Membrane-dependent reactions of blood coagulation: classical view and state-of-the-art concepts

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The complex mechanism called hemostasis evolved in living organisms to prevent blood loss when a blood vessel is damaged. In this process, two closely interconnected systems are distinguished: platelet-vascular and plasmatic hemostasis. Plasmatic hemostasis is a system of proteolytic reactions, in which blood plasma proteins called coagulation factors are involved. A key feature of this system is the localization of enzymatic reactions on the surface of phospholipid membranes, which increases their rate by up to 5 orders of magnitude. This review describes the basic mechanisms of coagulation factors binding to phospholipid membranes, pathways for complex assembly and activation reactions, and discusses the role of membranes in this process, their composition and sources. The binding of coagulation factors to procoagulant membranes leads not only to the acceleration of coagulation reactions, but also to their selective localization in restricted areas and protection from being washed away by the flow. The efficiency of coagulation reactions is regulated by the composition of the outer layer of the membrane, primarily through a special mechanism of mitochondria-dependent necrotic platelet death.

全文:

受限制的访问

作者简介

T. Kovalenko

Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology

编辑信件的主要联系方式.
Email: after-ten@yandex.ru
俄罗斯联邦, Moscow, 109029; Moscow, 119991

M. Panteleev

Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Dmitry Rogachev National Medical Research Centеr of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University

Email: after-ten@yandex.ru

Faculty of Physics, Lomonosov Moscow State University

俄罗斯联邦, Moscow, 109029; Moscow, 119991; Moscow, 119991

参考

  1. Versteeg H.H., Heemskerk J.W.M., Levi M., Reitsma P.H. 2013. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358.
  2. Бутылин А.А., Пантелеев М.А., Атауллаханов Ф.И. 2007. Пространственная динамика свертывания крови. Росс. хим. журн. 51, 45–50.
  3. Podoplelova N.A., Nechipurenko D.Y., Ignatova A.A., Sveshnikova A.N., Panteleev M.A. 2021. Procoagulant platelets: Mechanisms of generation and action. Hamostaseologie. 41, 146–153. doi: 10.1055/a-1401-2706
  4. Свешникова А., Степанян М., Пантелеев М. 2022. Функциональные ответы тромбоцитов и внутриклеточная сигнализация: молекулярные связи. Часть 1: ответы. Системная биология и физиология. 1, 14–23. doi: 10.52455/sbpr.01.202101014
  5. Podoplelova N.A., Sulimov V.B., Ilin I.S., Tashilova A.S., Panteleev M.A., Ledeneva I.V., Shikhaliev K.S. 2020. Blood coagulation in the 21st century: Existing knowledge, current strategies for treatment and perspective. Pediatr. Hematol. Immunopathol. 19, 139–157. doi: 10.24287/1726-1708-2020-19-1-139-157
  6. Protty M.B., Jenkins P.V., Collins P.W., O’Donnell V.B. 2022. The role of procoagulant phospholipids on the surface of circulating blood cells in thrombosis and haemostasis. Open Biol. 12, 210318. doi: 10.1098/rsob.210318
  7. Morrissey J.H. 1996. Plasma factor VIIa: Measurement and potential clinical significance. Haemostasis. 26 Suppl 1, 66–71. doi: 10.1159/000217243
  8. Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2017. The mechanisms and kinetics of initiation of blood coagulation by the extrinsic tenase complex. Biophysics (Oxf). 62, 291–300. doi: 10.1134/S0006350917020105
  9. Butenas S. 2012. Tissue factor structure and function. Scientifica (Cairo). 2012, 964862. doi: 10.6064/2012/964862
  10. Zelaya H., Rothmeier A.S., Ruf W. 2018. Tissue factor at the crossroad of coagulation and cell signaling. J. Thromb. Haemost. 16, 1941–1952. doi: 10.1111/jth.14246
  11. Smith S.B., Gailani D. 2008. Update on the physiology and pathology of factor IX activation by factor XIa. Expert Rev. Hematol. 1, 87–98. doi: 10.1586/17474086.1.1.87
  12. Lu G., Broze G.J.J., Krishnaswamy S. 2004. Formation of factors IXa and Xa by the extrinsic pathway: Differential regulation by tissue factor pathway inhibitor and antithrombin III. J. Biol. Chem. 279, 17241–17249. doi: 10.1074/jbc.M312827200
  13. Ruben E.A., Summers B., Rau M.J., Fitzpatrick J.A.J., Di Cera E. 2022. Cryo-EM structure of the prothrombin-prothrombinase complex. Blood. 139, 3463–3473. doi: 10.1182/blood.2022015807
  14. Brufatto N., Nesheim M.E. 2003. Analysis of the kinetics of prothrombin activation and evidence that two equilibrating forms of prothrombinase are involved in the process. J. Biol. Chem. 278, 6755–6764. doi: 10.1074/jbc.M206413200
  15. Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2006. Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex. FEBS J. 273, 374–387.
  16. Childers K.C., Peters S.C., Lollar P., Spencer H.T., Doering C.B., Spiegel P.C. 2022. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv. 6, 3240–3254. doi: 10.1182/bloodadvances.2021005874
  17. Weisel J.W., Litvinov R.I. 2017. Fibrin formation, structure and properties. Subcell. Biochem. 82, 405–456. doi: 10.1007/978-3-319-49674-0_13
  18. Chelushkin M.A., Panteleev M.A., Sveshnikova A.N. 2017. Activation of the contact pathway of blood coagulation on the circulating microparticles may explain blood plasma coagulation induced by dilution. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 11, 130–143. doi: 10.1134/S1990747817020040
  19. Terent’eva V.A., Sveshnikova A.N., Panteleev M.A. 2017. Biophysical mechanisms of contact activation of blood-plasma clotting. Biophysics (Oxf). 62, 742–753. doi: 10.1134/S0006350917050232
  20. Wu Y. 2015. Contact pathway of coagulation and inflammation. Thromb. J. 13, 17. doi: 10.1186/s12959-015-0048-y
  21. Balandina A.N., Shibeko A.M., Kireev D.A., Novikova A.A., Shmirev I.I., Panteleev M.A., Ataullakhanov F.I. 2011. Positive feedback loops for factor V and factor VII activation supply sensitivity to local surface tissue factor density during blood coagulation. Biophys. J. 101, 1816–1824. doi: 10.1016/j.bpj.2011.08.034
  22. Lakshmanan H.H.S., Estonilo A., Reitsma S.E., Melrose A.R., Subramanian J., Zheng T.J., Maddala J., Tucker E.I., Gailani D., McCarty O.J.T., Jurney P.L., Puy C. 2022. Revised model of the tissue factor pathway of thrombin generation: Role of the feedback activation of FXI. J. Thromb. Haemost. 20, 1350–1363. doi: 10.1111/jth.15716
  23. Shibeko A.M., Lobanova E.S., Panteleev M.A., Ataullakhanov F.I. 2010. Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Syst. Biol. 4, 5. doi: 10.1186/1752-0509-4-5
  24. Amiral J., Seghatchian J. 2018. Revisiting antithrombin in health and disease, congenital deficiencies and genetic variants, and laboratory studies on α and β forms. Transfus. Apher. Sci. 57, 291–297. doi: 10.1016/j.transci.2018.04.010
  25. Dahlbäck B., Villoutreix B.O. 2005. Regulation of blood coagulation by the protein C anticoagulant pathway: Novel insights into structure-function relationships and molecular recognition. Arterioscler. Thromb. Vasc. Biol. 25, 1311–1320. doi: 10.1161/01.ATV.0000168421.13467.82
  26. Adams M. 2012. Tissue factor pathway inhibitor: new insights into an old inhibitor. Semin. Thromb. Hemost. 38, 129–134. doi: 10.1055/s-0032-1301410
  27. Almawi W.Y., Al-Shaikh F.S., Melemedjian O.K., Almawi A.W. 2013. Protein Z, an anticoagulant protein with expanding role in reproductive biology. Reproduction. 146, R73–R80. doi: 10.1530/REP-13-0072
  28. Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem. Rev. 119, 5607–5774. doi: 10.1021/acs.chemrev.8b00538
  29. Vance J.E. 2015. Phospholipid synthesis and transport in mammalian cells. Traffic. 16, 1–18. doi https://doi.org/10.1111/tra.12230
  30. Jiang Z., Shen T., Huynh H., Fang X., Han Z., Ouyang K. 2022. Cardiolipin regulates mitochondrial ultrastructure and function in mammalian cells. Genes (Basel). 13, 1889. doi: 10.3390/genes13101889
  31. Yang Y., Lee M., Fairn G.D. 2018. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 293, 6230–6240. doi: 10.1074/jbc.R117.000582
  32. Fujimoto T., Parmryd I. 2016. Interleaflet coupling, pinning, and leaflet asymmetry-major players in plasma membrane nanodomain formation. Front. cell Dev. Biol. 4, 155. doi: 10.3389/fcell.2016.00155
  33. Gupta A., Korte T., Herrmann A., Wohland T. 2020. Plasma membrane asymmetry of lipid organization: Fluorescence lifetime microscopy and correlation spectroscopy analysis. J. Lipid Res. 61, 252–266. doi: 10.1194/jlr.D119000364
  34. Murate M., Abe M., Kasahara K., Iwabuchi K., Umeda M., Kobayashi T. 2015. Transbilayer distribution of lipids at nano scale. J. Cell Sci. 128, 1627–1638. doi: 10.1242/jcs.163105
  35. Lorent J.H., Levental K.R., Ganesan L., Rivera-Longsworth G., Sezgin E., Doktorova M., Lyman E., Levental I. 2020. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat. Chem. Biol. 16, 644–652. doi: 10.1038/s41589-020-0529-6
  36. Cho W., Stahelin R. V. 2005. Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151. doi: 10.1146/annurev.biophys.33.110502.133337
  37. Yu J., Boehr D.D. 2023. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front. Mol. Biosci. 10, 1306483. doi: 10.3389/fmolb.2023.1306483
  38. Igumenova T.I. 2015. Dynamics and membrane interactions of protein kinase C. Biochemistry. 54, 4953–4968. doi: 10.1021/acs.biochem.5b00565
  39. Velnati S., Centonze S., Girivetto F., Capello D., Biondi R.M., Bertoni A., Cantello R., Ragnoli B., Malerba M., Graziani A., Baldanzi G. 2021. Identification of key phospholipids that bind and activate atypical PKCs. Biomedicines. 9. doi: 10.3390/biomedicines9010045
  40. Scott H.L., Heberle F.A., Katsaras J., Barrera F.N. 2019. Phosphatidylserine asymmetry promotes the membrane insertion of a transmembrane helix. Biophys. J. 116, 1495–1506. doi: 10.1016/j.bpj.2019.03.003
  41. Sakuragi T., Nagata S. 2023. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 24, 576–596. doi: 10.1038/s41580-023-00604-z
  42. Millington-Burgess S.L., Harper M.T. 2022. Maintaining flippase activity in procoagulant platelets is a novel approach to reducing thrombin generation. J. Thromb. Haemost. 20, 989–995. doi: 10.1111/jth.15641
  43. Panteleev M.A., Shibeko A.M., Nechipurenko D.Y., Beresneva E.A., Podoplelova N.A., Sveshnikova A.N. 2022. Haemostasis and thrombosis. Spatial organization of the biochemical processes at microscale. Biochem. (Moscow), Suppl. Ser. A Membr. Cell Biol. 16, 107–114. doi: 10.1134/S1990747822030084
  44. Suttie J.W. 1993. Synthesis of vitamin K-dependent proteins. FASEB J. 7, 445–452. doi: 10.1096/fasebj.7.5.8462786
  45. Wildhagen K.C.A.A., Lutgens E., Loubele S.T.G.B., ten Cate H., Nicolaes G.A.F. 2011. The structure-function relationship of activated protein C. Lessons from natural and engineered mutations. Thromb. Haemost. 106, 1034–1045. doi: 10.1160/TH11-08-0522
  46. Gierula M., Ahnström J. 2020. Anticoagulant protein S – New insights on interactions and functions. J. Thromb. Haemost. 18, 2801–2811. doi https://doi.org/10.1111/jth.15025
  47. Pozzi N., Bystranowska D., Zuo X., Di Cera E. 2016. Structural architecture of prothrombin in solution revealed by single molecule spectroscopy. J. Biol. Chem. 291, 18107–18116. https://doi.org/10.1074/jbc.M116.738310
  48. Stojanovski B.M., Pelc L.A., Di Cera E. 2020. Role of the activation peptide in the mechanism of protein C activation. Sci. Rep. 10, 11079. doi: 10.1038/s41598-020-68078-z
  49. Davie E.W., Kulman J.D. 2006. An overview of the structure and function of thrombin. Semin. Thromb. Hemost. 32 Suppl 1, 3–15. doi: 10.1055/s-2006-939550
  50. Venkateswarlu D., Perera L., Darden T., Pedersen L.G. 2002. Structure and dynamics of zymogen human blood coagulation factor X. Biophys. J. 82, 1190–1206. doi: 10.1016/S0006-3495(02)75476-3
  51. Ohkubo Y.Z., Morrissey J.H., Tajkhorshid E. 2010. Dynamical view of membrane binding and complex formation of human factor VIIa and tissue factor. J. Thromb. Haemost. 8, 1044–1053. doi: 10.1111/j.1538-7836.2010.03826.x
  52. McDonald J.F., Shah A.M., Schwalbe R.A., Kisiel W., Dahlback B., Nelsestuen G.L. 1997. Comparison of naturally occurring vitamin K-dependent proteins: correlation of amino acid sequences and membrane binding properties suggests a membrane contact site. Biochemistry. 36, 5120–5127. doi: 10.1021/bi9626160
  53. Muller M.P., Morrissey J.H., Tajkhorshid E. 2022. Molecular View into preferential binding of the factor VII Gla domain to phosphatidic acid. Biochemistry. 61, 1694–1703. doi: 10.1021/acs.biochem.2c00266
  54. Huang M., Furie B.C., Furie B. 2004. Crystal structure of the calcium-stabilized human factor IX Gla domain bound to a conformation-specific anti-factor IX antibody. J. Biol. Chem. 279, 14338–14346. doi: 10.1074/jbc.M314011200
  55. Brandstetter H., Bauer M., Huber R., Lollar P., Bode W. 1995. X-ray structure of clotting factor IXa: Active site and module structure related to Xase activity and hemophilia B. Proc. Natl. Acad. Sci. USA. 92, 9796–9800. doi: 10.1073/pnas.92.21.9796
  56. Soriano-Garcia M., Padmanabhan K., de Vos A.M., Tulinsky A. 1992. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry. 31, 2554–2566. doi: 10.1021/bi00124a016
  57. Sunnerhagen M., Forsén S., Hoffrén A.M., Drakenberg T., Teleman O., Stenflo J. 1995. Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat. Struct. Biol. 2, 504–509. doi: 10.1038/nsb0695-504
  58. Huang M., Rigby A.C., Morelli X., Grant M.A., Huang G., Furie B., Seaton B., Furie B.C. 2003. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nat. Struct. Biol. 10, 751–756. doi: 10.1038/nsb971
  59. Banner D.W., D’Arcy A., Chene C., Winkler F.K., Guha A., Konigsberg W.H., Nemerson Y., Kirchhofer D. 1996. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 380, 41–46. doi: 10.1038/380041a0
  60. Mizuno H., Fujimoto Z., Atoda H., Morita T. 2001. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc. Natl. Acad. Sci. USA. 98, 7230–7234. doi: 10.1073/pnas.131179698
  61. Shikamoto Y., Morita T., Fujimoto Z., Mizuno H. 2003. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein. J. Biol. Chem. 278, 24090–24094. doi: 10.1074/jbc.M300650200
  62. Vadivel K., Agah S., Messer A.S., Cascio D., Bajaj M.S., Krishnaswamy S., Esmon C.T., Padmanabhan K., Bajaj S.P. 2013. Structural and functional studies of gamma-carboxyglutamic acid domains of factor VIIa and activated protein C: Role of magnesium at physiological calcium. J. Mol. Biol. 425, 1961–1981. doi: 10.1016/j.jmb.2013.02.017
  63. Ohkubo Y.Z., Tajkhorshid E. 2008. Distinct structural and adhesive roles of Ca2+ in membrane binding of blood coagulation factors. Structure. 16, 72–81. doi: 10.1016/j.str.2007.10.021
  64. Muller M.P., Wang Y., Morrissey J.H., Tajkhorshid E. 2017. Lipid specificity of the membrane binding domain of coagulation factor X. J. Thromb. Haemost. 15, 2005–2016. doi: 10.1111/jth.13788
  65. Mohammed B.M., Pelc L.A., Rau M.J., Di Cera E. 2023. Cryo-EM structure of coagulation factor V short. Blood. 141, 3215–3225. doi: 10.1182/blood.2022019486
  66. Lenting P.J., van Mourik J.A., Mertens K. 1998. The life cycle of coagulation factor VIII in view of its structure and function. Blood. 92, 3983–3996. doi: 10.1182/blood.V92.11.3983
  67. Childers K.C., Peters S.C., Spiegel Jr. P.C. 2022. Structural insights into blood coagulation factor VIII: Procoagulant complexes, membrane binding, and antibody inhibition. J. Thromb. Haemost. 20, 1957–1970. doi: 10.1111/jth.15793
  68. Ngo J.C.K., Huang M., Roth D.A., Furie B.C., Furie B. 2008. Crystal structure of human factor VIII: Implications for the formation of the factor IXa-factor VIIIa complex. Structure. 16, 597–606. doi: 10.1016/j.str.2008.03.001
  69. Fuller J.R., Knockenhauer K.E., Leksa N.C., Peters R.T., Batchelor J.D. 2021. Molecular determinants of the factor VIII/von Willebrand factor complex revealed by BIVV001 cryo-electron microscopy. Blood. 137, 2970–2980. doi https://doi.org/10.1182/blood.2020009197
  70. Wakabayashi H., Monaghan M., Fay P.J. 2014. Cofactor activity in factor VIIIa of the blood clotting pathway is stabilized by an interdomain bond between His281 and Ser524 formed in factor VIII. J. Biol. Chem. 289, 14020–14029. doi: 10.1074/jbc.M114.550566
  71. Madsen J.J., Ohkubo Y.Z., Peters G.H., Faber J.H., Tajkhorshid E., Olsen O.H. 2015. Membrane interaction of the factor VIIIa discoidin domains in atomistic detail. Biochemistry. 54, 6123–6131. doi: 10.1021/acs.biochem.5b00417
  72. Lü J., Pipe S.W., Miao H., Jacquemin M., Gilbert G.E. 2011. A membrane-interactive surface on the factor VIII C1 domain cooperates with the C2 domain for cofactor function. Blood. 117, 3181–3189. doi: 10.1182/blood-2010-08-301663
  73. Smith I.W., d’Aquino A.E., Coyle C.W., Fedanov A., Parker E.T., Denning G., Spencer H.T., Lollar P., Doering C.B., Spiegel P.C. 2020. The 3.2 Å structure of a bioengineered variant of blood coagulation factor VIII indicates two conformations of the C2 domain. J. Thromb. Haemost. 18, 57–69. https://doi.org/10.1111/jth.14621
  74. Bardelle C., Furie B., Furie B.C., Gilbert G.E. 1993. Membrane binding kinetics of factor VIII indicate a complex binding process. J. Biol. Chem. 268, 8815–8824.
  75. Mann K.G., Kalafatis M. 2003. Factor V: A combination of Dr Jekyll and Mr Hyde. Blood. 101, 20–30. doi: 10.1182/blood-2002-01-0290
  76. Hayward C.P.M., Fuller N., Zheng S., Adam F., Jeimy S.B., Horsewood I., Quinn-Allen M.A., Kane W.H. 2004. Human platelets contain forms of factor V in disulfide-linkage with multimerin. Thromb. Haemost. 92, 1349–1357. doi: 10.1160/TH03-02-0123
  77. Stoilova-McPhie S., Parmenter C.D.J., Segers K., Villoutreix B.O., Nicolaes G.A.F. 2008. Defining the structure of membrane-bound human blood coagulation factor Va. J. Thromb. Haemost. 6, 76–82. doi: 10.1111/j.1538-7836.2007.02810.x
  78. Ohkubo Y.Z., Madsen J.J. 2021. Uncovering membrane-bound models of coagulation factors by combined experimental and computational approaches. Thromb. Haemost. 121, 1122–1137. doi: 10.1055/s-0040-1722187
  79. Wu S., Lee C.J., Pedersen L.G. 2009. Conformational change path between closed and open forms of C2 domain of coagulation factor V on a two-dimensional free-energy surface. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 79, 41909. doi: 10.1103/PhysRevE.79.041909
  80. Kovalenko T., Panteleev M., Sveshnikova A. 2019. The role of tissue factor in metastasising, neoangiogenesis and hemostasis in cancer. Oncohematology. 14, 70–85. doi: 10.17650/1818-8346-2019-14-2-70-85
  81. Drake T.A., Morrissey J.H., Edgington T.S. 1989. Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis. Am. J. Pathol. 134, 1087–1097.
  82. Bogdanov V.Y., Balasubramanian V., Hathcock J., Vele O., Lieb M., Nemerson Y. 2003. Alternatively spliced human tissue factor: A circulating, soluble, thrombogenic protein. Nat. Med. 9, 458–462. doi: 10.1038/nm841
  83. Bogdanov V.Y., Kirk R.I., Miller C., Hathcock J.J., Vele S., Gazdoiu M., Nemerson Y., Taubman M.B. 2006. Identification and characterization of murine alternatively spliced tissue factor. J. Thromb. Haemost. 4, 158–167. doi: 10.1111/j.1538-7836.2005.01680.x
  84. Sluka S.H.M., Akhmedov A., Vogel J., Unruh D., Bogdanov V.Y., Camici G.G., Lüscher T.F., Ruf W., Tanner F.C. 2014. Alternatively spliced tissue factor is not sufficient for embryonic development. PLoS One. 9, e97793. doi: 10.1371/journal.pone.0097793
  85. Matiash K., Lewis C.S., Bogdanov V.Y. 2021. Functional characteristics and regulated expression of alternatively spliced tissue factor: An update. Cancers (Basel). 13. doi: 10.3390/cancers13184652
  86. Maugeri N., Manfredi A.A. 2015. Tissue factor expressed by neutrophils: Another piece in the vascular inflammation puzzle. Semin. Thromb. Hemost. 41, 728–736. doi: 10.1055/s-0035-1564043
  87. Maugeri N., Brambilla M., Camera M., Carbone A., Tremoli E., Donati M.B., de Gaetano G., Cerletti C. 2006. Human polymorphonuclear leukocytes produce and express functional tissue factor upon stimulation. J. Thromb. Haemost. 4, 1323–1330. doi: 10.1111/j.1538-7836.2006.01968.x
  88. Rafail S., Ritis K., Schaefer K., Kourtzelis I., Speletas M., Doumas M., Giaglis S., Kambas K., Konstantinides S., Kartalis G. 2008. Leptin induces the expression of functional tissue factor in human neutrophils and peripheral blood mononuclear cells through JAK2-dependent mechanisms and TNFalpha involvement. Thromb. Res. 122, 366–375. doi: 10.1016/j.thromres.2007.12.018
  89. Peshkova A.D., Le Minh G., Tutwiler V., Andrianova I.A., Weisel J.W., Litvinov R.I. 2017. Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression. Sci. Rep. 7, 5149. doi: 10.1038/s41598-017-05601-9
  90. Brambilla M., Becchetti A., Rovati G.E., Cosentino N., Conti M., Canzano P., Giesen P.L.A., Loffreda A., Bonomi A., Cattaneo M., De Candia E., Podda G.M., Trabattoni D., Werba P.J., Campodonico J., Pinna C., Marenzi G., Tremoli E., Camera M. 2023. Cell surface platelet tissue factor expression: Regulation by P2Y(12) and link to residual platelet reactivity. Arterioscler. Thromb. Vasc. Biol. 43, 2042–2057. doi: 10.1161/ATVBAHA.123.319099
  91. Camera M., Frigerio M., Toschi V., Brambilla M., Rossi F., Cottell D.C., Maderna P., Parolari A., Bonzi R., De Vincenti O., Tremoli E. 2003. Platelet activation induces cell-surface immunoreactive tissue factor expression, which is modulated differently by antiplatelet drugs. Arterioscler. Thromb. Vasc. Biol. 23, 1690–1696. doi: 10.1161/01.ATV.0000085629.23209.AA
  92. Müller I., Klocke A., Alex M., Kotzsch M., Luther T., Morgenstern E., Zieseniss S., Zahler S., Preissner K., Engelmann B. 2003. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J. 17, 476–478. doi: 10.1096/fj.02-0574fje
  93. Lechner D., Weltermann A. 2008. Circulating tissue factor-exposing microparticles. Thromb. Res. 122 Suppl, S47-54. doi: 10.1016/S0049-3848(08)70019-7
  94. Wang J., Pendurthi U.R., Rao L.V.M. 2017. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv. 1, 849–862. doi: 10.1182/bloodadvances.2016003947
  95. Chen V.M., Hogg P.J. 2013. Encryption and decryption of tissue factor. J. Thromb. Haemost. 11, 277–284. https://doi.org/10.1111/jth.12228
  96. van Dieijen G., Tans G., van Rijn J., Zwaal R.F., Rosing J. 1981. Simple and rapid method to determine the binding of blood clotting factor X to phospholipid vesicles. Biochemistry. 20, 7096–7101.
  97. Harvey S.B., Stone M.D., Martinez M.B., Nelsestuen G.L. 2003. Mutagenesis of the gamma-carboxyglutamic acid domain of human factor VII to generate maximum enhancement of the membrane contact site. J. Biol. Chem. 278, 8363–8369. doi: 10.1074/jbc.M211629200
  98. Cutsforth G.A., Whitaker R.N., Hermans J., Lentz B.R. 1989. A new model to describe extrinsic protein binding to phospholipid membranes of varying composition: Application to human coagulation proteins. Biochemistry. 28, 7453–7461.
  99. Soloveva P.A., Podoplelova N.A., Panteleev M.A. 2024. Binding of coagulation factor IXa to procoagulant platelets revisited: Low affinity and interactions with other factors. Biochem. Biophys. Res. Commun. 720, 150099. doi: 10.1016/j.bbrc.2024.150099
  100. Medfisch S.M., Muehl E.M., Morrissey J.H., Bailey R.C. 2020. Phosphatidylethanolamine-phosphatidylserine binding synergy of seven coagulation factors revealed using nanodisc arrays on silicon photonic sensors. Sci. Rep. 10, 17407. doi: 10.1038/s41598-020-73647-3
  101. Shaw A.W., Pureza V.S., Sligar S.G., Morrissey J.H. 2007. The local phospholipid environment modulates the activation of blood clotting. J. Biol. Chem. 282, 6556–6563.
  102. Wang B., Tieleman D.P. 2024. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys. Chem. 309, 107231. doi: 10.1016/j.bpc.2024.107231
  103. Tavoosi N., Davis-Harrison R.L., Pogorelov T.V, Ohkubo Y.Z., Arcario M.J., Clay M.C., Rienstra C.M., Tajkhorshid E., Morrissey J.H. 2011. Molecular determinants of phospholipid synergy in blood clotting. J. Biol. Chem. 286, 23247–23253. doi: 10.1074/jbc.M111.251769
  104. Gilbert G.E., Arena A.A. 1995. Phosphatidylethanolamine induces high affinity binding sites for factor VIII on membranes containing phosphatidyl-L-serine. J. Biol. Chem. 270, 18500–18505. https://doi.org/10.1074/jbc.270.31.18500
  105. Tavoosi N., Smith S.A., Davis-Harrison R.L., Morrissey J.H. 2013. Factor VII and protein C are phosphatidic acid-binding proteins. Biochemistry. 52, 5545–5552. doi: 10.1021/bi4006368
  106. Abbott A.J., Nelsestuen G.L. 1987. Association of a protein with membrane vesicles at the collisional limit: studies with blood coagulation factor Va light chain also suggest major differences between small and large unilamellar vesicles. Biochemistry. 26, 7994–8003.
  107. Abbott A.J., Nelsestuen G.L. 1988. The collisional limit: An important consideration for membrane-associated enzymes and receptors. FASEB J. 2, 2858–2866.
  108. Lu Y., Nelsestuen G.L. 1996. Dynamic features of prothrombin interaction with phospholipid vesicles of different size and composition: Implications for protein--membrane contact. Biochemistry. 35, 8193–8200. doi: 10.1021/bi960280o
  109. Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2017. Substrate delivery mechanism and the role of membrane curvature in factor X activation by extrinsic tenase. J. Theor. Biol. 435, 125–133. doi: 10.1016/j.jtbi.2017.09.015
  110. Carman C.V, Nikova D.N., Sakurai Y., Shi J., Novakovic V.A., Rasmussen J.T., Lam W.A., Gilbert G.E. 2023. Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells. Blood Adv. 7, 60–72. doi: 10.1182/bloodadvances.2021006870
  111. Обыденный С.И. 2023. Преимущество применения лактадгерина для оценки экспонирования фосфатидилсерина в тромбоцитах. Системная биология и физиология. 2, 11–13. edn: MICQKA
  112. Shi J., Heegaard C.W., Rasmussen J.T., Gilbert G.E. 2004. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta. 1667, 82–90. doi: 10.1016/j.bbamem.2004.09.006
  113. Коваленко Т.А. 2022. Аннексин V: связывающийся с мембраной белок с широчайшим набором функций. Системная биология и физиология. 1, 21–33. edn: KBSOPU
  114. Silversmith R.E., Nelsestuen G.L. 1986. Interaction of complement proteins C5b-6 and C5b-7 with phospholipid vesicles: Effects of phospholipid structural features. Biochemistry. 25, 7717–7725. doi: 10.1021/bi00371a065
  115. Podoplelova N.A., Sveshnikova A.N., Kotova Y.N., Eckly A., Receveur N., Nechipurenko D.Y., Obydennyi S.I., Kireev I.I., Gachet C., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2016. Coagulation factors bound to procoagulant platelets concentrate in cap structures to promote clotting. Blood. 128, 1745–1755. doi: 10.1182/blood-2016-02-696898
  116. Mitchell J.L., Lionikiene A.S., Fraser S.R., Whyte C.S., Booth N.A., Mutch N.J. 2014. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood. 124, 3982–3990. doi: 10.1182/blood-2014-06-583070
  117. Whyte C.S., Swieringa F., Mastenbroek T.G., Lionikiene A.S., Lancé M.D., van der Meijden P.E.J., Heemskerk J.W.M., Mutch N.J. 2015. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood. 125, 2568–2578. doi: 10.1182/blood-2014-09-599480
  118. Abaeva A.A., Canault M., Kotova Y.N., Obydennyy S.I., Yakimenko A.O., Podoplelova N.A., Kolyadko V.N., Chambost H., Mazurov A. V, Ataullakhanov F.I., Nurden A.T., Alessi M.-C., Panteleev M.A. 2013. Procoagulant platelets form an α-granule protein-covered ‘cap’ on their surface that promotes their attachment to aggregates. J. Biol. Chem. 288, 29621–29632. doi: 10.1074/jbc.M113.474163
  119. Dalm D., Galaz-Montoya J.G., Miller J.L., Grushin K., Villalobos A., Koyfman A.Y., Schmid M.F., Stoilova-McPhie S. 2015. Dimeric organization of blood coagulation factor VIII bound to lipid nanotubes. Sci. Rep. 5, 11212. doi: 10.1038/srep11212
  120. Majumder R., Wang J., Lentz B.R. 2003. Effects of water soluble phosphotidylserine on bovine factor Xa: Functional and structural changes plus dimerization. Biophys. J. 84, 1238–1251. doi: 10.1016/S0006-3495(03)74939-X
  121. Koklic T., Majumder R., Weinreb G.E., Lentz B.R. 2009. Factor XA binding to phosphatidylserine-containing membranes produces an inactive membrane-bound dimer. Biophys. J. 97, 2232–2241. doi: 10.1016/j.bpj.2009.07.043
  122. Koklic T., Chattopadhyay R., Majumder R., Lentz B.R. 2015. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces. Biochem. J. 467, 37–46. doi: 10.1042/BJ20141177
  123. Podoplelova N.A., Sveshnikova A.N., Kurasawa J.H., Sarafanov A.G., Chambost H., Vasil’ev S.A., Demina I.A., Ataullakhanov F.I., Alessi M.-C., Panteleev M.A. 2016. Hysteresis-like binding of coagulation factors X/Xa to procoagulant activated platelets and phospholipids results from multistep association and membrane-dependent multimerization. Biochim. Biophys. Acta. 1858, 1216–1227. doi: 10.1016/j.bbamem.2016.02.008
  124. Mann K.G., Nesheim M.E., Church W.R., Haley P., Krishnaswamy S. 1990. Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood. 76, 1–16.
  125. Bom V.J., Bertina R.M. 1990. The contributions of Ca2+, phospholipids and tissue-factor apoprotein to the activation of human blood-coagulation factor X by activated factor VII. Biochem. J. 265, 327–336.
  126. Norledge B.V, Petrovan R.J., Ruf W., Olson A.J. 2003. The tissue factor/factor VIIa/factor Xa complex: A model built by docking and site-directed mutagenesis. Proteins. 53, 640–648. doi: 10.1002/prot.10445
  127. Sen P., Neuenschwander P.F., Pendurthi U.R., Rao L.V.M. 2010. Analysis of factor VIIa binding to relipidated tissue factor by surface plasmon resonance. Blood Coagul. Fibrinolysis. 21, 376–379.
  128. Waters E.K., Morrissey J.H. 2006. Restoring full biological activity to the isolated ectodomain of an integral membrane protein. Biochemistry. 45, 3769–3774. doi: 10.1021/bi052600m
  129. Waxman E., Ross J.B., Laue T.M., Guha A., Thiruvikraman S.V, Lin T.C., Konigsberg W.H., Nemerson Y. 1992. Tissue factor and its extracellular soluble domain: The relationship between intermolecular association with factor VIIa and enzymatic activity of the complex. Biochemistry. 31, 3998–4003.
  130. Ke K., Yuan J., Morrissey J.H. 2014. Tissue factor residues that putatively interact with membrane phospholipids. PLoS One. 9, e88675. doi: 10.1371/journal.pone.0088675
  131. Stone M.D., Harvey S.B., Martinez M.B., Bach R.R., Nelsestuen G.L. 2005. Large enhancement of functional activity of active site-inhibited factor VIIa due to protein dimerization: Insights into mechanism of assembly/disassembly from tissue factor. Biochemistry. 44, 6321–6330. doi: 10.1021/bi050007z
  132. Neuenschwander P.F., Bianco-Fisher E., Rezaie A.R., Morrissey J.H. 1995. Phosphatidylethanolamine augments factor VIIa-tissue factor activity: Enhancement of sensitivity to phosphatidylserine. Biochemistry. 34, 13988–13993. doi: 10.1021/bi00043a004
  133. Mallik S., Prasad R., Das K., Sen P. 2021. Alcohol functionality in the fatty acid backbone of sphingomyelin guides the inhibition of blood coagulation. RSC Adv. 11, 3390–3398. doi: 10.1039/d0ra09218e
  134. Hathcock J.J., Rusinova E., Andree H., Nemerson Y. 2006. Phospholipid surfaces regulate the delivery of substrate to tissue factor:VIIa and the removal of product. Blood Cells. Mol. Dis. 36, 194–198.
  135. Hathcock J.J., Rusinova E., Gentry R.D., Andree H., Nemerson Y. 2005. Phospholipid regulates the activation of factor X by tissue factor/factor VIIa (TF/VIIa) via substrate and product interactions. Biochemistry. 44, 8187–8197.
  136. Krishnaswamy S., Field K.A., Edgington T.S., Morrissey J.H., Mann K.G. 1992. Role of the membrane surface in the activation of human coagulation factor X. J. Biol. Chem. 267, 26110–26120.
  137. Forman S.D., Nemerson Y. 1986. Membrane-dependent coagulation reaction is independent of the concentration of phospholipid-bound substrate: Fluid phase factor X regulates the extrinsic system. Proc. Natl. Acad. Sci. USA. 83, 4675–4679.
  138. Kovalenko T.A., Panteleev M.A., Sveshnikova A.N. 2023. Different modeling approaches in the simulation of extrinsic coagulation factor X activation: Limitations and areas of applicability. Int. J. Numer. Method. Biomed. Eng. 39, e3689. doi: 10.1002/cnm.3689
  139. Hopfner K.P., Lang A., Karcher A., Sichler K., Kopetzki E., Brandstetter H., Huber R., Bode W., Engh R.A. 1999. Coagulation factor IXa: The relaxed conformation of Tyr99 blocks substrate binding. Structure. 7, 989–996. doi: 10.1016/s0969-2126(99)80125-7
  140. Kolkman J.A., Mertens K. 2000. Insertion loop 256-268 in coagulation factor IX restricts enzymatic activity in the absence but not in the presence of factor VIII. Biochemistry. 39, 7398–7405. doi: 10.1021/bi992735q
  141. Zögg T., Brandstetter H. 2009. Structural basis of the cofactor- and substrate-assisted activation of human coagulation factor IXa. Structure. 17, 1669–1678. doi: 10.1016/j.str.2009.10.011
  142. Venkateswarlu D. 2014. Structural insights into the interaction of blood coagulation co-factor VIIIa with factor IXa: A computational protein-protein docking and molecular dynamics refinement study. Biochem. Biophys. Res. Commun. 452, 408–414. doi: 10.1016/j.bbrc.2014.08.078
  143. Sveshnikova A.N., Shibeko A.M., Kovalenko T.A., Panteleev M.A. 2024. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J. Theor. Biol. 582, 111757. doi: 10.1016/j.jtbi.2024.111757
  144. Pomowski A., Ustok F.I., Huntington J.A. 2014. Homology model of human prothrombinase based on the crystal structure of Pseutarin C. Biol. Chem. 395, 1233–1241. doi: 10.1515/hsz-2014-0165
  145. Krishnaswamy S. 2013. The transition of prothrombin to thrombin. J. Thromb. Haemost. 11 Suppl 1, 265–276. doi: 10.1111/jth.12217
  146. Chinnaraj M., Chen Z., Pelc L.A., Grese Z., Bystranowska D., Di Cera E., Pozzi N. 2018. Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Sci. Rep. 8, 2945. doi: 10.1038/s41598-018-21304-1
  147. Haynes L.M., Bouchard B.A., Tracy P.B., Mann K.G. 2012. Prothrombin activation by platelet-associated prothrombinase proceeds through the prethrombin-2 pathway via a concerted mechanism. J. Biol. Chem. 287, 38647–38655. doi: 10.1074/jbc.M112.407791
  148. Whelihan M.F., Zachary V., Orfeo T., Mann K.G. 2012. Prothrombin activation in blood coagulation: The erythrocyte contribution to thrombin generation. Blood. 120, 3837–3845. doi: 10.1182/blood-2012-05-427856
  149. Nesheim M.E., Tracy R.P., Mann K.G. 1984. “Clotspeed”, a mathematical simulation of the functional properties of prothrombinase. J. Biol. Chem. 259, 1447–1453.
  150. Stone M.D., Nelsestuen G.L. 2005. Efficacy of soluble phospholipids in the prothrombinase reaction. Biochemistry. 44, 4037–4041. doi: 10.1021/bi047655n
  151. Smirnov M.D., Ford D.A., Esmon C.T., Esmon N.L. 1999. The effect of membrane composition on the hemostatic balance. Biochemistry. 38, 3591–3598. doi: 10.1021/bi982538b
  152. Krishnaswamy S., Jones K.C., Mann K.G. 1988. Prothrombinase complex assembly. Kinetic mechanism of enzyme assembly on phospholipid vesicles. J. Biol. Chem. 263, 3823–3834.
  153. Giesen P.L., Willems G.M., Hermens W.T. 1991. Production of thrombin by the prothrombinase complex is regulated by membrane-mediated transport of prothrombin. J. Biol. Chem. 266, 1379–1382.
  154. Smeets E.F., Comfurius P., Bevers E.M., Zwaal R.F.A. 1996. Contribution of different phospholipid classes to the prothrombin converting capacity of sonicated lipid vesicles. Thromb. Res. 81, 419–426. doi https://doi.org/10.1016/0049-3848(96)00014-X
  155. Majumder R., Liang X., Quinn-Allen M.A., Kane W.H., Lentz B.R. 2011. Modulation of prothrombinase assembly and activity by phosphatidylethanolamine. J. Biol. Chem. 286, 35535–35542. doi: 10.1074/jbc.M111.260141
  156. Deguchi H., Yegneswaran S., Griffin J.H. 2004. Sphingolipids as bioactive regulators of thrombin generation. J. Biol. Chem. 279, 12036–12042. doi: 10.1074/jbc.M302531200
  157. Shi J., Gilbert G.E. 2003. Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood. 101, 2628–2636. doi: 10.1182/blood-2002-07-1951
  158. Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. 2007. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97, 425–434.
  159. Haynes L.M., Dubief Y.C., Mann K.G. 2012. Membrane binding events in the initiation and propagation phases of tissue factor-initiated zymogen activation under flow. J. Biol. Chem. 287, 5225–5234. doi: 10.1074/jbc.M111.302075
  160. Gemmell C.H., Turitto V.T., Nemerson Y. 1988. Flow as a regulator of the activation of factor X by tissue factor. Blood. 72, 1404–1406.
  161. Agbani E.O., Poole A.W. 2017. Procoagulant platelets: Generation, function, and therapeutic targeting in thrombosis. Blood. 130, 2171–2179. doi: 10.1182/blood-2017-05-787259
  162. Heemskerk J.W.M., Mattheij N.J.A., Cosemans J.M.E.M. 2013. Platelet-based coagulation: Different populations, different functions. J. Thromb. Haemost. 11, 2–16. doi: 10.1111/jth.12045
  163. Panteleev M.A., Ananyeva N.M., Greco N.J., Ataullakhanov F.I., Saenko E.L. 2005. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J. Thromb. Haemost. 3, 2545–2553. doi: 10.1111/j.1538-7836.2005.01616.x
  164. Yakimenko A.O., Verholomova F.Y., Kotova Y.N., Ataullakhanov F.I., Panteleev M.A. 2012. Identification of different proaggregatory abilities of activated platelet subpopulations. Biophys. J. 102, 2261–2269. doi: 10.1016/j.bpj.2012.04.004
  165. Nechipurenko D.Y., Receveur N., Yakimenko A.O., Shepelyuk T.O., Yakusheva A.A., Kerimov R.R., Obydennyy S.I., Eckly A., Léon C., Gachet C., Grishchuk E.L., Ataullakhanov F.I., Mangin P.H., Panteleev M.A. 2019. Clot contraction drives the translocation of procoagulant platelets to thrombus surface. Arterioscler. Thromb. Vasc. Biol. 39, 37–47. doi: 10.1161/ATVBAHA.118.311390
  166. Berckmans R.J., Nieuwland R., Böing A.N., Ro- mijn F.P., Hack C.E., Sturk A. 2001. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb. Haemost. 85, 639–646.
  167. Artemenko E.O., Obydennyi S.I., Troyanova K.S., Novichkova G.A., Nechipurenko D.Y., Panteleev M.A. 2024. Adhesive properties of plasma-circulating and platelet-derived microvesicles from healthy individuals. Thromb. Res. 233, 119–126. doi: 10.1016/j.thromres.2023.11.018
  168. Chabin I.A., Podoplelova N.A., Panteleev M.A. 2022. Red blood cells contribution in blood coagulation. Pediatr. Hematol. Immunopathol. 21, 136–141. doi: 10.24287/1726-1708-2022-21-3-136-141
  169. Tutwiler V., Mukhitov A.R., Peshkova A.D., Le Minh G., Khismatullin R.R., Vicksman J., Nagaswami C., Litvinov R.I., Weisel J.W. 2018. Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes. Sci. Rep. 8, 17907. doi: 10.1038/s41598-018-35849-8
  170. Zhao L., Bi Y., Kou J., Shi J., Piao D. 2016. Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients. J. Exp. Clin. Cancer Res. 35, 54. doi: 10.1186/s13046-016-0328-9
  171. Yang C., Ma R., Jiang T., Cao M., Zhao L., Bi Y., Kou J., Shi J., Zou X. 2016. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients. Tumour Biol. 37, 7881–7891. doi: 10.1007/s13277-015-4667-5
  172. Bekendam R.H., Ravid K. 2023. Mechanisms of platelet activation in cancer-associated thrombosis: A focus on myeloproliferative neoplasms. Front. Cell Dev. Biol. 11, 1207395. doi: 10.3389/fcell.2023.1207395
  173. Zhang Y., Meng H., Ma R., He Z., Wu X., Cao M., Yao Z., Zhao L., Li T., Deng R., Dong Z., Tian Y., Bi Y., Kou J., Thatte H.S., Zhou J., Shi J. 2016. Circulating microparticles, blood cells, and endothelium induce procoagulant activity in sepsis through phosphatidylserine exposure. Shock. 45, 299–307. doi: 10.1097/SHK.0000000000000509
  174. Nieuwland R., Berckmans R.J., McGregor S., Böing A.N., Romijn F.P., Westendorp R.G., Hack C.E., Sturk A. 2000. Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood. 95, 930–935.
  175. Nomura S., Shimizu M. 2015. Clinical significance of procoagulant microparticles. J. Intensive Care. 3, 2. doi: 10.1186/s40560-014-0066-z
  176. Ettelaie C., Collier M.E., Featherby S., Benelhaj N.E., Greenman J., Maraveyas A. 2016. Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: Correlation with tissue factor and PAR2 expression. Thromb. J. 14, 2. doi: 10.1186/s12959-016-0075-3
  177. Berny-Lang M.A., Aslan J.E., Tormoen G.W., Patel I.A., Bock P.E., Gruber A., McCarty O.J.T. 2011. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells. Phys. Biol. 8, 15014. doi: 10.1088/1478-3975/8/1/015014
  178. Lin L., Huai Q., Huang M., Furie B., Furie B.C. 2007. Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J. Mol. Biol. 371, 717–724. doi: 10.1016/j.jmb.2007.05.054
  179. Sveshnikova A.N., Balatskiy A.V, Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A. V, Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14, 2045–2057. doi: 10.1111/jth.13442
  180. Avdonin P.P., Blinova M.S., Generalova G.A., Emirova K.M., Avdonin P.V. 2024. The role of the complement system in the pathogenesis of infectious forms of hemolytic uremic syndrome. Biomolecules. 14. doi: 10.3390/biom14010039
  181. Jiang Y., Doolittle R.F. 2003. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc. Natl. Acad. Sci. USA. 100, 7527–7532. doi: 10.1073/pnas.0932632100
  182. Doolittle R.F. 2009. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harb. Symp. Quant. Biol. 74, 35–40. doi: 10.1101/sqb.2009.74.001
  183. Hirsh J., Fuster V., Ansell J., Halperin J.L. 2003. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J. Am. Coll. Cardiol. 41, 1633–1652. doi: 10.1016/s0735-1097(03)00416-9
  184. Mann K.G., Whelihan M.F., Butenas S., Orfeo T. 2007. Citrate anticoagulation and the dynamics of thrombin generation. J. Thromb. Haemost. 5, 2055–2061. doi: 10.1111/j.1538-7836.2007.02710.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Simplified scheme of blood coagulation reactions. Roman numerals denote coagulation factors (V, VII, VIII, IX, X, XI, XII), the suffix "a" is used to denote the active form. II – prothrombin, Fb – fibrinogen, Fg – fibrin, TFPI – tissue factor pathway inhibitor, TF – tissue factor, S, Z – proteins S and Z, PCa – activated protein C. Double black line – schematic representation of membrane. Black arrows – catalytic activation, black dotted arrows – formation of complexes, gray gradient arrows – action of enzymatic complex or enzyme on substrate, ▬| – inhibition. To avoid overload, inhibition of coagulation factors by antithrombin and slow reactions of factor activation by enzymes without cofactors are not shown in the scheme.

下载 (524KB)
3. Fig. 2. The structure of proteins of the blood coagulation system. a – Scheme of the domain composition of individual proteins. Gla – Gla domain; EGF1-4 – EGF1-4 domain; Serine Protease – protease domain; TSR – thrombin-sensitive region; LG – laminin G-like domains; KR – kringle domains; A1-3 – A1-3 domain; C1,2 – C1,2 domain; B – B domain; I – intracellular domain; Tr – transmembrane domain; N, C – N- and C-terminal extracellular domains. b – Structure of factor VIIa. Visualized in VMD, PDB 1dan [59]. Colors according to the secondary structure of the protein. Light blue – turn; yellow – β-sheet; purple – α-helix; blue – 310-helix; white – irregular structure; red – Ca2+ ions. c – Gla domains of human factor VIIa (colors according to secondary structure as in panel b, PDB 1dan) and bovine prothrombin (yellow, PDB 1nl2 [58]). The structures are aligned in VMD, RMSD (root mean square deviation between corresponding main chain atoms) = 3.31 Å. In factor VIIa, γ-carboxyglutamate residues bound to Ca2+ ions are visualized.

下载 (938KB)
4. Fig. 3. Concentration of coagulation factors in the platelet cap. DIC image obtained by differential interference contrast; in the center (Factor X) is the epifluorescence image in the factor X channel, on the right (Overlay) is the superposition of the first two images. The yellow arrow marks the cap [115].

下载 (409KB)
5. Fig. 4. Structures of enzymatic complexes. a – Extrinsic tenase. Green – factor VIIa; blue – TF. Visualized in VMD, PDB 1dan [59]. b – Prothrombinase. Gray – factor Va; red – factor Xa. Visualized in VMD, PDB 7tpq [13].

下载 (775KB)

版权所有 © The Russian Academy of Sciences, 2024