Решеточные уравнения Больцмана на основе модели Шахова и приложения к моделированию разреженного течения Пуазейля с большой дозвуковой скоростью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В работе исследуется задача применимости решеточных уравнений Больцмана на основе кинетического уравнения Шахова к моделированию разреженных течений под действием значительной внешней силы. В качестве эталонной задачи рассмотрено двумерное плоское течение Пуазейля при разных числах Кнудсена и разных амплитудах внешней силы, приводящих к характерным скоростям течения, соответствующим числу Маха в интервале от 0.4 до 0.6. Показано, что двумерные решеточные модели с 37 скоростями могут описывать неравновесные эффекты за пределами применимости приближения сплошной среды, в режиме скольжения. Рассмотрены профили продольного и поперечного тепловых потоков, а также профили скорости и температуры разреженного газа. Библ. 31. Фиг. 4.

Об авторах

О. В Ильин

ФИЦ ИУ РАН

Email: oilyin@gmail.com
Москва, Россия

Список литературы

  1. McNamara G., Zanetti G. Use of the Boltzmann equation to simulate lattice gas automata // Phys. Rev. Lett. 1988. V. 61. P. 2332–2335.
  2. Kruger T., Kusumaatmaja H., Kuzmin A., Shardt O., Silva G., Viggen E. The Lattice Boltzmann Method. Principles and Practice. Springer, 2017.
  3. Bhatnagar P., Gross E., Krook M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems // Phys. Rev. 1954. Vol. 94. P. 511–525.
  4. Holway L. New Statistical Models for Kinetic Theory: Methods of Construction // Phys. Fluids. 1966. Vol. 9. P. 1658–1673.
  5. Andries P., Le Tallec P., Perlat J., Perthame B. Entropy condition for the ES BGK model of Boltzmann equation for mono and polyatomic gases // Eur. J. Mech. B Fluids. 2000. Vol. 19. P. 813—830.
  6. Brull S., Schneider J. A new approach for the ellipsoidal statistical model // Contin. Mech. Thermodyn. 2008. Vol. 20. P. 63–74.
  7. Shakhov E. Generalization of the Krook kinetic relaxation equation // Fluid Dyn. 1968. Vol. 3. P. 95–96.
  8. Shakhov E. Approximate kinetic equations in rarefied gas theory // Fluid Dyn. 1968. Vol. 3. P. 112–115.
  9. Liu G.Amethod for constructing a model form for the Boltzmann equation // Phys. Fluids A. 1990.Vol. 2.P. 277–280.
  10. Chen S., Xu K., Cai Q. A Comparison and Unification of Ellipsoidal Statistical and Shakhov BGK Models // Adv. Appl. Math. Mech. 2015. Vol. 7. P. 245–266.
  11. Meng J., Zhang Y., Hadjiconstantinou N., Radtke G., Shan X. Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows // J. Fluid Mech. 2013. Vol. 718. P. 347–370.
  12. Ambrus V., Sofonea V. Implementation of diffuse-reflection boundary conditions using lattice Boltzmann models based on half-space Gauss-Laguerre quadratures // Phys. Rev E. 2014. Vol. 89. 041301(R).
  13. Ambrus V., Sofonea V. Application of mixed quadrature lattice Boltzmann models for the simulation of Poiseuille flow at non-negligible values of the Knudsen number // J. Comput. Sci. 2016. Vol. 17. P. 403.
  14. Ambrus V., Sofonea V. Lattice Boltzmann models based on half-range Gauss–Hermite quadratures // J. Comput. Phys. 2016. Vol 316. P. 760.
  15. Ambrus V., Sofonea V. Half-range lattice Boltzmann models for the simulation of Couette flow using the Shakhov collision term // Phys. Rev. E. 2018. Vol. 98. 063311.
  16. Ilyin O. Lattice Boltzmann Shakhov kinetic models for variable Prandtl number on Cartesian lattices // Phys. Rev. E. 2024. Vol. 110. 065304.
  17. Shan X., Yuan X. Chen H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation // J. Fluid Mech. 2006. Vol. 550. P. 413—441.
  18. Dellar P. Bulk and shear viscosities in lattice Boltzmann equations // Phys. Rev. E 2001. Vol. 64. 031203.
  19. Li Z., Shan X. Body-force modelling in thermal compressible flows with the lattice Boltzmann method // J. Fluid Mech. 2023. Vol. 964. A14.
  20. Titarev V. Conservative numerical methods for model kinetic equations // Comput. Fluids 2007. Vol. 36. P. 1446–1459.
  21. Titarev V. Efficient Deterministic Modelling of Three-Dimensional Rarefied Gas Flows // Commun. Comput. Phys. 2013. Vol. 12. P. 162–192.
  22. Ilyin O. Gaussian Lattice Boltzmann method and its applications to rarefied flows // Phys. Fluids. 2020. Vol. 32. 012007.
  23. Ilyin O. Nonclassical Heat Transfer in a Microchannel and a Problem for Lattice Boltzmann Equations // Comp. Math. Math. Phys. 2023. Vol. 63. P. 2297–2305.
  24. Ilyin O. On accuracy of the lattice Boltzmann equations of low and high orders as applied to slow isothermal microflows // Comp. Math. Math. Phys. 2024. Vol. 64. P. 2131–2140.
  25. Ansumali S., Karlin I. Kinetic boundary conditions in the lattice Boltzmann method // Phys. Rev. E. 2002. Vol. 66. 026311.
  26. Meng J., Zhang Y. Diffuse reflection boundary condition for high-order lattice Boltzmann models with streamingcollision mechanism // J. Comput. Phys. 2014. Vol. 258. P. 601–612.
  27. Cercignani C. The Boltzmann Equation and Its Applications. New York: Springer-Verlag, 1988.
  28. Taheri P., Torrilhon M., Struchtrup H. Couette and Poiseuille microflows: Analytical solutions for regularized 13-moment equations // Phys. Fluids. 2009. Vol. 21. 017102.
  29. Gu X.-J., Emerson D. A high-order moment approach for capturing non-equilibrium phenomena in the transition regime // J. Fluid Mech. 2009. Vol. 636. P. 177—216.
  30. Zheng Y., Garcia A., Alder B. Comparison of kinetic theory and hydrodynamics for Poiseuille flow // J. Stat. Phys. 2002. Vol. 109. P. 495–505.
  31. Aoki K., Takata S., Nakanishi T. Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force // Phys. Rev. E. 2002. Vol.65. 026315.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025