Metamaterial-inspired slow-wave structures for w-band traveling-wave tubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Electromagnetic parameters of the ladder-type slow-wave structures (SWS) formed by a metal plate with periodically arranged slots of a certain shape placed in a waveguide are studied. Modifications of the ladder-type SWS associated with the complication of the slot shape or the waveguide shape are proposed in such a way that the frequency of the slot resonance is lower than the cutoff frequency of the waveguide, and the SWS exhibits the properties of a double-negative metamaterial. It is shown that the fundamental spatial harmonic is backward, while the +1st harmonic acquires normal dispersion and the beam-wave synchronism is possible in a sufficiently wide frequency band. SWS with dumbbell-shaped slots and SWS in a groove-loaded waveguide are designed for W-band traveling-wave tube (75…110 GHz) with a relative bandwidth of about 25% and operating voltages of 8…13 kV. In such structures, there is the possibility of interaction of a slow wave with two sheet electron beams propagating from above and below the plate.

Texto integral

Acesso é fechado

Sobre autores

A. Rostuntsova

Saratov Branch Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Autor responsável pela correspondência
Email: rostuncova@mail.ru
Rússia, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

E. Kolesnichenko

Saratov Branch Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: rostuncova@mail.ru
Rússia, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

N. Ryskin

Saratov Branch Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: rostuncova@mail.ru
Rússia, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

Bibliografia

  1. Paoloni C. // IEEE Commun. Magaz. 2021. V. 59. № 5. P. 102. doi: 10.1109/MCOM.001.2000326
  2. Григорьев А.Д. Терагерцевая электроника. М.: Физматлит, 2020.
  3. Альтшулер Ю.Г., Татаренко А.С. Лампы малой мощности с обратной волной. М.: Сов. радио, 1963.
  4. Гершензон Е.М., Голант М.Б., Негирев А.А., Савельев К.С. Лампы обратной волны миллиметрового и субмиллиметрового диапазонов волн / Под ред. Н.Д. Девяткова. М.: Радио и связь, 1985.
  5. Duan Z., Shapiro M.A., Schamiloglu E. et al. // IEEE Trans. 2019. V. ED-66. № 1. P. 207. doi: 10.1109/TED.2018.2878242
  6. Hummelt J.S., Lewis S.M., Shapiro M.A., Temkin R.J. // IEEE Trans. 2014. V. PS-42. № 4. P. 930. doi: 10.1109/TPS.2014.2309597
  7. Hummelt J. S., Lu X., Xu H. et al. // Phys. Rev. Lett. 2016. V. 117. № 23. P. 237701. doi: 10.1103/PhysRevLett.117.237701
  8. Lu X., Stephens J.C., Mastovsky I. et al. // Phys. Plasmas. 2018. V. 25. № 2. P. 023102. doi: 10.1063/1.5016545
  9. High Power Microwave Sources and Technologies Using Metamaterials / Ed. J.W. Luginsland et al. N.Y.: Wiley-IEEE Press, 2021.
  10. Jiang S., Tang X., Huang S. et al. // IEEE Trans. 2023. V. ED-70. № 3. P. 1306. doi: 10.1109/TED.2022.3233814
  11. Karp A. // Proc. IRE. 1957. V. 45. № 4. P. 496. doi: 10.1109/JRPROC.1957.278439
  12. Berry D., Deng H., Dobbs R. et al. // IEEE Trans. 2014. V. ED-61. № 6. P. 1830. doi: 10.1109/TED.2014.2302741
  13. Вендик И.Б., Вендик О.Г. // ЖТФ. 2013. Т. 83. № 1. С. 3.
  14. Yurt S.C., Elfrgani A., Fuks M.I. et al. // IEEE Trans. 2016. V. PS-44. № 8. P. 1280. doi: 10.1109/TPS.2016.2535305
  15. Catalan-Izquierdo S., Bueno-Barrachina J.-M., Cañas-Peñuelas C.-S., Cavallé-Sesé F. // Renew. Energies & Power Quality J. 2009. V. 1. № 7. P. 613. doi: 10.24084/repqj07.451
  16. Butcher P.N. // Proc. IEE. 1957. V. 104. Pt. B. № 14. P. 169. doi: 10.1049/pi-b-1.1957.0132
  17. Starodubov A.V., Galushka V.V., Ryskin N.M. et. al. // Proc. 2023 24th Int. Vacuum Electronics Conf. (IVEC). Chengdu 25-28 Apr. N.Y.: IEEE, 2023. Paper No. 10157320. doi: 10.1109/IVEC56627.2023.10157320
  18. Торгашов Р.А., Ножкин Д.А., Стародубов А.В., Рыскин Н.М. // РЭ. 2023. Т. 68. № 10. С. 992. doi: 10.31857/S0033849423100182

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the simplest ladder-type SA with rectangular slots: Hx × Hy - waveguide dimensions, t - plate thickness, p - period, L × l - slit dimensions.

Baixar (107KB)
3. Fig. 2. Dispersion characteristic of the main mode of the W-band rectangular slit W-slit WBC (1), the light velocity line (2) and the beam line at 20 kV (3).

Baixar (82KB)
4. Fig. 3. Example of deformation of a rectangular slot into an open ring as the slot length L increases. The total slot length is defined as L = w + 2s + 2q (w, s, q are the characteristic dimensions of the rectangular ring, l is the slot thickness).

Baixar (80KB)
5. Fig. 4. Dispersion characteristics of the main mode of the WL with slits in the form of open rectangular rings at different slit length L: 1 - degenerate case when the slit is rectangular, Hx > L = 0. 9; curve 2 - Hx ≈ L = 1.0; 3 - Hx < L = 1.1; 4 - Hx < L = 1.4 ; 5 - Hx < L = 1.7; 6 - Hx < L = 2.0 (see Table 2 for details); 7 - light velocity line; 8, 9 and 10 - beam lines at voltages of 14, 10 and 7 kV, respectively.

Baixar (109KB)
6. Fig. 5. Schematic diagram of a ladder zone with dumbbell-shaped slots: a × b - dimensions of the wide "ear", w × l - dimensions of the narrow gap.

Baixar (101KB)
7. Fig. 6. Dispersion characteristic of the main mode of the W-band dumbbell-shaped slit W-slit wavelengths: points - numerical simulation results, curve 1 - theoretical dependence at fpl = 82 GHz, 2 - light velocity line, 3 and 4 - beam lines at accelerating voltages of 18 and 7.8 kV, respectively, f1 and f2 - lower and upper cutoff frequency, respectively.

Baixar (101KB)
8. Fig. 7. Schematic of a ladder WL in a waveguide with grooves: g × h - groove dimensions.

Baixar (114KB)
9. Fig. 8. Dependence of the critical frequency of the T-shaped waveguide fkr on the groove depth h at g = 1.1 mm (a) and on the groove width g at h = 1.4 mm (b).

Baixar (116KB)
10. Fig. 9. Dispersion of the WL main mode in a grooved waveguide designed for the W-band (1), the light velocity line (2), and the beam lines at accelerating voltages of 35 (3) and 12.7 kV (4).

Baixar (85KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024