martinez-Núñez L, Thomson T, Tapper AR (2023) A neuronal coping mechanism linking stress-induced anxiety to motivation for reward. Sci Adv 9(49): eadh9620. https://10.1126/sciadv.adh9620
- Estanislau C, Veloso AWN, Filgueiras GB, Maio TP, Dal-Cól MLC, Cunha DC, Klein R, Carmona LF, Fernández-Teruel A (2019) Rat self-grooming and its relationships with anxiety, dearousal and perseveration: Evidence for a self-grooming trait. Physiol Behav 209: 112585. https://10.1016/j.physbeh.2019.112585
- Kalueff AV, Aldridge JW, LaPorte JL, Murphy DL, Tuohimaa P (2007) Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2(10): 2538–2544. https://10.1038/nprot.2007.367
- Petković A, Chaudhury D (2022) Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 16: 931964. https://10.3389/fnbeh.2022.931964
- Smolinsky AN, Bergner CL, LaPorte JL, Kalueff AV (2009) Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Gould TD (ed) Mood and Anxiety Related Phenotypes in Mice: Characterization Using Behavioral Tests. Totowa, NJ. Humana Press. 21–36.
- Kalueff AV, Tuohimaa P (2005) The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J Neurosci Methods 143(2): 169–177. https://10.1016/j.jneumeth.2004.10.001
- Kalueff AV, Tuohimaa P (2005) Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav Brain Res 160(1): 1–10. https://10.1016/j.bbr.2004.11.010
- Kalueff AV, Tuohimaa P (2004) Grooming analysis algorithm for neurobehavioural stress research. Brain Res Protoc 13(3): 151–158. https://doi.org/10.1016/j.brainresprot.2004.04.002
- Pires GN, Tufik S, Andersen ML (2013) Grooming analysis algorithm: use in the relationship between sleep deprivation and anxiety-like behavior. Prog Neuropsychopharmacol Biol Psychiatry 41: 6–10. https://10.1016/j.pnpbp.2012.11.006
- Pires GN, Tufik S, Andersen ML (2015) Effects of REM sleep restriction during pregnancy on rodent maternal behavior. Braz J Psychiatry 37(4): 303–309. https://10.1590/1516–4446–2014–1629
- Pires GN, Tufik S, Andersen ML (2020) Effects of sleep restriction during pregnancy on postpartum maternal behavior in female rats. Behav Proc 179: 104200. https://10.1016/j.beproc.2020.104200
- Enginar N, Hatipoğlu I, Firtina M (2008) Evaluation of the acute effects of amitriptyline and fluoxetine on anxiety using grooming analysis algorithm in rats. Pharmacol Biochem Behav 89(3): 450–455. https://10.1016/j.pbb.2008.02.001
- Sałat K, Gdula-Argasińska J, Malikowska N, Podkowa A, Lipkowska A, Librowski T (2016) Effect of pregabalin on contextual memory deficits and inflammatory state-related protein expression in streptozotocin-induced diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 389(6): 613–623. https://10.1007/s00210–016–1230-x
- Wang R, Hausknecht K, Shen RY, Haj-Dahmane S (2018) Potentiation of Glutamatergic Synaptic Transmission Onto Dorsal Raphe Serotonergic Neurons in the Valproic Acid Model of Autism. Front Pharmacol 9: 1185. https://10.3389/fphar.2018.01185
- Malikowska-Racia N, Podkowa A, Sałat K (2018) Phencyclidine and Scopolamine for Modeling Amnesia in Rodents: Direct Comparison with the Use of Barnes Maze Test and Contextual Fear Conditioning Test in Mice. Neurotox Res 34(3): 431–441. https://10.1007/s12640–018–9901–7
- Robinson SA, Hill-Smith TE, Lucki I (2019) Buprenorphine prevents stress-induced blunting of nucleus accumbens dopamine response and approach behavior to food reward in mice. Neurobiol Stress 11: 100182. https://10.1016/j.ynstr.2019.100182
- Nin MS, Couto-Pereira NS, Souza MF, Azeredo LA, Ferri MK, Dalprá WL, Gomez R, Barros HM (2012) Anxiolytic effect of clonazepam in female rats: grooming microstructure and elevated plus maze tests. Eur J Pharmacol 684(1–3): 95–101. https://10.1016/j.ejphar.2012.03.038
- Nin MS, Ferri MK, Couto-Pereira NS, Souza MF, Azeredo LA, Agnes G, Gomez R, Barros HM (2012) The effect of intra-nucleus accumbens administration of allopregnanolone on δ and γ2 GABA(A) receptor subunit mRNA expression in the hippocampus and on depressive-like and grooming behaviors in rats. Pharmacol Biochem Behav 103(2): 359–366. https://10.1016/j.pbb.2012.09.002
- Kyzar EJ, Stewart AM, Kalueff AV (2016) Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice. Behav Brain Res 296: 47–52. https://10.1016/j.bbr.2015.08.018
- Yao Z, Zhang BX, Chen H, Jiang XW, Qu WM, Huang ZL (2023) Acute or Chronic Exposure to Corticosterone Promotes Wakefulness in Mice. Brain Sci 13(10). https://10.3390/brainsci13101472
- Metaxas A, Keyworth H, Yoo J, Chen Y, Kitchen I, Bailey A (2012) The stereotypy-inducing and OCD-like effects of chronic 'binge' cocaine are modulated by distinct subtypes of nicotinic acetylcholine receptors. Br J Pharmacol 167(2): 450–464. https://10.1111/j.1476–5381.2012.02023.x
- Camargo A, Dalmagro AP, Fraga DB, Rosa JM, Zeni ALB, Kaster MP, Rodrigues ALS (2021) Low doses of ketamine and guanosine abrogate corticosterone-induced anxiety-related behavior, but not disturbances in the hippocampal NLRP3 inflammasome pathway. Psychopharmacology 238(9): 2555–2568. https://10.1007/s00213–021–05879–8
- de Oliveira Mendes B, Mesak C, Calixto JED, Jr, Malafaia G (2018) Mice exposure to haloxyfop-p-methyl ester at predicted environmentally relevant concentrations leads to anti-predatory response deficit. Environ Sci Pollut Res Int 25(31): 31762–31770. https://10.1007/s11356–018–3222–5
- Antiorio AT, Alemán-Laporte J, Zanatto DA, Pereira MAA, Gomes MS, Wadt D, Yamamoto PK, Bernardi MM, Mori CM (2022) Mouse Behavior in the Open-field Test after Meloxicam Administration. J Am Assoc Lab Anim Sci 61(3): 270–274. https://10.30802/aalas-jaalas-21–000046
- Kirsten TB, Bernardi MM (2017) Prenatal lipopolysaccharide induces hypothalamic dopaminergic hypoactivity and autistic-like behaviors: Repetitive self-grooming and stereotypies. Behav Brain Res 331: 25–29. https://10.1016/j.bbr.2017.05.013
- Rombolà L, Tridico L, Scuteri D, Sakurada T, Sakurada S, Mizoguchi H, Avato P, Corasaniti MT, Bagetta G, Morrone LA (2017) Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats. Molecules 22(4). https://10.3390/molecules22040614
- Rombolà L, Scuteri D, Adornetto A, Straface M, Sakurada T, Sakurada S, Mizoguchi H, Corasaniti MT, Bagetta G, Tonin P, Morrone LA (2019) Anxiolytic-Like Effects of Bergamot Essential Oil Are Insensitive to Flumazenil in Rats. Evid Based Complement Alternat Med: eCAM 2019: 2156873. https://10.1155/2019/2156873
- Marcucci C, Relats JMA, Bach HG, Kamecki F, Varela BG, Wagner ML, Pastore V, Colettis N, Ricco RA, Marder M (2020) Neurobehavioral evaluation and phytochemical characterization of a series of argentine valerian species. Heliyon 6(12): e05691. https://10.1016/j.heliyon.2020.e05691
- Xie D, Yao L, Huang Y, Wu S, Ma L, Li Y, Wang W (2021) Anxiolytic Effect of Two Tobacco Essential Oils (Nicotiana tabacum Linn.) on Mice. Molecules 26: 14. https://10.3390/molecules26144171
- Ade KK, Wan Y, Hamann HC, O'Hare JK, Guo W, Quian A, Kumar S, Bhagat S, Rodriguiz RM, Wetsel WC, Conn PJ, Dzirasa K, Huber KM, Calakos N (2016) Increased Metabotropic Glutamate Receptor 5 Signaling Underlies Obsessive-Compulsive Disorder-like Behavioral and Striatal Circuit Abnormalities in Mice. Biol Psychiatry 80(7): 522–533. https://10.1016/j.biopsych.2016.04.023
- Wang B, Zheng Y, Shi H, Du X, Zhang Y, Wei B, Luo M, Wang H, Wu X, Hua X, Sun M, Xu X (2017) Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. Genes Brain Behav 16(2): 296–307. https://10.1111/gbb.12339
- Kant R, Pasi S, Surolia A (2018) Auto-Reactive Th17-Cells Trigger Obsessive-Compulsive-Disorder Like Behavior in Mice With Experimental Autoimmune Encephalomyelitis. Front Immunol 9: 2508. https://10.3389/fimmu.2018.02508
- Garrido A, Cruces J, Ceprián N, Hernández-Sánchez C, De Pablo F, De la Fuente M (2021) Social Environment Ameliorates Behavioral and Immune Impairments in Tyrosine Hydroxylase Haploinsufficient Female Mice. J Neuroimmune Pharmacol 16(3): 548–566. https://10.1007/s11481–020–09947–2
- Guilmatre A, Huguet G, Delorme R, Bourgeron T (2014) The emerging role of SHANK genes in neuropsychiatric disorders. Dev Neurobiol 74(2): 113–122. https://10.1002/dneu.22128
- Liu H, Huang X, Xu J, Mao H, Li Y, Ren K, Ma G, Xue Q, Tao H, Wu S, Wang W (2021) Dissection of the relationship between anxiety and stereotyped self-grooming using the Shank3B mutant autistic model, acute stress model and chronic pain model. Neurobiol Stress 15: 100417. https://doi.org/10.1016/j.ynstr.2021.100417
- Balaan C, Corley MJ, Eulalio T, Leite-Ahyo K, Pang APS, Fang R, Khadka VS, Maunakea AK, Ward MA (2019) Juvenile Shank3b deficient mice present with behavioral phenotype relevant to autism spectrum disorder. Behav Brain Res 356: 137–147. https://10.1016/j.bbr.2018.08.005
- Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, Kim CJ, Berrios J, Colvin JS, Bousquet-Moore D, Lorenzo I, Wu G, Weinberg RJ, Ehlers MD, Philpot BD, Beaudet AL, Wetsel WC, Jiang YH (2011) Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 20(15): 3093–3108. https://10.1093/hmg/ddr212
- Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, Duffney LJ, Kumar S, Mague SD, Hulbert SW, Dutta N, Hayrapetyan V, Yu C, Gaidis E, Zhao S, Ding JD, Xu Q, Chung L, Rodriguiz RM, Wang F, Weinberg RJ, Wetsel WC, Dzirasa K, Yin H, Jiang YH (2016) Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun 7: 11459. https://10.1038/ncomms11459
- Léna I, Mantegazza M (2019) Na(V)1.2 haploinsufficiency in Scn2a knock-out mice causes an autistic-like phenotype attenuated with age. Sci Rep 9(1): 12886. https://10.1038/s41598–019–49392–7
- Lustberg DJ, Liu JQ, Iannitelli AF, Vanderhoof SO, Liles LC, McCann KE, Weinshenker D (2022) Norepinephrine and dopamine contribute to distinct repetitive behaviors induced by novel odorant stress in male and female mice. Horm Behav 144: 105205. https://10.1016/j.yhbeh.2022.105205
- Roth A, Kyzar EJ, Cachat J, Stewart AM, Green J, Gaikwad S, O'Leary TP, Tabakoff B, Brown RE, Kalueff AV (2013) Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases. Prog Neuropsychopharmacol Biol Psychiatry 40: 312–325. https://10.1016/j.pnpbp.2012.10.015
- Ikrin A, Moskalenko A, Mukhamadeev R, Sander de Abreu M, Kolesnikova T, Kalueff A (2023) The emerging complexity of molecular pathways implicated in mouse self-grooming behavior. Prog Neuropsychopharmacol Biol Psychiatry 127: 110840. https://10.1016/j.pnpbp.2023.110840
- Gandhi T, Lee CC (2020) Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Front Cell Neurosci 14: 592710. https://10.3389/fncel.2020.592710
- Obeso JA, Lanciego JL (2011) Past, present, and future of the pathophysiological model of the Basal Ganglia. Front Neuroanat 5: 39. https://10.3389/fnana.2011.00039
- Muglia LJ, Jacobson L, Weninger SC, Karalis KP, Jeong K, Majzoub JA (2001) The physiology of corticotropin-releasing hormone deficiency in mice. Peptides 22(5): 725–731. https://10.1016/s0196–9781(01)00385–0
- Mu MD, Geng HY, Rong KL, Peng RC, Wang ST, Geng LT, Qian ZM, Yung WH, Ke Y (2020) A limbic circuitry involved in emotional stress-induced grooming. Nat Commun 11(1): 2261. https://10.1038/s41467–020–16203-x
- Wiersielis KR, Wicks B, Simko H, Cohen SR, Khantsis S, Baksh N, Waxler DE, Bangasser DA (2016) Sex differences in corticotropin releasing factor-evoked behavior and activated networks. Psychoneuroendocrinology 73: 204–216. https://10.1016/j.psyneuen.2016.07.007
- Frank E, Salchner P, Aldag JM, Salomé N, Singewald N, Landgraf R, Wigger A (2006) Genetic predisposition to anxiety-related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. Behav Neurosci 120(1): 60–71. https://10.1037/0735–7044.120.1.60
- Chen X, Yue J, Luo Y, Huang L, Li B, Wen S (2021) Distinct behavioral traits and associated brain regions in mouse models for obsessive-compulsive disorder. Behav Brain Funct 17(1): 4. https://10.1186/s12993–021–00177-x
- van de Poll Y, Cras Y, Ellender TJ (2023) The neurophysiological basis of stress and anxiety – comparing neuronal diversity in the bed nucleus of the stria terminalis (BNST) across species. Front Cell Neurosci 2023: 17.
- Mitra S, Bult-Ito A (2021) Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021: 12.
- Chen X, Yue J, Luo Y, Huang L, Li B, Wen S (2021) Distinct behavioral traits and associated brain regions in mouse models for obsessive–compulsive disorder. Behav Brain Funct 17(1): 4. https://10.1186/s12993–021–00177-x
- Kyzar E, Gaikwad S, Roth A, Green J, Pham M, Stewart A, Liang Y, Kobla V, Kalueff AV (2011) Towards high-throughput phenotyping of complex patterned behaviors in rodents: focus on mouse self-grooming and its sequencing. Behav Brain Res 225(2): 426–431. https://10.1016/j.bbr.2011.07.052
- Scruggs BA, Bowles AC, Zhang X, Semon JA, Kyzar EJ, Myers L, Kalueff AV, Bunnell BA (2013) High-throughput screening of stem cell therapy for globoid cell leukodystrophy using automated neurophenotyping of twitcher mice. Behav Brain Res 236(1): 35–47. https://10.1016/j.bbr.2012.08.020
- van den Boom BJG, Pavlidi P, Wolf CJH, Mooij AH, Willuhn I (2017) Automated classification of self-grooming in mice using open-source software. J Neurosci Methods 289: 48–56. https://10.1016/j.jneumeth.2017.05.026
- Reeves SL, Fleming KE, Zhang L, Scimemi A (2016) M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice. PLoS Comput Biol 12(9): e1005115. https://10.1371/journal.pcbi.1005115
- Bohnslav JP, Wimalasena NK, Clausing KJ, Dai YY, Yarmolinsky DA, Cruz T, Kashlan AD, Chiappe ME, Orefice LL, Woolf CJ, Harvey CD (2021) DeepEthogram, a machine learning pipeline for supervised behavior classification from raw pixels. eLife 10. https://10.7554/eLife.63377
- Nwokedi EI, Bains RS, Bidaut L, Ye X, Wells S, Brown JM (2023) Dual-Stream Spatiotemporal Networks with Feature Sharing for Monitoring Animals in the Home Cage. Sensors 23(23). https://10.3390/s23239532
- Geuther BQ, Peer A, He H, Sabnis G, Philip VM, Kumar V (2021) Action detection using a neural network elucidates the genetics of mouse grooming behavior. eLife 10. https://10.7554/eLife.63207
- Sakamoto N, Kobayashi K, Yamamoto T, Masuko S, Yamamoto M, Murata T (2022) Automated Grooming Detection of Mouse by Three-Dimensional Convolutional Neural Network. Front Behav Neurosci 2022: 16.
- Feusner JD, Hembacher E, Phillips KA (2009) The mouse who couldn't stop washing: pathologic grooming in animals and humans. CNS Spectr 14(9): 503–513. https://10.1017/s1092852900023567
- Lee NS, Beery AK (2019) Neural Circuits Underlying Rodent Sociality: A Comparative Approach. Curr Top Behav Neurosci 43: 211–238. https://10.1007/7854_2018_77
- Serafim AP, Felicio LF (2001) Dopaminergic modulation of grooming behavior in virgin and pregnant rats. Rev Bras Pesqui Med Biol 34(11): 1465–1470. https://10.1590/s0100–879x2001001100015
- Dorantes-Nieto Á, Cortes C, Ugarte A, Trujillo Hernández A, Carrasco Á, Cepeda-Freyre HA, Eguibar JR (2020) Yawning and Penile Erection Frequencies Are Resilient to Maternal Care Manipulation in the High-Yawning Subline of Sprague-Dawley Rats. Front Behav Neurosci 14: 20. https://10.3389/fnbeh.2020.00020
- Xie Z, Li D, Cheng X, Pei Q, Gu H, Tao T, Huang M, Shang C, Geng D, Zhao M, Liu A, Zhang C, Zhang F, Ma Y, Cao P (2022) A brain-to-spinal sensorimotor loop for repetitive self-grooming. Neuron 110(5): 874–907. https://10.1016/j.neuron.2021.11.028
- Тур МА, Белозерцева ИВ (2017) Влияние спонтанной частичной сенсорной депривации на поведение самцов мышей линии C57BL/6N. Рос физиол журн им ИМ Сеченова 103: 161–171. [Tur M, Belozertseva I (2017) Influence of spontaneous partial sensory deprivation on male C57BL/6N mice behavior. Russ J Physiol 103: 161–171. (In Russ)].
- Kalueff AV, Minasyan A, Keisala T, Shah ZH, Tuohimaa P (2006) Hair barbering in mice: Implications for neurobehavioural research. Behav Proc 71(1): 8–15. https://doi.org/10.1016/j.beproc.2005.09.004
- Калуев АВ, Туохимаа П (2005) Эффект Далилы в нейроэтологических исследованиях. Нейронауки 1(1): 24–28. [Kalueff AV, Tuohimaa P 2005) The Dalila effects in neurobehavioural experiments. Russ J Neurosci 1(1): 24–28. (In Russ)].
- Sarna JR, Dyck RH, Whishaw IQ (2000) The Dalila effect: C57BL6 mice barber whiskers by plucking. Behav Brain Res 108(1): 39–45. https://doi.org/10.1016/S0166–4328(99)00137–0
- Garner JP, Weisker SM, Dufour B, Mench JA (2004) Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Compar Med 54(2): 216–224.
- Rienecker KDA, Chavasse AT, Moorwood K, Ward A, Isles AR (2020) Detailed analysis of paternal knockout Grb10 mice suggests effects on stability of social behavior, rather than social dominance. Genes Brain Behav 19(1): e12571. https://doi.org/10.1111/gbb.12571
- Müller K, Lengheimer T, Kral-Pointner JB, Wojta J, Yeghiazaryan L, Krall C, Palme R, Kleindorfer S, Plasenzotti R, Pollak DD, Tillmann KE (2022) Exposure to soiled bedding reduces abnormal repetitive behaviors in mice. Front Behav Neurosci 2022: 16. https://doi.org/10.3389/fnbeh.2022.1062864
- Garner JP, Dufour B, Gregg LE, Weisker SM, Mench JA (2004) Social and husbandry factors affecting the prevalence and severity of barbering (‘whisker trimming’) by laboratory mice. Appl Anim Behav Sci 89(3): 263–282. https://doi.org/10.1016/j.applanim.2004.07.004
- Moody CM, Paterson EA, Leroux-Petersen D, Turner PV (2021) Using paper nest pucks to prevent barbering in C57BL/6 Mice. J Amer Assoc Lab Anim Sci 60(2): 133–138. https://doi.org/10.30802/aalas-jaalas-20–000047
- Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5): 775–785. https://doi.org/10.1016/j.cell.2010.03.055
- Koh HY, Kim D, Lee J, Lee S, Shin HS (2008) Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cbeta1. Genes Brain Behav 7(1): 120–128. https://doi.org/10.1111/j.1601–183X.2007.00351.x
- Kafkafi N, Agassi J, Chesler EJ, Crabbe JC, Crusio WE, Eilam D, Gerlai R, Golani I, Gomez-Marin A, Heller R, Iraqi F, Jaljuli I, Karp NA, Morgan H, Nicholson G, Pfaff DW, Richter SH, Stark PB, Stiedl O, Stodden V, Tarantino LM, Tucci V, Valdar W, Williams RW, Würbel H, Benjamini Y (2018) Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci Biobehav Revs 87: 218–232. https://doi.org/10.1016/j.neubiorev.2018.01.003
- Usui T, Macleod MR, McCann SK, Senior AM, Nakagawa S (2021) Meta-analysis of variation suggests that embracing variability improves both replicability and generalizability in preclinical research. PLoS Biol 19(5): e3001009. https://doi.org/10.1371/journal.pbio.3001009
- Kahnau P, Jaap A, Hobbiesiefken U, Mieske P, Diederich K, Thöne-Reineke C, Lewejohann L, Hohlbaum K (2022). A preliminary survey on the occurrence of barbering in laboratory mice in Germany. Anim Welfare 31(4): 433–436. https://doi.org/10.7120/09627286.31.4.009
- Jaric I, Voelkl B, Amrein I, Wolfer DP, Novak J, Detotto C, Weber-Stadlbauer U, Meyer U, Manuella F, Mansuy IM, Würbel H (2024) Using mice from different breeding sites fails to improve replicability of results from single-laboratory studies. Lab Anim 53(1): 18–22. https://doi.org/10.1038/s41684–023–01307-w
- Segelcke D, Talbot SR, Palme R, La Porta C, Pogatzki-Zahn E, Bleich A, Tappe-Theodor A (2023) Experimenter familiarization is a crucial prerequisite for assessing behavioral outcomes and reduces stress in mice not only under chronic pain conditions. Sci Rep 13(1): 2289. https://doi.org/10.1038/s41598–023–29052–7
- Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, Wieskopf JS, Acland EL, Dokova A, Kadoura B, Leger P, Mapplebeck JC, McPhail M, Delaney A, Wigerblad G, Schumann AP, Quinn T, Frasnelli J, Svensson CI, Sternberg WF, Mogil JS (2014) Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 11(6): 629–632. https://doi.org/10.1038/nmeth.2935
- Mertens S, Vogt MA, Gass P, Palme R, Hiebl B, Chourbaji S (2019) Effect of three different forms of handling on the variation of aggression-associated parameters in individually and group-housed male C57BL/6NCrl mice. PLoS One 14(4): e0215367. https://doi.org/10.1371/journal.pone.0215367
- Liu H, Huang X, Xu J, Mao H, Li Y, Ren K, Ma G, Xue Q, Tao H, Wu S, Wang W (2021) Dissection of the relationship between anxiety and stereotyped self-grooming using the Shank3B mutant autistic model, acute stress model and chronic pain model. Neurobiol Stress 15: 100417. https://doi.org/10.1016/j.ynstr.2021.100417
- Zhukov IS, Karpova IV, Krotova NA, Tissen IY, Demin KA, Shabanov PD, Budygin EA, Kalueff AV, Gainetdinov RR (2022) Enhanced aggression, reduced self-grooming behavior and altered 5-HT regulation in the frontal cortex in mice lacking Trace Amine-Associated Receptor 1 (TAAR1). Int J Mol Sci 23(22): 14066. https://doi.org/10.3390/ijms232214066
- Krotova NA, Zhukov IS, Shabanov PD, Alenina N, Kalueff AV, Demin KA, Gainetdinov RR (2024). Alterations in self-grooming microstructure and exploration-related behavior in TPH2-KO rats. Proc Neurosci Week 2024 Intl Conf 30: 43.
Supplementary files
