Redox status and accumulation of autophagosomes in the liver of mouse under the action of lithium chloride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Activation of autophagy is considered one of the promising strategies for the treatment and prevention of various non-infectious liver diseases. In this work, we assessed the changes in redox status and autophagy activation in liver tissues in vivo under the action of lithium chloride. It was shown that lithium chloride leads to the accumulation of autophagosomes in liver cells under normal conditions. This process is accompanied by a slight increase in the activity of several antioxidant enzymes. Toxic effects on the liver and the development of oxidative stress with 3-day use of LiCl were not detected. Significant rearrangements in the ultrastructure of the endoplasmic reticulum were observed, which can play a signaling role and participate in the initiation of autophagy. Thus, oral application of lithium chloride can be used as an effective modulator of the autophagy process in liver tissues.

Full Text

Restricted Access

About the authors

S. А. Dmitrieva

FRC Kazan Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: s_dmitrieva@list.ru

Kazan Institute of Biochemistry and Biophysics

Russian Federation, 420111, Kazan

A. A. Ponomareva

FRC Kazan Scientific Center, Russian Academy of Sciences

Email: s_dmitrieva@list.ru

Kazan Institute of Biochemistry and Biophysics

Russian Federation, 420111, Kazan

References

  1. Бгатова Н. П., Гаврилова Ю. С., Лыков А. П., Соловьева А. О., Макарова В. В., Бородин Ю. И., Коненков В. И. 2017. Апоптоз и аутофагия в клетках гепатокарциномы, индуцированные различными формами солей лития. Цитология. T. 59. № 3. С. 178. (Bgatova N. P., Gavrilova Y. S., Lykov A. P., Solovieva A. O., Makarova V. V., Borodin Y. I., Konenkov V. I. 2017. Apoptosis and autophagy in hepatocarcinoma cells induced by different forms of lithium salts. Tsitologiya. V. 59. № 3. P. 178.)
  2. Aebi H. 1984. Catalase in vitro. Methods Enzymol. V. 105. P. 121. https://doi.org/10.1016/s0076-6879(84)05016-3
  3. Ajoolabady A., Kaplowitz N., Lebeaupin C., Kroemer G., Kaufman R. J., Malhi H., Ren J. 2023. Endoplasmic reticulum stress in liver diseases. Hepatology. V. 77. P. 619. https://doi.org/10.1002/hep.32562
  4. Bortolozzi A., Fico G., Berk M., Solmi M., Fornaro M., Quevedo J., Zarate C. A. Jr., Kessing L. V., Vieta E., Carvalho A. F. 2024. New advances in the pharmacology and toxicology of lithium: a neurobiologically oriented overview. Pharmacol. Rev. V. 76. P. 323. https://doi.org/10.1124/pharmrev.120.000007
  5. Colombo G., Clerici M., Garavaglia M. E., Giustarini D., Rossi R., Milzani A., Dalle-Donne I. 2016. A step-by-step protocol for assaying protein carbonylation in biological samples. J. Chromatogr. B. Anal. Technol. Life Sci. V. 1019. P. 178. https://doi.org/10.1016/j.jchromb.2015.11.052
  6. Costa A. J., Erustes A. G., Sinigaglia R., Girardi C. E.N., Pereira G. J.S, Ureshino R. P., Smaili S. S. 2021. Lack of autophagy induction by lithium decreases neuroprotective effects in the striatum of aged rats. Pharmaceutics. V. 13. P. 135. https://doi.org/10.3390/pharmaceutics13020135
  7. Cribb A. E., Leeder J. S., Spielberg S. P. 1989. Use of a microplate reader in an assay of glutathione reductase using 5,5’-dithiobis(2-nitrobenzoic acid). Anal. Biochem. V. 183. P. 195. https://doi.org/10.1016/0003-2697(89)90188-7
  8. Damri O., Natour S., Agam G. 2021. Do autophagy enhancers/ROS scavengers alleviate consequences of mild mitochondrial dysfunction induced in neuronal-derived cells? Int. J. Mol. Sci. V. 22. P. 5753. https://doi.org/10.3390/ijms22115753
  9. Dangi A., Huang C., Tandon A., Stolz D., Wu T., Gandhi C. R. 2016. Endotoxin-stimulated rat hepatic stellate cells induce autophagy in hepatocytes as a survival mechanism. J. Cell Physiol. V. 231. P. 94. https://doi.org/10.1002/jcp.25055
  10. Deline M. L., Straub J., Patel M., Subba P., Grashei M., van Heijster F. H.A., Pirkwieser P., Somoza V., Livingstone J. D., Beazely M., Kendall B., Gingras M. J.P., Leonenko Z., Höschen C., Harrington G., Kuellmer K., Bian W., Schilling F., Fisher M. P.A., Helgeson M. E., Fromme T. 2023. Lithium isotopes differentially modify mitochondrial amorphous calcium phosphate cluster size distribution and calcium capacity. Front. Physiol. V. 14. Art. ID: 1200119. https://doi.org/10.3389/fphys.2023.1200119
  11. Dossymbekova R., Bgatova N., Tungushbayeva Z., Sharipov K., Taneyeva G., Kydyrbaeva A., Solovieva A. 2020. Effect of lithium carbonate on autophagy and proliferative activity of isolated hepatocytes. Biochem. Biophys. Res. Commun. V. 528. P. 343. https://doi.org/10.1016/j.bbrc.2020.03.057
  12. Durak I., Yurtarslanl Z., Canbolat O., Akyol O. 1993. A methodological approach to superoxide dismutase (SOD) activity assay based on inhibition of nitroblue tetrazolium (NBT) reduction. Clin. Chim. Acta. V. 214. P. 103. https://doi.org/10.1016/0009-8981(93)90307-p
  13. Engin A. B., Engin A., Engin E. D., Memis L. 2023. Does lithium attenuate the liver damage due to oxidative stress and liver glycogen depletion in experimental common bile duct obstruction? Toxicol. Appl. Pharmacol. V. 466. Art. ID: 116489. https://doi.org/10.1016/j.taap.2023.116489
  14. Halliwell G., Gutteridge J. M.C. 1999. Targets of attacks: fatty acids and lipoproteins. Free radicals in biology and medicine. N.-Y.: Oxford University Press.
  15. Humbert M., Morán M., de la Cruz-Ojeda P., Muntané J., Wiedmer T., Apostolova N., McKenna S.L., Velasco G., Balduini W., Eckhart L., Janji B., Sampaio-Marques B., Ludovico P., Žerovnik E., Langer R., Perren A., Engedal N., Tschan M. P. 2020. Assessing autophagy in archived tissue or how to capture autophagic flux from a tissue snapshot. Biology (Basel). V. 9. Art. ID: 59. https://doi.org/10.3390/biology9030059
  16. Jiang Z. Y., Woollard A. C., Wolff S. P. 1990. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. V. 268. P. 69. https://doi.org/10.1016/0014-5793(90)80974-n
  17. Jung S. R., Lee J. H., Ryu H., Gao Y., Lee J. 2024. Lithium and exercise ameliorate insulin-deficient hyperglycemia by independently attenuating pancreatic α-cell mass and hepatic gluconeogenesis. Korean J. Physiol. Pharmacol. V. 28. P. 31. https://doi.org/10.4196/kjpp.2024.28.1.31
  18. Kiełczykowska M., Polz-Dacewicz M., Kopciał E., Mitrus O., Kurzepa J., Marzec Z., Musik I. 2020. Selenium prevents lithium accumulation and does not disturb basic microelement homeostasis in liver and kidney of rats exposed to lithium. Ann. Agric. Environ. Med. V. 27. P. 129. https://doi.org/10.26444/aaem/105926
  19. L’Abbate S., Nicolini G., Marchetti S., Forte G., Lepore E., Unfer V., Kusmic C. 2023. Lithium treatment induces cardiac dysfunction in mice. Int. J. Mol. Sci. V. 24. Art. ID: 15872. https://doi.org/10.3390/ijms242115872
  20. Liu A., Fang H., Dahmen U., Dirsch O. 2013. Chronic lithium treatment protects against liver ischemia/reperfusion injury in rats. Liver Transpl. V. 19. P. 762. https://doi.org/10.1002/lt.23666
  21. Ma X., McKeen T., Zhang J., Ding W. X. 2020. Role and mechanisms of mitophagy in liver diseases. Cells. V. 9. Art. ID: 837. https://doi.org/10.3390/cells9040837
  22. Masaki R., Yamamoto A., Tashiro Y. 1987. Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. J. Cell Biol. V. 104. Art. ID: 1207. https://doi.org/10.1083/jcb.104.5.1207
  23. Maurer I. C., Schippel P., Volz H. P. 2009. Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue. Bipolar Disord. V. 11. P. 515. https://doi.org/10.1111/j.1399-5618.2009.00729.x
  24. Mizushima N., Yoshimori T., Levine B. 2010. Methods in mammalian autophagy research. Cell. V. 140. P. 313. https://doi.org/10.1016/j.cell.2010.01.028
  25. Nciri R., Allagui M. S., Bourogaa E., Saoudi M., Murat J. C., Croute F., Elfeki A. 2012. Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. J. Physiol. Biochem. V. 68. P. 11. https://doi.org/10.1007/s13105-011-0113-3
  26. Nciri R., Allagui M. S., Vincent C., Murat J. C., Croute F., El Feki A. 2010. Chronic lithium administration triggers an over-expression of GRP94 stress protein isoforms in mouse liver. Food Chem. Toxicol. V. 48. P. 1638. https://doi.org/10.1016/j.fct.2010.03.038
  27. Paglia D. E., Valentine W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. V. 70. P. 158.
  28. Qian H., Chao X., Williams J., Fulte S., Li T., Yang L., Ding W. X. 2021. Autophagy in liver diseases: a review. Mol. Aspects Med. V. 82. Art. ID: 100973. https://doi.org/10.1016/j.mam. 100973
  29. Roscoe J.M, Sevier C. S. 2020. Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum. Cells. V. 9. Art. ID: 2314. https://doi.org/10.3390/cells9102314
  30. Russi S., Sgambato A., Bochicchio A. M., Zoppoli P., Aieta M., Capobianco A. M.L., Ruggieri V., Zifarone E., Falco G., Laurino S. 2021. CHIR99021, trough GSK-3β targeting, reduces epithelioid sarcoma cell proliferation by activating mitotic catastrophe and autophagy. Int. J. Mol. Sci. V. 22. Art. ID: 11147. https://doi.org/10.3390/ijms222011147
  31. Rysted J. E., Lin Z., Walters G. C., Rauckhorst A. J., Noterman M., Liu G., Taylor E. B., Strack S., Usachev Y. M. 2021. Distinct properties of Ca2+ efflux from brain, heart and liver mitochondria: the effects of Na+, Li+ and the mitochondrial Na+/Ca2+ exchange inhibitor CGP37157. Cell Calcium. V. 96. Art. ID: 102382. https://doi.org/10.1016/j.ceca.2021.102382
  32. Samad N., Bilal K., Yasmin F., Khaliq S., Zaman A., Ayaz M. M. 2020. Effect of lithium chloride on d-galactose induced organs injury: possible antioxidative role. Pakistan J. Pharm. Sci. V. 33. P. 1795.
  33. Sarkar S., Krishna G., Imarisio S., Saiki S., O’Kane C.J., Rubinsztein D. C. 2008. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum. Mol. Genet. V. 17. P. 170. https://doi.org/10.1093/hmg/ddm294
  34. Singh B., Bhaskar S. 2019. Methods for detection of autophagy in mammalian cells. Methods Mol. Biol. V. 2045. P. 245. https://doi.org/10.1007/7651_2018_190
  35. Singulani M. P., De Paula V. J.R., Forlenza O. V. 2021. Mitochondrial dysfunction in Alzheimer’s disease: therapeutic implications of lithium. Neurosci. Lett. V. 760. Art. ID: 136078. https://doi.org/10.1016/j.neulet.2021.136078
  36. Stäubli W., Hess R., Weibel E. R. 1969. Correlated morphometric and biochemical studies on the liver cell. II. Effects of phenobarbital on rat hepatocytes. J. Cell Biol. V. 42. Art. ID: 92. https://doi.org/10.1083/jcb.42.1.92
  37. Talebi M., Mohammadi Vadoud S. A., Haratian A., Talebi M., Farkhondeh T., Pourbagher-Shahri A.M., Samarghandian S. 2022. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. Behav. Brain Funct. V. 18. Art. ID: 3. https://doi.org/10.1186/s12993-022-00187-3
  38. Wang W., Lu D., Shi Y., Wang Y. 2024. Exploring the neuroprotective effects of lithium in ischemic stroke: a literature review. Int. J. Med. Sci. V. 21. P. 284. https://doi.org/10.7150/ijms.88195
  39. Wilkinson S. 2019. ER-phagy: shaping up and destressing the endoplasmic reticulum. FEBS J. V. 286. P. 2645. https://doi.org/10.1111/febs.14932

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. General appearance of mouse liver cells exposed to LiCl at different concentrations: a – control, b – 5 mg/kg, c – 10 mg/kg, d – 15 mg/kg. Scale bar: 5 µm. Legend: af – autophagosome, b – bile capillary, ki – Ito cell, kk – Kupffer cell, l – lysosome, lk – lipid droplet, m – mitochondrion, ds – Disse space, sc – sinusoidal capillary, sr – rough endoplasmic reticulum, n – nucleus, n – nucleolus.

Download (973KB)
3. Fig. 2. Formation of autophagosomes in mouse hepatocytes under the action of LiCl in different concentrations: a – control, b – 5 mg/kg, c – 10 mg/kg, d – 15 mg/kg. Scale bar: 1 μm (a–c) and 0.5 (d) μm. Designations: al – autolysosome, ag – Golgi apparatus, sr – smooth endoplasmic reticulum, p – peroxisome, β – ribosomes. Other designations are the same as in Fig. 1.

Download (1MB)
4. Fig. 3. Changes in the ultrastructure of mitochondria and endoplasmic reticulum in mouse hepatocytes under the action of LiCl in different concentrations: a – control, b – 5 mg/kg, c – 10 mg/kg, d – 15 mg/kg. Scale bar: 1 µm. Designations are the same as in Fig. 1, 2. The arrow indicates the contact zones of the dilated ER tubules with the mitochondria.

Download (1MB)
5. Fig. 4. Activity of superoxide dismutase (SOD, a), catalase (CAT, b), glutathione peroxidase (GPx, c) and glutathione reductase (GR, d) in liver tissues after application of LiCl for three days. Average values ​​and their standard deviations (per 1 mg protein) are shown. Differences relative to the control (*) and between variants (#) are significant at P < 0.05; (n = 6, nonparametric Mann–Whitney test).

Download (250KB)

Copyright (c) 2025 Russian Academy of Sciences