Мембранные реакции системы свертывания крови: классический взгляд и современные представления
- Авторы: Коваленко Т.А.1,2, Пантелеев М.А.1,2,3
-
Учреждения:
- Центp теоpетичеcкиx пpоблем физико-xимичеcкой фаpмакологии PАН
- Национальный медицинcкий иccледовательcкий центp детcкой гематологии, онкологии и иммунологии имени Д. Pогачева
- Моcковcкий гоcудаpcтвенный унивеpcитет имени М.В. Ломоноcова
- Выпуск: Том 41, № 5-6 (2024)
- Страницы: 427-447
- Раздел: ОБЗОРЫ
- URL: https://vietnamjournal.ru/0233-4755/article/view/667421
- DOI: https://doi.org/10.31857/S0233475524050063
- EDN: https://elibrary.ru/cbkzdd
- ID: 667421
Цитировать
Аннотация
Для остановки кровопотери при повреждении кровеносного сосуда в живых организмах существует сложный механизм, называемый гемостазом. В этом процессе условно выделяют два тесно взаимосвязанных звена – сосудисто-тромбоцитарный и плазменный гемостаз. Плазменный гемостаз представляет собой систему протеолитических реакций, в которых участвуют белки плазмы крови, называемые факторами свертывания. Ключевой особенностью этой системы является протекание большинства ферментативных реакций на поверхности фосфолипидных мембран, что увеличивает их скорость до 5 порядков. В данном обзоре описываются основные механизмы связывания факторов свертывания с фосфолипидными мембранами, пути сборки комплексов и реакций активации, обсуждается роль мембран в этом процессе, их состав и источники. Связывание факторов свертывания с прокоагулянтными мембранами приводит не только к ускорению процессов свертывания, но также к их избирательному протеканию в определенных областях и защите от смывания потоком. Эффективность реакций свертывания регулируется составом внешнего слоя мембраны, преимущественно через специальный механизм митохондриально-управляемой некротической смерти тромбоцитов.
Ключевые слова
Полный текст

Об авторах
Т. А. Коваленко
Центp теоpетичеcкиx пpоблем физико-xимичеcкой фаpмакологии PАН; Национальный медицинcкий иccледовательcкий центp детcкой гематологии, онкологии и иммунологии имени Д. Pогачева
Автор, ответственный за переписку.
Email: after-ten@yandex.ru
Россия, Москва, 109029; Моcква, 117997
М. А. Пантелеев
Центp теоpетичеcкиx пpоблем физико-xимичеcкой фаpмакологии PАН; Национальный медицинcкий иccледовательcкий центp детcкой гематологии, онкологии и иммунологии имени Д. Pогачева; Моcковcкий гоcудаpcтвенный унивеpcитет имени М.В. Ломоноcова
Email: after-ten@yandex.ru
Моcковcкий гоcудаpcтвенный унивеpcитет имени М.В. Ломоноcова, физичеcкий факультет
Россия, Москва, 109029; Моcква, 117997; Моcква, 119991Список литературы
- Versteeg H.H., Heemskerk J.W.M., Levi M., Reitsma P.H. 2013. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358.
- Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. 2007. Пространственная динамика свертывания крови. Росс. хим. журн. 51, 45–50.
- Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova A.N., Panteleev M.A. 2021. Procoagulant platelets: Mechanisms of generation and action. Hamostaseologie. 41, 146–153. doi: 10.1055/a-1401-2706
- Свешникова А., Степанян М., Пантелеев М. 2022. Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные связи. Часть 1: ответы. Системная биология и физиология. 1, 14–23. doi: 10.52455/sbpr.01.202101014
- Podoplelova N.A., Sulimov V.B., Ilin I.S., Tashilova A.S., Panteleev M.A., Ledeneva I.V., Shikhaliev K.S. 2020. Blood coagulation in the 21st century: Existing knowledge, current strategies for treatment and perspective. Pediatr. Hematol. Immunopathol. 19, 139–157. doi: 10.24287/1726-1708-2020-19-1-139-157
- Protty M.B., Jenkins P.V., Collins P.W., O’Donnell V.B. 2022. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol. 12, 210318. doi: 10.1098/rsob.210318
- Morrissey J.H. 1996. Plasma factor VIIa: Measurement and potential clinical significance. Haemostasis. 26 Suppl 1, 66–71. doi: 10.1159/000217243
- Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2017. The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. Biophysics (Oxf). 62, 291–300. doi: 10.1134/S0006350917020105
- Butenas S. 2012. Tissue factor structure and function. Scientifica (Cairo). 2012, 964862. doi: 10.6064/2012/964862
- Zelaya H., Rothmeier A.S., Ruf W. 2018. Tissue factor at the crossroad of coagulation and cell signaling. J. Thromb. Haemost. 16, 1941–1952. doi: 10.1111/jth.14246
- Smith S.B., Gailani D. 2008. Update on the physiology and pathology of factor IX activation by factor XIa. Expert Rev. Hematol. 1, 87–98. doi: 10.1586/17474086.1.1.87
- Lu G., Broze G.J.J., Krishnaswamy S. 2004. Formation of factors IXa and Xa by the extrinsic pathway: Differential regulation by tissue factor pathway inhibitor and antithrombin III. J. Biol. Chem. 279, 17241–17249. doi: 10.1074/jbc.M312827200
- Ruben E.A., Summers B., Rau M.J., Fitzpatrick J.A.J., Di Cera E. 2022. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood. 139, 3463–3473. doi: 10.1182/blood.2022015807
- Brufatto N., Nesheim M.E. 2003. Analysis of the kinetics of prothrombin activation and evidence that two equilibrating forms of prothrombinase are involved in the process. J. Biol. Chem. 278, 6755–6764. doi: 10.1074/jbc.M206413200
- Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2006. Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex. FEBS J. 273, 374–387.
- Childers K.C., Peters S.C., Lollar P., Spencer H.T., Doering C.B., Spiegel P.C. 2022. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv. 6, 3240–3254. doi: 10.1182/bloodadvances.2021005874
- Weisel J.W., Litvinov R.I. 2017. Fibrin formation, structure and properties. Subcell. Biochem. 82, 405–456. doi: 10.1007/978-3-319-49674-0_13
- Chelushkin M.A., Panteleev M.A., Sveshnikova A.N. 2017. Activation of the contact pathway of blood coagulation on the circulating microparticles may explain blood plasma coagulation induced by dilution. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 11, 130–143. doi: 10.1134/S1990747817020040
- Terent’eva V.A., Sveshnikova A.N., Panteleev M.A. 2017. Biophysical mechanisms of contact activation of blood-plasma clotting. Biophysics (Oxf). 62, 742–753. doi: 10.1134/S0006350917050232
- Wu Y. 2015. Contact pathway of coagulation and inflammation. Thromb. J. 13, 17. doi: 10.1186/s12959-015-0048-y
- Balandina A.N., Shibeko A.M., Kireev D.A., Novikova A.A., Shmirev I.I., Panteleev M.A., Ataullakhanov F.I. 2011. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys. J. 101, 1816–1824. doi: 10.1016/j.bpj.2011.08.034
- Lakshmanan H.H.S., Estonilo A., Reitsma S.E., Melrose A.R., Subramanian J., Zheng T.J., Maddala J., Tucker E.I., Gailani D., McCarty O.J.T., Jurney P.L., Puy C. 2022. Revised model of the tissue factor pathway of thrombin generation: Role of the feedback activation of FXI. J. Thromb. Haemost. 20, 1350–1363. doi: 10.1111/jth.15716
- Shibeko A.M., Lobanova E.S., Panteleev M.A., Ataullakhanov F.I. 2010. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4, 5. doi: 10.1186/1752-0509-4-5
- Amiral J., Seghatchian J. 2018. Revisiting antithrombin in health and disease, congenital deficiencies and genetic variants, and laboratory studies on α and β forms. Transfus. Apher. Sci. 57, 291–297. doi: 10.1016/j.transci.2018.04.010
- Dahlbäck B., Villoutreix B.O. 2005. Regulation of blood coagulation by the protein C anticoagulant pathway: Novel insights into structure-function relationships and molecular recognition. Arterioscler. Thromb. Vasc. Biol. 25, 1311–1320. doi: 10.1161/01.ATV.0000168421.13467.82
- Adams M. 2012. Tissue factor pathway inhibitor: new insights into an old inhibitor. Semin. Thromb. Hemost. 38, 129–134. doi: 10.1055/s-0032-1301410
- Almawi W.Y., Al-Shaikh F.S., Melemedjian O.K., Almawi A.W. 2013. Protein Z, an anticoagulant protein with expanding role in reproductive biology. Reproduction. 146, R73–R80. doi: 10.1530/REP-13-0072
- Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774. doi: 10.1021/acs.chemrev.8b00538
- Vance J.E. 2015. Phospholipid synthesis and transport in mammalian cells. Traffic. 16, 1–18. doi https://doi.org/10.1111/tra.12230
- Jiang Z., Shen T., Huynh H., Fang X., Han Z., Ouyang K. 2022. Cardiolipin regulates mitochondrial ultrastructure and function in mammalian cells. Genes (Basel). 13, 1889. doi: 10.3390/genes13101889
- Yang Y., Lee M., Fairn G.D. 2018. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 293, 6230–6240. doi: 10.1074/jbc.R117.000582
- Fujimoto T., Parmryd I. 2016. Interleaflet coupling, pinning, and leaflet asymmetry-major players in plasma membrane nanodomain formation. Front. cell Dev. Biol. 4, 155. doi: 10.3389/fcell.2016.00155
- Gupta A., Korte T., Herrmann A., Wohland T. 2020. Plasma membrane asymmetry of lipid organization: Fluorescence lifetime microscopy and correlation spectroscopy analysis. J. Lipid Res. 61, 252–266. doi: 10.1194/jlr.D119000364
- Murate M., Abe M., Kasahara K., Iwabuchi K., Umeda M., Kobayashi T. 2015. Transbilayer distribution of lipids at nano scale. J. Cell Sci. 128, 1627–1638. doi: 10.1242/jcs.163105
- Lorent J.H., Levental K.R., Ganesan L., Rivera-Longsworth G., Sezgin E., Doktorova M., Lyman E., Levental I. 2020. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652. doi: 10.1038/s41589-020-0529-6
- Cho W., Stahelin R. V. 2005. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151. doi: 10.1146/annurev.biophys.33.110502.133337
- Yu J., Boehr D.D. 2023. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front. Mol. Biosci. 10, 1306483. doi: 10.3389/fmolb.2023.1306483
- Igumenova T.I. 2015. Dynamics and membrane interactions of protein kinase C. Biochemistry. 54, 4953–4968. doi: 10.1021/acs.biochem.5b00565
- Velnati S., Centonze S., Girivetto F., Capello D., Biondi R.M., Bertoni A., Cantello R., Ragnoli B., Malerba M., Graziani A., Baldanzi G. 2021. Identification of key phospholipids that bind and activate atypical PKCs. Biomedicines. 9. doi: 10.3390/biomedicines9010045
- Scott H.L., Heberle F.A., Katsaras J., Barrera F.N. 2019. Phosphatidylserine asymmetry promotes the membrane insertion of a transmembrane helix. Biophys. J. 116, 1495–1506. doi: 10.1016/j.bpj.2019.03.003
- Sakuragi T., Nagata S. 2023. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 24, 576–596. doi: 10.1038/s41580-023-00604-z
- Millington-Burgess S.L., Harper M.T. 2022. Maintaining flippase activity in procoagulant platelets is a novel approach to reducing thrombin generation. J. Thromb. Haemost. 20, 989–995. doi: 10.1111/jth.15641
- Panteleev M.A., Shibeko A.M., Nechipurenko D.Y., Beresneva E.A., Podoplelova N.A., Sveshnikova A.N. 2022. Haemostasis and thrombosis. Spatial organization of the biochemical processes at microscale. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 16, 107–114. doi: 10.1134/S1990747822030084
- Suttie J.W. 1993. Synthesis of vitamin K-dependent proteins. FASEB J. 7, 445–452. doi: 10.1096/fasebj.7.5.8462786
- Wildhagen K.C.A.A., Lutgens E., Loubele S.T.G.B., ten Cate H., Nicolaes G.A.F. 2011. The structure-function relationship of activated protein C. Lessons from natural and engineered mutations. Thromb. Haemost. 106, 1034–1045. doi: 10.1160/TH11-08-0522
- Gierula M., Ahnström J. 2020. Anticoagulant protein S – New insights on interactions and functions. J. Thromb. Haemost. 18, 2801–2811. doi https://doi.org/10.1111/jth.15025
- Pozzi N., Bystranowska D., Zuo X., Di Cera E. 2016. Structural architecture of prothrombin in solution revealed by single molecule spectroscopy. J. Biol. Chem. 291, 18107–18116. https://doi.org/10.1074/jbc.M116.738310
- Stojanovski B.M., Pelc L.A., Di Cera E. 2020. Role of the activation peptide in the mechanism of protein C activation. Sci. Rep. 10, 11079. doi: 10.1038/s41598-020-68078-z
- Davie E.W., Kulman J.D. 2006. An overview of the structure and function of thrombin. Semin. Thromb. Hemost. 32 Suppl 1, 3–15. doi: 10.1055/s-2006-939550
- Venkateswarlu D., Perera L., Darden T., Pedersen L.G. 2002. Structure and dynamics of zymogen human blood coagulation factor X. Biophys. J. 82, 1190–1206. doi: 10.1016/S0006-3495(02)75476-3
- Ohkubo Y.Z., Morrissey J.H., Tajkhorshid E. 2010. Dynamical view of membrane binding and complex formation of human factor VIIa and tissue factor. J. Thromb. Haemost. 8, 1044–1053. doi: 10.1111/j.1538-7836.2010.03826.x
- McDonald J.F., Shah A.M., Schwalbe R.A., Kisiel W., Dahlback B., Nelsestuen G.L. 1997. Comparison of naturally occurring vitamin K-dependent proteins: correlation of amino acid sequences and membrane binding properties suggests a membrane contact site. Biochemistry. 36, 5120–5127. doi: 10.1021/bi9626160
- Muller M.P., Morrissey J.H., Tajkhorshid E. 2022. Molecular View into preferential binding of the factor VII Gla domain to phosphatidic acid. Biochemistry. 61, 1694–1703. doi: 10.1021/acs.biochem.2c00266
- Huang M., Furie B.C., Furie B. 2004. Crystal structure of the calcium-stabilized human factor IX Gla domain bound to a conformation-specific anti-factor IX antibody. J. Biol. Chem. 279, 14338–14346. doi: 10.1074/jbc.M314011200
- Brandstetter H., Bauer M., Huber R., Lollar P., Bode W. 1995. X-ray structure of clotting factor IXa: Active site and module structure related to Xase activity and hemophilia B. Proc. Natl. Acad. Sci. USA. 92, 9796–9800. doi: 10.1073/pnas.92.21.9796
- Soriano-Garcia M., Padmanabhan K., de Vos A.M., Tulinsky A. 1992. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry. 31, 2554–2566. doi: 10.1021/bi00124a016
- Sunnerhagen M., Forsén S., Hoffrén A.M., Drakenberg T., Teleman O., Stenflo J. 1995. Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat. Struct. Biol. 2, 504–509. doi: 10.1038/nsb0695-504
- Huang M., Rigby A.C., Morelli X., Grant M.A., Huang G., Furie B., Seaton B., Furie B.C. 2003. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat. Struct. Biol. 10, 751–756. doi: 10.1038/nsb971
- Banner D.W., D’Arcy A., Chene C., Winkler F.K., Guha A., Konigsberg W.H., Nemerson Y., Kirchhofer D. 1996. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 380, 41–46. doi: 10.1038/380041a0
- Mizuno H., Fujimoto Z., Atoda H., Morita T. 2001. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc. Natl. Acad. Sci. USA. 98, 7230–7234. doi: 10.1073/pnas.131179698
- Shikamoto Y., Morita T., Fujimoto Z., Mizuno H. 2003. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein. J. Biol. Chem. 278, 24090–24094. doi: 10.1074/jbc.M300650200
- Vadivel K., Agah S., Messer A.S., Cascio D., Bajaj M.S., Krishnaswamy S., Esmon C.T., Padmanabhan K., Bajaj S.P. 2013. Structural and functional studies of gamma-carboxyglutamic acid domains of factor VIIa and activated protein C: Role of magnesium at physiological calcium. J. Mol. Biol. 425, 1961–1981. doi: 10.1016/j.jmb.2013.02.017
- Ohkubo Y.Z., Tajkhorshid E. 2008. Distinct structural and adhesive roles of Ca2+ in membrane binding of blood coagulation factors. Structure. 16, 72–81. doi: 10.1016/j.str.2007.10.021
- Muller M.P., Wang Y., Morrissey J.H., Tajkhorshid E. 2017. Lipid specificity of the membrane binding domain of coagulation factor X. J. Thromb. Haemost. 15, 2005–2016. doi: 10.1111/jth.13788
- Mohammed B.M., Pelc L.A., Rau M.J., Di Cera E. 2023. Cryo-EM structure of coagulation factor V short. Blood. 141, 3215–3225. doi: 10.1182/blood.2022019486
- Lenting P.J., van Mourik J.A., Mertens K. 1998. The life cycle of coagulation factor VIII in view of its structure and function. Blood. 92, 3983–3996. doi: 10.1182/blood.V92.11.3983
- Childers K.C., Peters S.C., Spiegel Jr. P.C. 2022. Structural insights into blood coagulation factor VIII: Procoagulant complexes, membrane binding, and antibody inhibition. J. Thromb. Haemost. 20, 1957–1970. doi: 10.1111/jth.15793
- Ngo J.C.K., Huang M., Roth D.A., Furie B.C., Furie B. 2008. Crystal structure of human factor VIII: Implications for the formation of the factor IXa-factor VIIIa complex. Structure. 16, 597–606. doi: 10.1016/j.str.2008.03.001
- Fuller J.R., Knockenhauer K.E., Leksa N.C., Peters R.T., Batchelor J.D. 2021. Molecular determinants of the factor VIII/von Willebrand factor complex revealed by BIVV001 cryo-electron microscopy. Blood. 137, 2970–2980. doi https://doi.org/10.1182/blood.2020009197
- Wakabayashi H., Monaghan M., Fay P.J. 2014. Cofactor activity in factor VIIIa of the blood clotting pathway is stabilized by an interdomain bond between His281 and Ser524 formed in factor VIII. J. Biol. Chem. 289, 14020–14029. doi: 10.1074/jbc.M114.550566
- Madsen J.J., Ohkubo Y.Z., Peters G.H., Faber J.H., Tajkhorshid E., Olsen O.H. 2015. Membrane interaction of the factor VIIIa discoidin domains in atomistic detail. Biochemistry. 54, 6123–6131. doi: 10.1021/acs.biochem.5b00417
- Lü J., Pipe S.W., Miao H., Jacquemin M., Gilbert G.E. 2011. A membrane-interactive surface on the factor VIII C1 domain cooperates with the C2 domain for cofactor function. Blood. 117, 3181–3189. doi: 10.1182/blood-2010-08-301663
- Smith I.W., d’Aquino A.E., Coyle C.W., Fedanov A., Parker E.T., Denning G., Spencer H.T., Lollar P., Doering C.B., Spiegel P.C. 2020. The 3.2 Å structure of a bioengineered variant of blood coagulation factor VIII indicates two conformations of the C2 domain. J. Thromb. Haemost. 18, 57–69. https://doi.org/10.1111/jth.14621
- Bardelle C., Furie B., Furie B.C., Gilbert G.E. 1993. Membrane binding kinetics of factor VIII indicate a complex binding process. J. Biol. Chem. 268, 8815–8824.
- Mann K.G., Kalafatis M. 2003. Factor V: A combination of Dr Jekyll and Mr Hyde. Blood. 101, 20–30. doi: 10.1182/blood-2002-01-0290
- Hayward C.P.M., Fuller N., Zheng S., Adam F., Jeimy S.B., Horsewood I., Quinn-Allen M.A., Kane W.H. 2004. Human platelets contain forms of factor V in disulfide-linkage with multimerin. Thromb. Haemost. 92, 1349–1357. doi: 10.1160/TH03-02-0123
- Stoilova-McPhie S., Parmenter C.D.J., Segers K., Villoutreix B.O., Nicolaes G.A.F. 2008. Defining the structure of membrane-bound human blood coagulation factor Va. J. Thromb. Haemost. 6, 76–82. doi: 10.1111/j.1538-7836.2007.02810.x
- Ohkubo Y.Z., Madsen J.J. 2021. Uncovering membrane-bound models of coagulation factors by combined experimental and computational approaches. Thromb. Haemost. 121, 1122–1137. doi: 10.1055/s-0040-1722187
- Wu S., Lee C.J., Pedersen L.G. 2009. Conformational change path between closed and open forms of C2 domain of coagulation factor V on a two-dimensional free-energy surface. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 79, 41909. doi: 10.1103/PhysRevE.79.041909
- Kovalenko T., Panteleev M., Sveshnikova A. 2019. The role of tissue factor in metastasising, neoangiogenesis and hemostasis in cancer. Oncohematology. 14, 70–85. doi: 10.17650/1818-8346-2019-14-2-70-85
- Drake T.A., Morrissey J.H., Edgington T.S. 1989. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 134, 1087–1097.
- Bogdanov V.Y., Balasubramanian V., Hathcock J., Vele O., Lieb M., Nemerson Y. 2003. Alternatively spliced human tissue factor: A circulating, soluble, thrombogenic protein. Nat. Med. 9, 458–462. doi: 10.1038/nm841
- Bogdanov V.Y., Kirk R.I., Miller C., Hathcock J.J., Vele S., Gazdoiu M., Nemerson Y., Taubman M.B. 2006. Identification and characterization of murine alternatively spliced tissue factor. J. Thromb. Haemost. 4, 158–167. doi: 10.1111/j.1538-7836.2005.01680.x
- Sluka S.H.M., Akhmedov A., Vogel J., Unruh D., Bogdanov V.Y., Camici G.G., Lüscher T.F., Ruf W., Tanner F.C. 2014. Alternatively spliced tissue factor is not sufficient for embryonic development. PLoS One. 9, e97793. doi: 10.1371/journal.pone.0097793
- Matiash K., Lewis C.S., Bogdanov V.Y. 2021. Functional characteristics and regulated expression of alternatively spliced tissue factor: An update. Cancers (Basel). 13. doi: 10.3390/cancers13184652
- Maugeri N., Manfredi A.A. 2015. Tissue factor expressed by neutrophils: Another piece in the vascular inflammation puzzle. Semin. Thromb. Hemost. 41, 728–736. doi: 10.1055/s-0035-1564043
- Maugeri N., Brambilla M., Camera M., Carbone A., Tremoli E., Donati M.B., de Gaetano G., Cerletti C. 2006. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost. 4, 1323–1330. doi: 10.1111/j.1538-7836.2006.01968.x
- Rafail S., Ritis K., Schaefer K., Kourtzelis I., Speletas M., Doumas M., Giaglis S., Kambas K., Konstantinides S., Kartalis G. 2008. Leptin induces the expression of functional tissue factor in human neutrophils and peripheral blood mononuclear cells through JAK2-dependent mechanisms and TNFalpha involvement. Thromb. Res. 122, 366–375. doi: 10.1016/j.thromres.2007.12.018
- Peshkova A.D., Le Minh G., Tutwiler V., Andrianova I.A., Weisel J.W., Litvinov R.I. 2017. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression. Sci. Rep. 7, 5149. doi: 10.1038/s41598-017-05601-9
- Brambilla M., Becchetti A., Rovati G.E., Cosentino N., Conti M., Canzano P., Giesen P.L.A., Loffreda A., Bonomi A., Cattaneo M., De Candia E., Podda G.M., Trabattoni D., Werba P.J., Campodonico J., Pinna C., Marenzi G., Tremoli E., Camera M. 2023. Cell surface platelet tissue factor expression: Regulation by P2Y(12) and link to residual platelet reactivity. Arterioscler. Thromb. Vasc. Biol. 43, 2042–2057. doi: 10.1161/ATVBAHA.123.319099
- Camera M., Frigerio M., Toschi V., Brambilla M., Rossi F., Cottell D.C., Maderna P., Parolari A., Bonzi R., De Vincenti O., Tremoli E. 2003. Platelet activation induces cell-surface immunoreactive tissue factor expression, which is modulated differently by antiplatelet drugs. Arterioscler. Thromb. Vasc. Biol. 23, 1690–1696. doi: 10.1161/01.ATV.0000085629.23209.AA
- Müller I., Klocke A., Alex M., Kotzsch M., Luther T., Morgenstern E., Zieseniss S., Zahler S., Preissner K., Engelmann B. 2003. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 17, 476–478. doi: 10.1096/fj.02-0574fje
- Lechner D., Weltermann A. 2008. Circulating tissue factor-exposing microparticles. Thromb. Res. 122 Suppl, S47-54. doi: 10.1016/S0049-3848(08)70019-7
- Wang J., Pendurthi U.R., Rao L.V.M. 2017. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv. 1, 849–862. doi: 10.1182/bloodadvances.2016003947
- Chen V.M., Hogg P.J. 2013. Encryption and decryption of tissue factor. J. Thromb. Haemost. 11, 277–284. https://doi.org/10.1111/jth.12228
- van Dieijen G., Tans G., van Rijn J., Zwaal R.F., Rosing J. 1981. Simple and rapid method to determine the binding of blood clotting factor X to phospholipid vesicles. Biochemistry. 20, 7096–7101.
- Harvey S.B., Stone M.D., Martinez M.B., Nelsestuen G.L. 2003. Mutagenesis of the gamma-carboxyglutamic acid domain of human factor VII to generate maximum enhancement of the membrane contact site. J. Biol. Chem. 278, 8363–8369. doi: 10.1074/jbc.M211629200
- Cutsforth G.A., Whitaker R.N., Hermans J., Lentz B.R. 1989. A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: Application to human coagulation proteins. Biochemistry. 28, 7453–7461.
- Soloveva P.A., Podoplelova N.A., Panteleev M.A. 2024. Binding of coagulation factor IXa to procoagulant platelets revisited: Low affinity and interactions with other factors. Biochem. Biophys. Res. Commun. 720, 150099. doi: 10.1016/j.bbrc.2024.150099
- Medfisch S.M., Muehl E.M., Morrissey J.H., Bailey R.C. 2020. Phosphatidylethanolamine-phosphatidylserine binding synergy of seven coagulation factors revealed using nanodisc arrays on silicon photonic sensors. Sci. Rep. 10, 17407. doi: 10.1038/s41598-020-73647-3
- Shaw A.W., Pureza V.S., Sligar S.G., Morrissey J.H. 2007. The local phospholipid environment modulates the activation of blood clotting. J. Biol. Chem. 282, 6556–6563.
- Wang B., Tieleman D.P. 2024. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys. Chem. 309, 107231. doi: 10.1016/j.bpc.2024.107231
- Tavoosi N., Davis-Harrison R.L., Pogorelov T.V, Ohkubo Y.Z., Arcario M.J., Clay M.C., Rienstra C.M., Tajkhorshid E., Morrissey J.H. 2011. Molecular determinants of phospholipid synergy in blood clotting. J. Biol. Chem. 286, 23247–23253. doi: 10.1074/jbc.M111.251769
- Gilbert G.E., Arena A.A. 1995. Phosphatidylethanolamine induces high affinity binding sites for factor VIII on membranes containing phosphatidyl-L-serine. J. Biol. Chem. 270, 18500–18505. https://doi.org/10.1074/jbc.270.31.18500
- Tavoosi N., Smith S.A., Davis-Harrison R.L., Morrissey J.H. 2013. Factor VII and protein C are phosphatidic acid-binding proteins. Biochemistry. 52, 5545–5552. doi: 10.1021/bi4006368
- Abbott A.J., Nelsestuen G.L. 1987. Association of a protein with membrane vesicles at the collisional limit: studies with blood coagulation factor Va light chain also suggest major differences between small and large unilamellar vesicles. Biochemistry. 26, 7994–8003.
- Abbott A.J., Nelsestuen G.L. 1988. The collisional limit: An important consideration for membrane-associated enzymes and receptors. FASEB J. 2, 2858–2866.
- Lu Y., Nelsestuen G.L. 1996. Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition: Implications for protein--membrane contact. Biochemistry. 35, 8193–8200. doi: 10.1021/bi960280o
- Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2017. Substrate delivery mechanism and the role of membrane curvature in factor X activation by extrinsic tenase. J. Theor. Biol. 435, 125–133. doi: 10.1016/j.jtbi.2017.09.015
- Carman C.V, Nikova D.N., Sakurai Y., Shi J., Novakovic V.A., Rasmussen J.T., Lam W.A., Gilbert G.E. 2023. Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv. 7, 60–72. doi: 10.1182/bloodadvances.2021006870
- Обыденный С.И. 2023. Преимущество применения лактадгерина для оценки экспонирования фосфатидилсерина в тромбоцитах. Системная биология и физиология. 2, 11–13. edn: MICQKA
- Shi J., Heegaard C.W., Rasmussen J.T., Gilbert G.E. 2004. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta. 1667, 82–90. doi: 10.1016/j.bbamem.2004.09.006
- Коваленко Т.А. 2022. Аннексин V: связывающийся с мембраной белок с широчайшим набором функций. Системная биология и физиология. 1, 21–33. edn: KBSOPU
- Silversmith R.E., Nelsestuen G.L. 1986. Interaction of complement proteins C5b-6 and C5b-7 with phospholipid vesicles: Effects of phospholipid structural features. Biochemistry. 25, 7717–7725. doi: 10.1021/bi00371a065
- Podoplelova N.A., Sveshnikova A.N., Kotova Y.N., Eckly A., Receveur N., Nechipurenko D.Y., Obydennyi S.I., Kireev I.I., Gachet C., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2016. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood. 128, 1745–1755. doi: 10.1182/blood-2016-02-696898
- Mitchell J.L., Lionikiene A.S., Fraser S.R., Whyte C.S., Booth N.A., Mutch N.J. 2014. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood. 124, 3982–3990. doi: 10.1182/blood-2014-06-583070
- Whyte C.S., Swieringa F., Mastenbroek T.G., Lionikiene A.S., Lancé M.D., van der Meijden P.E.J., Heemskerk J.W.M., Mutch N.J. 2015. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood. 125, 2568–2578. doi: 10.1182/blood-2014-09-599480
- Abaeva A.A., Canault M., Kotova Y.N., Obydennyy S.I., Yakimenko A.O., Podoplelova N.A., Kolyadko V.N., Chambost H., Mazurov A. V, Ataullakhanov F.I., Nurden A.T., Alessi M.-C., Panteleev M.A. 2013. Procoagulant platelets form an α-granule protein-covered ‘cap’ on their surface that promotes their attachment to aggregates. J. Biol. Chem. 288, 29621–29632. doi: 10.1074/jbc.M113.474163
- Dalm D., Galaz-Montoya J.G., Miller J.L., Grushin K., Villalobos A., Koyfman A.Y., Schmid M.F., Stoilova-McPhie S. 2015. Dimeric organization of blood coagulation factor VIII bound to lipid nanotubes. Sci. Rep. 5, 11212. doi: 10.1038/srep11212
- Majumder R., Wang J., Lentz B.R. 2003. Effects of water soluble phosphotidylserine on bovine factor Xa: Functional and structural changes plus dimerization. Biophys. J. 84, 1238–1251. doi: 10.1016/S0006-3495(03)74939-X
- Koklic T., Majumder R., Weinreb G.E., Lentz B.R. 2009. Factor XA binding to phosphatidylserine-containing membranes produces an inactive membrane-bound dimer. Biophys. J. 97, 2232–2241. doi: 10.1016/j.bpj.2009.07.043
- Koklic T., Chattopadhyay R., Majumder R., Lentz B.R. 2015. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochem. J. 467, 37–46. doi: 10.1042/BJ20141177
- Podoplelova N.A., Sveshnikova A.N., Kurasawa J.H., Sarafanov A.G., Chambost H., Vasil’ev S.A., Demina I.A., Ataullakhanov F.I., Alessi M.-C., Panteleev M.A. 2016. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization. Biochim. Biophys. Acta. 1858, 1216–1227. doi: 10.1016/j.bbamem.2016.02.008
- Mann K.G., Nesheim M.E., Church W.R., Haley P., Krishnaswamy S. 1990. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 76, 1–16.
- Bom V.J., Bertina R.M. 1990. The contributions of Ca2+, phospholipids and tissue-factor apoprotein to the activation of human blood-coagulation factor X by activated factor VII. Biochem. J. 265, 327–336.
- Norledge B.V, Petrovan R.J., Ruf W., Olson A.J. 2003. The tissue factor/factor VIIa/factor Xa complex: A model built by docking and site-directed mutagenesis. Proteins. 53, 640–648. doi: 10.1002/prot.10445
- Sen P., Neuenschwander P.F., Pendurthi U.R., Rao L.V.M. 2010. Analysis of factor VIIa binding to relipidated tissue factor by surface plasmon resonance. Blood Coagul. Fibrinolysis. 21, 376–379.
- Waters E.K., Morrissey J.H. 2006. Restoring full biological activity to the isolated ectodomain of an integral membrane protein. Biochemistry. 45, 3769–3774. doi: 10.1021/bi052600m
- Waxman E., Ross J.B., Laue T.M., Guha A., Thiruvikraman S.V, Lin T.C., Konigsberg W.H., Nemerson Y. 1992. Tissue factor and its extracellular soluble domain: The relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry. 31, 3998–4003.
- Ke K., Yuan J., Morrissey J.H. 2014. Tissue factor residues that putatively interact with membrane phospholipids. PLoS One. 9, e88675. doi: 10.1371/journal.pone.0088675
- Stone M.D., Harvey S.B., Martinez M.B., Bach R.R., Nelsestuen G.L. 2005. Large enhancement of functional activity of active site-inhibited factor VIIa due to protein dimerization: Insights into mechanism of assembly/disassembly from tissue factor. Biochemistry. 44, 6321–6330. doi: 10.1021/bi050007z
- Neuenschwander P.F., Bianco-Fisher E., Rezaie A.R., Morrissey J.H. 1995. Phosphatidylethanolamine augments factor VIIa-tissue factor activity: Enhancement of sensitivity to phosphatidylserine. Biochemistry. 34, 13988–13993. doi: 10.1021/bi00043a004
- Mallik S., Prasad R., Das K., Sen P. 2021. Alcohol functionality in the fatty acid backbone of sphingomyelin guides the inhibition of blood coagulation. RSC Adv. 11, 3390–3398. doi: 10.1039/d0ra09218e
- Hathcock J.J., Rusinova E., Andree H., Nemerson Y. 2006. Phospholipid surfaces regulate the delivery of substrate to tissue factor:VIIa and the removal of product. Blood Cells. Mol. Dis. 36, 194–198.
- Hathcock J.J., Rusinova E., Gentry R.D., Andree H., Nemerson Y. 2005. Phospholipid regulates the activation of factor X by tissue factor/factor VIIa (TF/VIIa) via substrate and product interactions. Biochemistry. 44, 8187–8197.
- Krishnaswamy S., Field K.A., Edgington T.S., Morrissey J.H., Mann K.G. 1992. Role of the membrane surface in the activation of human coagulation factor X. J. Biol. Chem. 267, 26110–26120.
- Forman S.D., Nemerson Y. 1986. Membrane-dependent coagulation reaction is independent of the concentration of phospholipid-bound substrate: Fluid phase factor X regulates the extrinsic system. Proc. Natl. Acad. Sci. USA. 83, 4675–4679.
- Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2023. Different modeling approaches in the simulation of extrinsic coagulation factor X activation: Limitations and areas of applicability. Int. J. Numer. Method. Biomed. Eng. 39, e3689. doi: 10.1002/cnm.3689
- Hopfner K.P., Lang A., Karcher A., Sichler K., Kopetzki E., Brandstetter H., Huber R., Bode W., Engh R.A. 1999. Coagulation factor IXa: The relaxed conformation of Tyr99 blocks substrate binding. Structure. 7, 989–996. doi: 10.1016/s0969-2126(99)80125-7
- Kolkman J.A., Mertens K. 2000. Insertion loop 256-268 in coagulation factor IX restricts enzymatic activity in the absence but not in the presence of factor VIII. Biochemistry. 39, 7398–7405. doi: 10.1021/bi992735q
- Zögg T., Brandstetter H. 2009. Structural basis of the cofactor- and substrate-assisted activation of human coagulation factor IXa. Structure. 17, 1669–1678. doi: 10.1016/j.str.2009.10.011
- Venkateswarlu D. 2014. Structural insights into the interaction of blood coagulation co-factor VIIIa with factor IXa: A computational protein-protein docking and molecular dynamics refinement study. Biochem. Biophys. Res. Commun. 452, 408–414. doi: 10.1016/j.bbrc.2014.08.078
- Sveshnikova A.N., Shibeko A.M., Kovalenko T.A., Panteleev M.A. 2024. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J. Theor. Biol. 582, 111757. doi: 10.1016/j.jtbi.2024.111757
- Pomowski A., Ustok F.I., Huntington J.A. 2014. Homology model of human prothrombinase based on the crystal structure of Pseutarin C. Biol. Chem. 395, 1233–1241. doi: 10.1515/hsz-2014-0165
- Krishnaswamy S. 2013. The transition of prothrombin to thrombin. J. Thromb. Haemost. 11 Suppl 1, 265–276. doi: 10.1111/jth.12217
- Chinnaraj M., Chen Z., Pelc L.A., Grese Z., Bystranowska D., Di Cera E., Pozzi N. 2018. Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Sci. Rep. 8, 2945. doi: 10.1038/s41598-018-21304-1
- Haynes L.M., Bouchard B.A., Tracy P.B., Mann K.G. 2012. Prothrombin activation by platelet-associated prothrombinase proceeds through the prethrombin-2 pathway via a concerted mechanism. J. Biol. Chem. 287, 38647–38655. doi: 10.1074/jbc.M112.407791
- Whelihan M.F., Zachary V., Orfeo T., Mann K.G. 2012. Prothrombin activation in blood coagulation: The erythrocyte contribution to thrombin generation. Blood. 120, 3837–3845. doi: 10.1182/blood-2012-05-427856
- Nesheim M.E., Tracy R.P., Mann K.G. 1984. “Clotspeed”, a mathematical simulation of the functional properties of prothrombinase. J. Biol. Chem. 259, 1447–1453.
- Stone M.D., Nelsestuen G.L. 2005. Efficacy of soluble phospholipids in the prothrombinase reaction. Biochemistry. 44, 4037–4041. doi: 10.1021/bi047655n
- Smirnov M.D., Ford D.A., Esmon C.T., Esmon N.L. 1999. The effect of membrane composition on the hemostatic balance. Biochemistry. 38, 3591–3598. doi: 10.1021/bi982538b
- Krishnaswamy S., Jones K.C., Mann K.G. 1988. Prothrombinase complex assembly. Kinetic mechanism of enzyme assembly on phospholipid vesicles. J. Biol. Chem. 263, 3823–3834.
- Giesen P.L., Willems G.M., Hermens W.T. 1991. Production of thrombin by the prothrombinase complex is regulated by membrane-mediated transport of prothrombin. J. Biol. Chem. 266, 1379–1382.
- Smeets E.F., Comfurius P., Bevers E.M., Zwaal R.F.A. 1996. Contribution of different phospholipid classes to the prothrombin converting capacity of sonicated lipid vesicles. Thromb. Res. 81, 419–426. doi https://doi.org/10.1016/0049-3848(96)00014-X
- Majumder R., Liang X., Quinn-Allen M.A., Kane W.H., Lentz B.R. 2011. Modulation of prothrombinase assembly and activity by phosphatidylethanolamine. J. Biol. Chem. 286, 35535–35542. doi: 10.1074/jbc.M111.260141
- Deguchi H., Yegneswaran S., Griffin J.H. 2004. Sphingolipids as bioactive regulators of thrombin generation. J. Biol. Chem. 279, 12036–12042. doi: 10.1074/jbc.M302531200
- Shi J., Gilbert G.E. 2003. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 101, 2628–2636. doi: 10.1182/blood-2002-07-1951
- Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. 2007. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97, 425–434.
- Haynes L.M., Dubief Y.C., Mann K.G. 2012. Membrane binding events in the initiation and propagation phases of tissue factor-initiated zymogen activation under flow. J. Biol. Chem. 287, 5225–5234. doi: 10.1074/jbc.M111.302075
- Gemmell C.H., Turitto V.T., Nemerson Y. 1988. Flow as a regulator of the activation of factor X by tissue factor. Blood. 72, 1404–1406.
- Agbani E.O., Poole A.W. 2017. Procoagulant platelets: Generation, function, and therapeutic targeting in thrombosis. Blood. 130, 2171–2179. doi: 10.1182/blood-2017-05-787259
- Heemskerk J.W.M., Mattheij N.J.A., Cosemans J.M.E.M. 2013. Platelet-based coagulation: Different populations, different functions. J. Thromb. Haemost. 11, 2–16. doi: 10.1111/jth.12045
- Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2005. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3, 2545–2553. doi: 10.1111/j.1538-7836.2005.01616.x
- Yakimenko A.O., Verholomova F.Y., Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. 2012. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys. J. 102, 2261–2269. doi: 10.1016/j.bpj.2012.04.004
- Nechipurenko D.Y., Receveur N., Yakimenko A.O., Shepelyuk T.O., Yakusheva A.A., Kerimov R.R., Obydennyy S.I., Eckly A., Léon C., Gachet C., Grishchuk E.L., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2019. Clot contraction drives the translocation of procoagulant platelets to thrombus surface. Arterioscler. Thromb. Vasc. Biol. 39, 37–47. doi: 10.1161/ATVBAHA.118.311390
- Berckmans R.J., Nieuwland R., Böing A.N., Ro- mijn F.P., Hack C.E., Sturk A. 2001. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost. 85, 639–646.
- Artemenko E.O., Obydennyi S.I., Troyanova K.S., Novichkova G.A., Nechipurenko D.Y., Panteleev M.A. 2024. Adhesive properties of plasma-circulating and platelet-derived microvesicles from healthy individuals. Thromb. Res. 233, 119–126. doi: 10.1016/j.thromres.2023.11.018
- Chabin I.A., Podoplelova N.A., Panteleev M.A. 2022. Red blood cells contribution in blood coagulation. Pediatr. Hematol. Immunopathol. 21, 136–141. doi: 10.24287/1726-1708-2022-21-3-136-141
- Tutwiler V., Mukhitov A.R., Peshkova A.D., Le Minh G., Khismatullin R.R., Vicksman J., Nagaswami C., Litvinov R.I., Weisel J.W. 2018. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci. Rep. 8, 17907. doi: 10.1038/s41598-018-35849-8
- Zhao L., Bi Y., Kou J., Shi J., Piao D. 2016. Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients. J. Exp. Clin. Cancer Res. 35, 54. doi: 10.1186/s13046-016-0328-9
- Yang C., Ma R., Jiang T., Cao M., Zhao L., Bi Y., Kou J., Shi J., Zou X. 2016. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients. Tumour Biol. 37, 7881–7891. doi: 10.1007/s13277-015-4667-5
- Bekendam R.H., Ravid K. 2023. Mechanisms of platelet activation in cancer-associated thrombosis: A focus on myeloproliferative neoplasms. Front. Cell Dev. Biol. 11, 1207395. doi: 10.3389/fcell.2023.1207395
- Zhang Y., Meng H., Ma R., He Z., Wu X., Cao M., Yao Z., Zhao L., Li T., Deng R., Dong Z., Tian Y., Bi Y., Kou J., Thatte H.S., Zhou J., Shi J. 2016. Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure. Shock. 45, 299–307. doi: 10.1097/SHK.0000000000000509
- Nieuwland R., Berckmans R.J., McGregor S., Böing A.N., Romijn F.P., Westendorp R.G., Hack C.E., Sturk A. 2000. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 95, 930–935.
- Nomura S., Shimizu M. 2015. Clinical significance of procoagulant microparticles. J. Intensive Care. 3, 2. doi: 10.1186/s40560-014-0066-z
- Ettelaie C., Collier M.E., Featherby S., Benelhaj N.E., Greenman J., Maraveyas A. 2016. Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: Correlation with tissue factor and PAR2 expression. Thromb. J. 14, 2. doi: 10.1186/s12959-016-0075-3
- Berny-Lang M.A., Aslan J.E., Tormoen G.W., Patel I.A., Bock P.E., Gruber A., McCarty O.J.T. 2011. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells. Phys. Biol. 8, 15014. doi: 10.1088/1478-3975/8/1/015014
- Lin L., Huai Q., Huang M., Furie B., Furie B.C. 2007. Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J. Mol. Biol. 371, 717–724. doi: 10.1016/j.jmb.2007.05.054
- Sveshnikova A.N., Balatskiy A.V, Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A. V, Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14, 2045–2057. doi: 10.1111/jth.13442
- Avdonin P.P., Blinova M.S., Generalova G.A., Emirova K.M., Avdonin P.V. 2024. The role of the complement system in the pathogenesis of infectious forms of hemolytic uremic syndrome. Biomolecules. 14. doi: 10.3390/biom14010039
- Jiang Y., Doolittle R.F. 2003. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc. Natl. Acad. Sci. USA. 100, 7527–7532. doi: 10.1073/pnas.0932632100
- Doolittle R.F. 2009. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb. Symp. Quant. Biol. 74, 35–40. doi: 10.1101/sqb.2009.74.001
- Hirsh J., Fuster V., Ansell J., Halperin J.L. 2003. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J. Am. Coll. Cardiol. 41, 1633–1652. doi: 10.1016/s0735-1097(03)00416-9
- Mann K.G., Whelihan M.F., Butenas S., Orfeo T. 2007. Citrate anticoagulation and the dynamics of thrombin generation. J. Thromb. Haemost. 5, 2055–2061. doi: 10.1111/j.1538-7836.2007.02710.
Дополнительные файлы
