Search for correlations of solar activity with 55Fe, 60Co nucleus decay parameters

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Temporal variations of nuclei decay parameters are actively searched now; their detection may be a signal of new physical effects of cosmic origin. Correlations of intensity of 60Co, 54Mn and 55Fe weak decay parameters with solar activity, with solar flares, were observed. In our work, correlations of X-class solar flares with 60Co and 55Fe decay rate variations measured via decay γ-ray detection by semiconductor detectors. For 55Fe decay the significant deviations of decay counting rate from the expected rate observed at the level -0.2% correlated with solar flares. For 60Co decay four similar events were detected with deviations at a level of ~0.4%. All decay rate deviations start from 30 to 155 hours before solar flare moments at confidence level of 90%.

Palavras-chave

Sobre autores

S. Mayburov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Belgorod National Research University

Email: mayburov@mail.ru
Moscow, Russia; Belgorod, Russia

E. Demikhov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

A. Kubankin

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Belgorod National Research University

Moscow, Russia; Belgorod, Russia

I. Kishin

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Belgorod National Research University

Moscow, Russia; Belgorod, Russia

Yu. Titarenko

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

K. Pavlov

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

V. Zhivun

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

Ja. Zaricki

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

Bibliografia

  1. Martin B.R. Nuclear and particle physics: An introduction. N.Y.: John Wiley& Sons, 2011. 459 p.
  2. Alburger D., Harbottle G., and Norton E.F. // Earth Planet. Sci. Lett. 1986. V. 78. P. 168.
  3. Alekseev K.N., Gavrilyuk Yu.M., Gangapshev A.M. et al. // Phys. Part. Nucl. 2016. V. 47. No. 6. P. 986.
  4. Alekseev E., Gavrilyuk Yu.M., Gangapshev A.M. et al. // Phys. Part. Nucl. 2018. V. 49. No. 4. P. 557.
  5. Fischbach E., Bauchev J.B., Gruenwald J.T. et al. // Space Sci. Rev. 2009. V. 145. P. 285.
  6. Jenkins J.H., and Fischbach E. // Astropart. Phys. 2009. V. 31. P. 407.
  7. Bogachev S.A., Kharlamov A.J., Kishin I.A. et al. // J. Phys. Conf. Ser. 2020. V. 1690. Art. No. 012028.
  8. Phillips K.J.H. Guide to the Sun. Cambridge: Cambridge University Press, 1995. 510 p.
  9. Howard T. Coronal mass Ejections. An introduction. Astrophysics Space Sciences Library. V. 376. N.Y.: Springer, 2011. 389 p.
  10. ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/ xrs.
  11. Belotti E., Broggini C., Carlo G. Di. et al. // Phys. Lett. B. 2013. V. 720. No. 1–3. P. 116.
  12. Belotti E., Broggini C., Carlo G. Di. et al. // Phys. Lett. B. 2018. V. 780. P. 61.
  13. Ageavaare J.R., Baudis L., Breur P.A. et al. // Astropart. Phys. 2018. V. 103. P. 62.
  14. Belotti E., Broggini C., Carlo G. Di et al. // Astropart. Phys. 2015. V. 61. P. 88.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025