Search for correlations of solar activity with 55Fe, 60Co nucleus decay parameters

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Temporal variations of nuclei decay parameters are actively searched now; their detection may be a signal of new physical effects of cosmic origin. Correlations of intensity of 60Co, 54Mn and 55Fe weak decay parameters with solar activity, with solar flares, were observed. In our work, correlations of X-class solar flares with 60Co and 55Fe decay rate variations measured via decay γ-ray detection by semiconductor detectors. For 55Fe decay the significant deviations of decay counting rate from the expected rate observed at the level -0.2% correlated with solar flares. For 60Co decay four similar events were detected with deviations at a level of ~0.4%. All decay rate deviations start from 30 to 155 hours before solar flare moments at confidence level of 90%.

作者简介

S. Mayburov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Belgorod National Research University

Email: mayburov@mail.ru
Moscow, Russia; Belgorod, Russia

E. Demikhov

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Moscow, Russia

A. Kubankin

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Belgorod National Research University

Moscow, Russia; Belgorod, Russia

I. Kishin

P.N. Lebedev Physical Institute of the Russian Academy of Sciences; Belgorod National Research University

Moscow, Russia; Belgorod, Russia

Yu. Titarenko

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

K. Pavlov

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

V. Zhivun

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

Ja. Zaricki

National Research Center “Kurchatov Institute”, Kurchatov Complex of Theoretical and Experimental Physics

Moscow, Russia

参考

  1. Martin B.R. Nuclear and particle physics: An introduction. N.Y.: John Wiley& Sons, 2011. 459 p.
  2. Alburger D., Harbottle G., and Norton E.F. // Earth Planet. Sci. Lett. 1986. V. 78. P. 168.
  3. Alekseev K.N., Gavrilyuk Yu.M., Gangapshev A.M. et al. // Phys. Part. Nucl. 2016. V. 47. No. 6. P. 986.
  4. Alekseev E., Gavrilyuk Yu.M., Gangapshev A.M. et al. // Phys. Part. Nucl. 2018. V. 49. No. 4. P. 557.
  5. Fischbach E., Bauchev J.B., Gruenwald J.T. et al. // Space Sci. Rev. 2009. V. 145. P. 285.
  6. Jenkins J.H., and Fischbach E. // Astropart. Phys. 2009. V. 31. P. 407.
  7. Bogachev S.A., Kharlamov A.J., Kishin I.A. et al. // J. Phys. Conf. Ser. 2020. V. 1690. Art. No. 012028.
  8. Phillips K.J.H. Guide to the Sun. Cambridge: Cambridge University Press, 1995. 510 p.
  9. Howard T. Coronal mass Ejections. An introduction. Astrophysics Space Sciences Library. V. 376. N.Y.: Springer, 2011. 389 p.
  10. ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/ xrs.
  11. Belotti E., Broggini C., Carlo G. Di. et al. // Phys. Lett. B. 2013. V. 720. No. 1–3. P. 116.
  12. Belotti E., Broggini C., Carlo G. Di. et al. // Phys. Lett. B. 2018. V. 780. P. 61.
  13. Ageavaare J.R., Baudis L., Breur P.A. et al. // Astropart. Phys. 2018. V. 103. P. 62.
  14. Belotti E., Broggini C., Carlo G. Di et al. // Astropart. Phys. 2015. V. 61. P. 88.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025