Катализаторы MnOx/ZrO2–CeO2 в реакциях окисления СО и пропана: влияние содержания марганца

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено влияние содержания нанесенного марганца на структурные свойства и активность в реакциях окисления СО и пропана для катализаторов MnОx/Zr0.4Ce0.6, приготовленных методом пропитки. Установлено, что по мере повышения содержания марганца до 3.6 мас.% (мольное отношение Mn/(Zr + Ce) ≤ 0.1) каталитическая активность MnОx/Zr0.4Ce0.6 в реакциях окисления растет, при нанесении бόльшего количества марганца — меняется слабо. Согласно данным рентгенофазового анализа (РФА), термопрограммированного восстановления водородом (ТПВ-Н2), электронного парамагнитного резонанса (ЭПР) и рентгеновской фотоэлектронной спектроскопии (РФЭС) для образцов состава Mn/(Zr + Ce) ≤ 0.1 увеличение количества нанесенного марганца сопровождается изменением параметра решеток фаз носителя, возрастанием количества слабосвязанного кислорода, а также количества кислородных вакансий в структуре оксида церия, ростом поверхностной концентрации марганца. Эти изменения обусловлены вхождением марганца в структуру носителя и возможным образованием высокодисперсных частиц MnОx на его поверхности, что объясняет наблюдаемое повышение каталитической активности. Стабилизация каталитической активности при дальнейшем увеличении количества нанесенного марганца коррелирует со слабым изменением количества слабосвязанного кислорода и кислородных вакансий носителя в связи с появлением и последующим ростом содержания менее каталитически активной фазы Mn2O3.

Полный текст

Доступ закрыт

Об авторах

Т. Н. Афонасенко

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Автор, ответственный за переписку.
Email: atnik@ihcp.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090

Д. В. Юрпалова

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: atnik@ihcp.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090

В. Л. Юрпалов

Центр новых химических технологий ФГБУН ФИЦ Институт катализа ИК СО РАН (Омский филиал)

Email: atnik@ihcp.ru
Россия, ул. Нефтезаводская, 54, Oмск, 644040

В. П. Коновалова

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: atnik@ihcp.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090

В. А. Рогов

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: atnik@ihcp.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090

Е. Е. Айдаков

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН; Центр коллективного пользования “СКИФ” ФГБУН ФИЦ Институт катализа им. Г.К. Борескова

Email: atnik@ihcp.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090; Никольский просп., 1, Наукоград Кольцово, 630559

А. Н. Серкова

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: atnik@ihcp.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090

О. А. Булавченко

ФГБУН ФИЦ Институт катализа им. Г.К. Борескова СО РАН

Email: obulavchenko@catalysis.ru
Россия, просп. Акад. Лаврентьева, 5, Новосибирск, 630090

Список литературы

  1. Everaert K., Baeyens J. // J. Hazard. Mater. 2004. V. 109. P. 113. https://doi.org/10.1016/j.jhazmat.2004.03.019
  2. Li W.B., Wang J.X., Gong H. // Catal. Today. 2010. V. 148. P. 81. https://doi.org/10.1016/j.cattod.2009.03.007
  3. Yue B., Zhou R., Wang Y., Zheng X. // Appl. Surf. Sci. 2006. V. 252. P. 5820. https://doi.org/10.1016/j.apsusc.2005.07.043
  4. Snytnikov P.V., Sobyanin V.A., Belyaev V.D., Tsyrulnikov P.G., Shitova N.B., Shlyapin D.A. // Appl. Catal. A: Gen. 2003. V. 239. P. 149. https://doi.org/10.1016/S0926-860X(02)00382-4
  5. Liu Z., Zhou R., Zheng X. // J. Mol. Catal. A: Chem. 2007. V. 267. Р. 137. https://doi.org/10.1016/j.molcata.2006.11.036
  6. Tang W., Wu X., Li D., Wang Z., Liu G., Liu H., Chen Y. // J. Mater. Chem. A. 2014. V. 2. P. 2544. https://doi.org/10.1039/c3ta13847j
  7. Pozan G.S. // J. Hazard. Mater. 2012. V. 221—222. P. 124. https://doi.org/10.1016/j.jhazmat.2012.04.022
  8. Shen B., Wang Y., Wang F., Liu T. // Chem. Eng. J. 2014. V. 236. P. 171. https://doi.org/10.1016/ j.cej.2013.09.085
  9. Li S., Zheng Z., Zhao Z., Wang Y., Yao Y., Liu Y., Zhang J., Zhang Z. // Molecules. 2022. V. 27. Art. 4863. https://doi.org/10.3390/molecules27154863
  10. Frey K., Iablokov V., Sáfrán G., Osán J., Sajó I., Szukiewicz R., Chenakin S., Kruse N. // J. Catal. 2012. V. 287. P. 30. https://doi.org/10.1016/j.jcat.2011.11.014
  11. Zhong L., Fang Q., Li X., Li Q., Zhang C., Chen G. // Appl. Catal. A: Gen. 2019. V. 579. P. 151. https://doi.org/10.1016/j.apcata.2019.04.013
  12. Mobini S., Meshkani F., Rezaei M. // Chem. Eng. Sci. 2019. V. 197. P. 37. https://doi.org/10.1016/ j.ces.2018.12.006
  13. Zhao G., Li J., Zhu W., Ma X., Guo Y., Liu Z., Yang Y. // New J. Chem. 2016. V. 40. P. 10108. https://doi.org/10.1039/c6nj02272c
  14. Long G., Chen M., Li Y., Ding J., Sun R., Zhou Y., Huang X., Han G., Zhao W. // Chem. Eng. J. 2019. V. 360. P. 964. https://doi.org/10.1016/j.cej. 2018.07.091
  15. Liu X., Lu J., Qian K., Huang W., Luo M. // J. Rare Earths. 2009. V. 27. P. 418. https://doi.org/10.1016/S1002-0721(08)60263-X
  16. Lu H.F., Zhou Y., Han W.F., Huang H.F., Chen Y.F. // Appl. Catal. A: Gen. 2013. V. 464—465. P. 101. https://doi.org/10.1016/j.apcata.2013.05.036
  17. Nelson A.E., Schulz K.H. // Appl. Surf. Sci. 2003. V. 210. P. 206. https://doi.org/10.1016/S0169-4332(03)00157-0
  18. Terribile D., Tovarelli A., de Leitenburg C., Primavera A., Dolcetti G. // Catal. Today. 1999. V. 47. P. 133.
  19. Afonasenko T.N., Glyzdova D.V., Yurpalov V.L., Konovalova V.P., Rogov V.A., Gerasimov E.Y. // Materials. 2022. V. 15. P. 7553. https://doi.org/10.3390/ma15217553
  20. Sun W., Li X., Mu J., Fan S., Yin Z., Wang X., Qin M., Tadé M., Liu S. // J. Colloid Interf. Sci. 2018. V. 531. P. 91. https://doi.org/10.1016/j.jcis.2018.07.050
  21. Azalim S., Franco M., Brahmi R., Giraudon J.M., Lamonier J.F. // J. Hazard. Mater. 2011. V. 188. P. 422. https://doi.org/10.1016/j.jhazmat.2011.01.135
  22. Rao T., Shen M., Jia L., Hao J., Wang J. // Catal. Commun. 2007. V. 8. P. 1743. https://doi.org/10.1016/j.catcom.2007.01.036
  23. Hou Z., Feng J., Lin T., Zhang H., Zhou X., Chen Y. // Appl. Surf. Sci. 2018. V. 434. P. 82. https://doi.org/ 10.1016/j.apsusc.2017.09.048
  24. Shen B., Zhang X., Ma H., Yao Y., Liu T. // J. Environ. Sci. 2013. V. 25. P. 791. https://doi.org/10.1016/S1001-0742(12)60109-0
  25. Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., Shen W. // Appl. Catal. B: Environ. 2006. V. 62. P. 265. https://doi.org/10.1016/j.apcatb.2005.08.004
  26. Scofield J.H. // J. Electron Spectrosc. Relat. Phenom. 1976. V. 8. № 2. P. 129.
  27. Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709.
  28. Fairley N. CasaXPS. www.casaxps.com
  29. Цырульников П.Г., Сальников В.С., Дроздов В.А., Стукен С.А., Бубнов А.В., Григоров Е.И., Калинкин А.В., Зайковский В.И. // Кинетика и катализ. 1991. Т. 32. № 2. С. 439.
  30. Kaplin I.Y., Lokteva E.S., Golubina E.V., Shishova V.V., Maslakov K.I., Fionov A.V., Isaikina O.Y., Lunin V.V. // Appl. Surf. Sci. 2019. V. 485. P. 432. https://doi.org/10.1016/j.apsusc.2019.04.206
  31. Venkataswamy P., Rao K.N., Jampaiah D., Reddy B.M. // Appl. Catal. B: Environ. 2015. V. 162. P. 122. https://doi.org/10.1016/j.apcatb.2014.06.038
  32. Huang X., Li L., Liu R., Li H., Lan L., Zhou W. // Catalysts. 2021. V. 11. № 9. Art. 1037. https://doi.org/10.3390/catal11091037
  33. Афонасенко Т.Н., Булавченко О.А., Гуляева Т.И., Цыбуля С.В., Цырульников П.Г. // Кинетика и катализ. 2018. Т. 59. № 1. С. 127. (Afonasenko T.N., Bulavchenko O.A., Gulyaeva T.I., Tsybulya S.V., Tsyrul’nikov P.G. // Kinet. Catal. 2018. V. 59. P. 104. https://doi.org/10.1134/S0023158418010019)
  34. Yang M., Shen G., Wang Q., Deng K., Liu M., Chen Y., Gong Y., Wang Z. // Molecules. 2021. V. 26. Art. 6363. https:// doi.org/10.3390/molecules26216363
  35. Martínez-Arias A., Fernández-García M., Belver C., Conesa J.C., Soria J. // Catal. Lett. 2000. V. 65. P. 197. https://doi.org/10.1023/A:1019089910238
  36. Silva-Calpa L. del R., Zonetti P.C., Rodrigues C.P., Alves O.C., Appel L.G., de Avillez R.R. // J. Mol. Catal. A: Chem. 2016. V. 425. P. 166. https://doi.org/10.1016/j.molcata.2016.10.008
  37. Anpo M., Costentin G., Giamello E., Lauron-Pernot H., Sojka Z. // J. Catal. 2021. V. 393. P. 259. https://doi.org/10.1016/j.jcat.2020.10.011
  38. Che M., Dyrek K., Louis C. // J. Phys. Chem. 1985. V. 89. P. 4526. https://doi.org/10.1021/j100267a022
  39. Borchert H., Frolova Y.V., Kaichev V.V., Prosvirin I.P., Alikina G.M., Lukashevich A.I., Zaikov-skii V.I., Moroz E.M., Trukhan S.N., Ivanov V.P., Paukshtis E.A., Bukhtiyarov V.I., Sadykov V.A. // J. Phys. Chem. B. 2005. V. 109. P. 5728. https://doi.org/10.1021/jp045828c
  40. Christou S.Y., Álvarez-Galván M.C., Fierro J.L.G., Efstathiou A.M. // Appl. Catal. B: Environ. 2011. V. 106. P. 103. https://doi.org/10.1016/j.apcatb.2011.05.013
  41. Han Y.F., Chen F., Zhong Z., Ramesh K., Chen L., Widjaja E. // J. Phys. Chem. B. 2006. V. 110. P. 24450. https://doi.org/10.1021/jp064941v
  42. Castro V.D., Polzonetti G. // J. Electron Spectrosc. Relat. Phenom. 1989. V. 48. P. 117.
  43. Feng X., Cox D.F. // Surf. Sci. 2016. V. 645. P. 23. https://doi.org/10.1016/j.susc.2015.10.041
  44. Gómez L.E., Miró E.E., Boix A.V. // Int. J. Hydrogen Energy. 2013. V. 38. P. 5645. https://doi.org/10.1016/j.ijhydene.2013.03.004
  45. Bulavchenko O.A., Afonasenko T.N., Ivanchikova A.V., Murzin V.Y., Kremneva A.M., Saraev A.A., Kaichev V.V., Tsybulya S.V. // Inorg. Chem. 2021. V. 60. P. 16518. https://doi.org/10.1021/acs.inorgchem.1c02379

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость конверсии СО от температуры в реакции его окисления в присутствии катализаторов Mnx/Zr0.4Ce0.6 с различным содержанием марганца. На вставке: температура 50%-ного превращения СО в зависимости от соотношения Mn/(Zr + Ce).

Скачать (192KB)
3. Рис. 2. Зависимость конверсии пропана от температуры в реакции его окисления в присутствии катализаторов Mnx/Zr0.4Ce0.6 с различным содержанием марганца. На вставке: температура 50%-ного превращения пропана в зависимости от соотношения Mn/(Zr+Ce).

Скачать (203KB)
4. Рис. 3. Дифрактограммы образцов Mnx/Zr0.4Ce0.6 с различным содержанием марганца.

Скачать (276KB)
5. Рис. 4. Профили ТПВ-Н2 образцов Mnх/Zr0.4Ce0.6.

Скачать (202KB)
6. Рис. 5. ЭПР-спектры образцов Mn0.025/Zr0.4Ce0.6 (1), Mn0.05/Zr0.4Ce0.6 (2), Mn0.1/Zr0.4Ce0.6 (3) и Mn0.2/Zr0.4Ce0.6 (4).

Скачать (195KB)
7. Рис. 6. Данные РЭМ образцов Mn0.05/Zr0.4Ce0.6 (а, б), Mn0.1/Zr0.4Ce0.6 (в, г) и Mn0.3/Zr0.4Ce0.6 (д, е).

8. Рис. 7. Спектры РФЭС Ce3d (а) и Mn2p (б) образцов Mnx/Zr0.4Ce0.6 с различным содержанием марганца.

Скачать (492KB)