Lattice Boltzmann Equations Based on the Shakhov Model and Applications to Modeling Rarefied Poiseuille Flow at High Subsonic Velocity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

This work investigates the applicability of lattice Boltzmann equations based on the Shakhov kinetic equation to modeling rarefied flows under significant external force. As a benchmark problem, a two-dimensional plane Poiseuille flow at different Knudsen numbers and different amplitudes of external force is considered, resulting in characteristic flow velocities corresponding to Mach numbers in the range of 0.4 to 0.6. It is shown that two-dimensional lattice models with 37 velocities can describe nonequilibrium effects beyond the applicability of the continuum medium approximation, in the slip flow regime. Profiles of longitudinal and transverse heat fluxes, as well as velocity and temperature profiles of the rarefied gas, are examined.

Sobre autores

O. Ilyin

Federal Research Center "Computer Science and Control" of RAS

Email: oilyin@gmail.com
Moscow, Russia

Bibliografia

  1. McNamara G., Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata // Phys. Rev. Lett. 1988. V. 61. P. 2332–2335.
  2. Kruger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E. The Lattice Boltzmann Method. Principles and Practice. Springer, 2017.
  3. Bhatnagar P., Gross E., Krook M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems // Phys. Rev. 1954. Vol. 94. P. 511–525.
  4. Holway L. New Statistical Models for Kinetic Theory: Methods of Construction // Phys. Fluids. 1966. Vol. 9. P. 1658–1673.
  5. Andries P., Le Tallec P., Perlat J., Perthame B. Entropy condition for the ES BGK model of Boltzmann equation for mono and polyatomic gases // Eur. J. Mech. B Fluids. 2000. Vol. 19. P. 813—830.
  6. Brull S., Schneider J. A new approach for the ellipsoidal statistical model // Contin. Mech. Thermodyn. 2008. Vol. 20. P. 63–74.
  7. Shakhov E. Generalization of the Krook kinetic relaxation equation // Fluid Dyn. 1968. Vol. 3. P. 95–96.
  8. Shakhov E. Approximate kinetic equations in rarefied gas theory // Fluid Dyn. 1968. Vol. 3. P. 112–115.
  9. Liu G.Amethod for constructing a model form for the Boltzmann equation // Phys. Fluids A. 1990.Vol. 2.P. 277–280.
  10. Chen S., Xu K., Cai Q. A Comparison and Unification of Ellipsoidal Statistical and Shakhov BGK Models // Adv. Appl. Math. Mech. 2015. Vol. 7. P. 245–266.
  11. Meng J., Zhang Y., Hadjiconstantinou N., Radtke G., Shan X. Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows // J. Fluid Mech. 2013. Vol. 718. P. 347–370.
  12. Ambrus V., Sofonea V. Implementation of diffuse-reflection boundary conditions using lattice Boltzmann models based on half-space Gauss-Laguerre quadratures // Phys. Rev E. 2014. Vol. 89. 041301(R).
  13. Ambrus V., Sofonea V. Application of mixed quadrature lattice Boltzmann models for the simulation of Poiseuille flow at non-negligible values of the Knudsen number // J. Comput. Sci. 2016. Vol. 17. P. 403.
  14. Ambrus V., Sofonea V. Lattice Boltzmann models based on half-range Gauss–Hermite quadratures // J. Comput. Phys. 2016. Vol 316. P. 760.
  15. Ambrus V., Sofonea V. Half-range lattice Boltzmann models for the simulation of Couette flow using the Shakhov collision term // Phys. Rev. E. 2018. Vol. 98. 063311.
  16. Ilyin O. Lattice Boltzmann Shakhov kinetic models for variable Prandtl number on Cartesian lattices // Phys. Rev. E. 2024. Vol. 110. 065304.
  17. Shan X., Yuan X. Chen H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation // J. Fluid Mech. 2006. Vol. 550. P. 413—441.
  18. Dellar P. Bulk and shear viscosities in lattice Boltzmann equations // Phys. Rev. E 2001. Vol. 64. 031203.
  19. Li Z., Shan X. Body-force modelling in thermal compressible flows with the lattice Boltzmann method // J. Fluid Mech. 2023. Vol. 964. A14.
  20. Titarev V. Conservative numerical methods for model kinetic equations // Comput. Fluids 2007. Vol. 36. P. 1446–1459.
  21. Titarev V. Efficient Deterministic Modelling of Three-Dimensional Rarefied Gas Flows // Commun. Comput. Phys. 2013. Vol. 12. P. 162–192.
  22. Ilyin O. Gaussian Lattice Boltzmann method and its applications to rarefied flows // Phys. Fluids. 2020. Vol. 32. 012007.
  23. Ilyin O. Nonclassical Heat Transfer in a Microchannel and a Problem for Lattice Boltzmann Equations // Comp. Math. Math. Phys. 2023. Vol. 63. P. 2297–2305.
  24. Ilyin O. On accuracy of the lattice Boltzmann equations of low and high orders as applied to slow isothermal microflows // Comp. Math. Math. Phys. 2024. Vol. 64. P. 2131–2140.
  25. Ansumali S., Karlin I. Kinetic boundary conditions in the lattice Boltzmann method // Phys. Rev. E. 2002. Vol. 66. 026311.
  26. Meng J., Zhang Y. Diffuse reflection boundary condition for high-order lattice Boltzmann models with streamingcollision mechanism // J. Comput. Phys. 2014. Vol. 258. P. 601–612.
  27. Cercignani C. The Boltzmann Equation and Its Applications. New York: Springer-Verlag, 1988.
  28. Taheri P., Torrilhon M., Struchtrup H. Couette and Poiseuille microflows: Analytical solutions for regularized 13-moment equations // Phys. Fluids. 2009. Vol. 21. 017102.
  29. Gu X.-J., Emerson D. A high-order moment approach for capturing non-equilibrium phenomena in the transition regime // J. Fluid Mech. 2009. Vol. 636. P. 177—216.
  30. Zheng Y., Garcia A., Alder B. Comparison of kinetic theory and hydrodynamics for Poiseuille flow // J. Stat. Phys. 2002. Vol. 109. P. 495–505.
  31. Aoki K., Takata S., Nakanishi T. Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force // Phys. Rev. E. 2002. Vol.65. 026315.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025