MnOx/ZrO2‒CeO2 catalysts for CO and propane oxidation: The effect of manganese content
- Авторлар: Afonasenko T.N.1, Yurpalova D.V.1, Yurpalov V.L.2, Konovalova V.P.1, Rogov V.A.1, Aydakov E.E.1,3, Serkova A.N.1, Bulavchenko O.A.1
-
Мекемелер:
- Institute of Catalysis SB RAS
- Center of New Chemical Technologies, Boreskov Institute of Catalysis SB RAS
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RA
- Шығарылым: Том 66, № 1 (2025)
- Беттер: 3-18
- Бөлім: ОБЗОР
- URL: https://vietnamjournal.ru/0453-8811/article/view/687446
- DOI: https://doi.org/10.31857/S0453881125010015
- EDN: https://elibrary.ru/EIPAEC
- ID: 687446
Дәйексөз келтіру
Аннотация
The effect of the content of supported manganese on the structural properties and activity in the oxidation reactions of CO and propane for the MnОx/Zr0.4Ce0.6 catalysts prepared by the impregnation method has been studied. It was found that an increase in manganese content to 3.6% wt. (molar ratio Mn/(Zr + Ce) ≤ 0.1) leads to an increase in the catalytic activity of MnОx/Zr0.4Ce0.6 in oxidation reactions. In the case of a higher manganese concentration, the activity changes slightly. According to the XRD, TPR-H2, XPS and EPR, an increase in the amount of supported manganese for samples with Mn/(Zr + Ce) ≤ 0.1 is accompanied by a change in the lattice constant of the support, an increase in the amount of weakly bound oxygen, as well as the quantity of oxygen vacancies in the structure of cerium oxide. These changes are due to the incorporation of manganese into the structure of the support and the possible formation of highly dispersed particles of MnОx on its surface which ensures an increase in catalytic activity. Stabilization of catalytic activity with a further increase in the amount of supported manganese correlates with a slight change in the amount of weakly bound oxygen and oxygen vacancies of the support due to the appearance and subsequent increase in the content of the less active Mn2O3 phase.
Негізгі сөздер
Толық мәтін

Авторлар туралы
T. Afonasenko
Institute of Catalysis SB RAS
Хат алмасуға жауапты Автор.
Email: atnik@ihcp.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090
D. Yurpalova
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090
V. Yurpalov
Center of New Chemical Technologies, Boreskov Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Ресей, Neftezavodskaya, 54, Omsk, 644040
V. Konovalova
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090
V. Rogov
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090
E. Aydakov
Institute of Catalysis SB RAS; Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RA
Email: atnik@ihcp.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090; Nikolsky Prosp., 1, Kol’tsovo, 630559
A. Serkova
Institute of Catalysis SB RAS
Email: atnik@ihcp.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090
O. Bulavchenko
Institute of Catalysis SB RAS
Email: obulavchenko@catalysis.ru
Ресей, Lavrentiev Ave., 5, Novosibirsk, 630090
Әдебиет тізімі
- Everaert K., Baeyens J. // J. Hazard. Mater. 2004. V. 109. P. 113. https://doi.org/10.1016/j.jhazmat.2004.03.019
- Li W.B., Wang J.X., Gong H. // Catal. Today. 2010. V. 148. P. 81. https://doi.org/10.1016/j.cattod.2009.03.007
- Yue B., Zhou R., Wang Y., Zheng X. // Appl. Surf. Sci. 2006. V. 252. P. 5820. https://doi.org/10.1016/j.apsusc.2005.07.043
- Snytnikov P.V., Sobyanin V.A., Belyaev V.D., Tsyrulnikov P.G., Shitova N.B., Shlyapin D.A. // Appl. Catal. A: Gen. 2003. V. 239. P. 149. https://doi.org/10.1016/S0926-860X(02)00382-4
- Liu Z., Zhou R., Zheng X. // J. Mol. Catal. A: Chem. 2007. V. 267. Р. 137. https://doi.org/10.1016/j.molcata.2006.11.036
- Tang W., Wu X., Li D., Wang Z., Liu G., Liu H., Chen Y. // J. Mater. Chem. A. 2014. V. 2. P. 2544. https://doi.org/10.1039/c3ta13847j
- Pozan G.S. // J. Hazard. Mater. 2012. V. 221—222. P. 124. https://doi.org/10.1016/j.jhazmat.2012.04.022
- Shen B., Wang Y., Wang F., Liu T. // Chem. Eng. J. 2014. V. 236. P. 171. https://doi.org/10.1016/ j.cej.2013.09.085
- Li S., Zheng Z., Zhao Z., Wang Y., Yao Y., Liu Y., Zhang J., Zhang Z. // Molecules. 2022. V. 27. Art. 4863. https://doi.org/10.3390/molecules27154863
- Frey K., Iablokov V., Sáfrán G., Osán J., Sajó I., Szukiewicz R., Chenakin S., Kruse N. // J. Catal. 2012. V. 287. P. 30. https://doi.org/10.1016/j.jcat.2011.11.014
- Zhong L., Fang Q., Li X., Li Q., Zhang C., Chen G. // Appl. Catal. A: Gen. 2019. V. 579. P. 151. https://doi.org/10.1016/j.apcata.2019.04.013
- Mobini S., Meshkani F., Rezaei M. // Chem. Eng. Sci. 2019. V. 197. P. 37. https://doi.org/10.1016/ j.ces.2018.12.006
- Zhao G., Li J., Zhu W., Ma X., Guo Y., Liu Z., Yang Y. // New J. Chem. 2016. V. 40. P. 10108. https://doi.org/10.1039/c6nj02272c
- Long G., Chen M., Li Y., Ding J., Sun R., Zhou Y., Huang X., Han G., Zhao W. // Chem. Eng. J. 2019. V. 360. P. 964. https://doi.org/10.1016/j.cej. 2018.07.091
- Liu X., Lu J., Qian K., Huang W., Luo M. // J. Rare Earths. 2009. V. 27. P. 418. https://doi.org/10.1016/S1002-0721(08)60263-X
- Lu H.F., Zhou Y., Han W.F., Huang H.F., Chen Y.F. // Appl. Catal. A: Gen. 2013. V. 464—465. P. 101. https://doi.org/10.1016/j.apcata.2013.05.036
- Nelson A.E., Schulz K.H. // Appl. Surf. Sci. 2003. V. 210. P. 206. https://doi.org/10.1016/S0169-4332(03)00157-0
- Terribile D., Tovarelli A., de Leitenburg C., Primavera A., Dolcetti G. // Catal. Today. 1999. V. 47. P. 133.
- Afonasenko T.N., Glyzdova D.V., Yurpalov V.L., Konovalova V.P., Rogov V.A., Gerasimov E.Y. // Materials. 2022. V. 15. P. 7553. https://doi.org/10.3390/ma15217553
- Sun W., Li X., Mu J., Fan S., Yin Z., Wang X., Qin M., Tadé M., Liu S. // J. Colloid Interf. Sci. 2018. V. 531. P. 91. https://doi.org/10.1016/j.jcis.2018.07.050
- Azalim S., Franco M., Brahmi R., Giraudon J.M., Lamonier J.F. // J. Hazard. Mater. 2011. V. 188. P. 422. https://doi.org/10.1016/j.jhazmat.2011.01.135
- Rao T., Shen M., Jia L., Hao J., Wang J. // Catal. Commun. 2007. V. 8. P. 1743. https://doi.org/10.1016/j.catcom.2007.01.036
- Hou Z., Feng J., Lin T., Zhang H., Zhou X., Chen Y. // Appl. Surf. Sci. 2018. V. 434. P. 82. https://doi.org/ 10.1016/j.apsusc.2017.09.048
- Shen B., Zhang X., Ma H., Yao Y., Liu T. // J. Environ. Sci. 2013. V. 25. P. 791. https://doi.org/10.1016/S1001-0742(12)60109-0
- Tang X., Li Y., Huang X., Xu Y., Zhu H., Wang J., Shen W. // Appl. Catal. B: Environ. 2006. V. 62. P. 265. https://doi.org/10.1016/j.apcatb.2005.08.004
- Scofield J.H. // J. Electron Spectrosc. Relat. Phenom. 1976. V. 8. № 2. P. 129.
- Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709.
- Fairley N. CasaXPS. www.casaxps.com
- Цырульников П.Г., Сальников В.С., Дроздов В.А., Стукен С.А., Бубнов А.В., Григоров Е.И., Калинкин А.В., Зайковский В.И. // Кинетика и катализ. 1991. Т. 32. № 2. С. 439.
- Kaplin I.Y., Lokteva E.S., Golubina E.V., Shishova V.V., Maslakov K.I., Fionov A.V., Isaikina O.Y., Lunin V.V. // Appl. Surf. Sci. 2019. V. 485. P. 432. https://doi.org/10.1016/j.apsusc.2019.04.206
- Venkataswamy P., Rao K.N., Jampaiah D., Reddy B.M. // Appl. Catal. B: Environ. 2015. V. 162. P. 122. https://doi.org/10.1016/j.apcatb.2014.06.038
- Huang X., Li L., Liu R., Li H., Lan L., Zhou W. // Catalysts. 2021. V. 11. № 9. Art. 1037. https://doi.org/10.3390/catal11091037
- Афонасенко Т.Н., Булавченко О.А., Гуляева Т.И., Цыбуля С.В., Цырульников П.Г. // Кинетика и катализ. 2018. Т. 59. № 1. С. 127. (Afonasenko T.N., Bulavchenko O.A., Gulyaeva T.I., Tsybulya S.V., Tsyrul’nikov P.G. // Kinet. Catal. 2018. V. 59. P. 104. https://doi.org/10.1134/S0023158418010019)
- Yang M., Shen G., Wang Q., Deng K., Liu M., Chen Y., Gong Y., Wang Z. // Molecules. 2021. V. 26. Art. 6363. https:// doi.org/10.3390/molecules26216363
- Martínez-Arias A., Fernández-García M., Belver C., Conesa J.C., Soria J. // Catal. Lett. 2000. V. 65. P. 197. https://doi.org/10.1023/A:1019089910238
- Silva-Calpa L. del R., Zonetti P.C., Rodrigues C.P., Alves O.C., Appel L.G., de Avillez R.R. // J. Mol. Catal. A: Chem. 2016. V. 425. P. 166. https://doi.org/10.1016/j.molcata.2016.10.008
- Anpo M., Costentin G., Giamello E., Lauron-Pernot H., Sojka Z. // J. Catal. 2021. V. 393. P. 259. https://doi.org/10.1016/j.jcat.2020.10.011
- Che M., Dyrek K., Louis C. // J. Phys. Chem. 1985. V. 89. P. 4526. https://doi.org/10.1021/j100267a022
- Borchert H., Frolova Y.V., Kaichev V.V., Prosvirin I.P., Alikina G.M., Lukashevich A.I., Zaikov-skii V.I., Moroz E.M., Trukhan S.N., Ivanov V.P., Paukshtis E.A., Bukhtiyarov V.I., Sadykov V.A. // J. Phys. Chem. B. 2005. V. 109. P. 5728. https://doi.org/10.1021/jp045828c
- Christou S.Y., Álvarez-Galván M.C., Fierro J.L.G., Efstathiou A.M. // Appl. Catal. B: Environ. 2011. V. 106. P. 103. https://doi.org/10.1016/j.apcatb.2011.05.013
- Han Y.F., Chen F., Zhong Z., Ramesh K., Chen L., Widjaja E. // J. Phys. Chem. B. 2006. V. 110. P. 24450. https://doi.org/10.1021/jp064941v
- Castro V.D., Polzonetti G. // J. Electron Spectrosc. Relat. Phenom. 1989. V. 48. P. 117.
- Feng X., Cox D.F. // Surf. Sci. 2016. V. 645. P. 23. https://doi.org/10.1016/j.susc.2015.10.041
- Gómez L.E., Miró E.E., Boix A.V. // Int. J. Hydrogen Energy. 2013. V. 38. P. 5645. https://doi.org/10.1016/j.ijhydene.2013.03.004
- Bulavchenko O.A., Afonasenko T.N., Ivanchikova A.V., Murzin V.Y., Kremneva A.M., Saraev A.A., Kaichev V.V., Tsybulya S.V. // Inorg. Chem. 2021. V. 60. P. 16518. https://doi.org/10.1021/acs.inorgchem.1c02379
Қосымша файлдар
