SOLUTION SYNTHESIS FROM VARIOUS PRECURSORS OF MAGNESIUM PHOSPHATE-BASED POWDER MATERIALS FOR STEREOLITHOGRAPHIC 3D PRINTING

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Powders Mg3(PO4)2·22H2O, MgHPO4·3H2O, NaMg4(PO4)3·xH2O, NH4MgPO4·6H2O from different salts, magnesium oxide and phosphoric acid were synthesized by precipitation from solutions at 25°C. Depending on the precursors, products of different compositions were obtained at a specified pH = 9, they were characterized using X-ray diffraction, electron microscopy, and static light scattering. The selection of the sintering mode for the printed sample was carried out using TG and DTA to determine the temperature intervals at which the organic component of the printing suspension was removed. The fundamental possibility of obtaining porous ceramics by 3D printing from magnesium orthophosphate obtained by the solution method with an average size of agglomerates of 28.3 μm and Kelvin structure has been shown. This opens up prospects for the use of magnesium phosphate-based ceramics, in particular magnesium orthophosphate, in regenerative medicine.

作者简介

A. Pupanova

Moscow State University

Email: aleksandra.pupanova@chemistry.msu.ru
Faculty of Chemistry Moscow, Russia

E. Klimashina

Moscow State University; Moscow State University

Email: aleksandra.pupanova@chemistry.msu.ru

Faculty of Chemistry, Faculty of Materials Sciences

Moscow, Russia; Moscow, Russia

A. Murashko

Moscow State University; Moscow State University

Email: aleksandra.pupanova@chemistry.msu.ru

Faculty of Chemistry, Faculty of Materials Sciences

Moscow, Russia; Moscow, Russia

Ya. Filippov

Moscow State University; Institute of Mechanics, Moscow State University

Email: aleksandra.pupanova@chemistry.msu.ru

Faculty of Chemistry

Moscow, Russia; Moscow, Russia

P. Evdokimov

Moscow State University; Moscow State University

Email: aleksandra.pupanova@chemistry.msu.ru

Faculty of Chemistry, Faculty of Materials Sciences

Moscow, Russia; Moscow, Russia

V. Putlyaev

Moscow State University; Moscow State University

编辑信件的主要联系方式.
Email: aleksandra.pupanova@chemistry.msu.ru

Faculty of Chemistry, Faculty of Materials Sciences

Moscow, Russia; Moscow, Russia

参考

  1. Langer R. // Mol. Therapy. 2000. V. 1. № 1. P. 12. https://doi.org/10.1006/mthe.1999.0003
  2. Laurencin C.T., Ambrosio A.M.A., Borden M.D. et al. // Annu. Rev. Biomed. Eng. 1999. V. 1. P. 19. https://doi.org/10.1146/annurev.bioeng.1.1.19
  3. Eshraghi S., Das S. // Acta Biomaterialia. 2010. V. 6. P. 2467. https://doi.org/10.1016/j.actbio.2010.02.002
  4. Kolk A., Handschel J., Drescher W. et al. // J. Cranio-Maxillo-Facial Surgery. 2012. V. 40. P. 706. https://doi.org/10.1016/j.jcms.2012.01.002
  5. Vorndam E., Moseke C., Gbureck U. // Mater. Res. Soc. 2015. V. 40. P. 127. https://doi.org/10.1557/MRS.2015.326
  6. Ievlev V.M., Putlyaev V.I., Safronova T.V. et al. // Inorg. Mater. 2015. V. 51. № 13. P. 1297. https://doi.org/10.1134/S0020168515130038
  7. Ларионов Д.С., Кузина М.А., Евдокимов П.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 309. https://doi.org/10.31857/S0044457X20030071
  8. Juhasz J.A., Best S.M. // J. Mater. Sci. 2012. V. 47. P. 610. https://doi.org/10.1007/s10853-011-6063-x
  9. Chernousova S., Epple M. // Adv. Biomater. Devices Medicine. 2014. V. 1. P. 74.
  10. Vallet-Regl M., González-Calbet J.M. // Prog. Solid State Chem. 2004. V. 32. № 1–2. P. 1. https://doi.org/10.1016/j.progsolidstchem.2004.07.001
  11. Uskokovic V., Uskokovic D.P. // J. Biomed. Mater. Res., Part B: Appl. Biomater. 2011. V. 96. № 1. P. 152. https://doi.org/10.1002/jbm.b.31746
  12. Neumann M., Epple M. // Eur. J. Trauma. 2006. V. 32. № 2. P. 125. https://doi.org/10.1007/s00068-006-6044-y
  13. Tadic D., Epple M. // Biomaterials. 2004. V. 25. № 6. P. 987. https://doi.org/10.1016/S0142-9612(03)00621-5
  14. Sader M.S., Legeros R.Z., Soares G.A. // J. Mater. Sci. — Mater. Med. 2009. V. 20. № 2. P. 521. https://doi.org/10.1007/s10856-008-3610-3
  15. Baker S.B., Worthley L.I. // Critical Care Resuscitation. 2002. V. 4. № 4. P. 301. https://doi.org/10.1016/S1441-2772(23)01193-6
  16. Sikder P., Grice C.R., Bhaduri S.B. // Surf. Coat. Technol. 2019. V. 374. P. 276. https://doi.org/10.1016/j.surfcoat.2019.06.007
  17. Zyman Z., Tkachenko M., Epple M. et al. // Mater. wiss. Werkst. tech. 2006. V. 37. № 6. P. 474. https://doi.org/10.1002/mawe.200600022
  18. Preobrazhenskiy I.I., Klimashina E.S., Filippov Y.Y. et al. // Inorg. Mater. 2024. V. 60. № 12. P. 1391. https://doi.org/10.1134/S0020168524701620
  19. Preobrazhenskiy I.I., Deyneko D.V., Murashko A.M. et al. // Mendeleev Commun. 2025. V. 35. № 5. P. 614. https://doi.org/10.71267/mencom.7716
  20. Taylor A.W., Frazier A.W., Gurney E.L. // Trans. Faraday Soc. 1963. V. 59. P. 1580. https://doi.org/10.1039/TF9635901580
  21. Brown P.W., Gulick J., Dumm J.Q. // J. Am. Ceram. Soc. 2005. V. 76. P. 1558. https://doi.org/10.1111/J.1151-2916.1993.TB03939.X
  22. Shpunt S., Belposky A., Shulgina M. // Appl. Chem. 1951. V. 24. P. 439.
  23. Karageorgiou V., Kaplan D. // Biomaterials. 2005. V. 26. № 27. P. 5474. https://doi.org/10.1016/j.biomaterials.2005.02.002
  24. Khalaf A.T., Wei Y., Wan J. et al. // Life. 2022. V. 12. № 6. P. 903. https://doi.org/10.3390/life12060903
  25. Melchels F.P.W., Fejen J., Grijpma D.W. // Biomaterials. 2010. V. 31. № 24. P. 6121. https://doi.org/10.1016/j.biomaterials.2010.04.050
  26. Thomson W. // Philosophical Magazine Series 5. 1887. V. 24. № 151. P. 503. https://doi.org/10.1080/14786448708628135
  27. Mestres G., Abdolhosseini M., Bowles W. et al. // Acta Biomater. 2013. V. 9. № 9. P. 8384. https://doi.org/10.1016/j.actbio.2013.05.032
  28. Hongyan M., Bwan X. // Mater. Des. 2017. V. 118. P. 81. https://doi.org/10.1016/j.matdes.2017.01.012
  29. Андрианова Е.Н., Демидова Е.Л., Алешин В.А. Неорганическая химия. Практикум / Под ред. Шевелькова А.В., Лаборатория знаний, Москва, 2021. 478 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025