Abstract
Electromagnetic parameters of the ladder-type slow-wave structures (SWS) formed by a metal plate with periodically arranged slots of a certain shape placed in a waveguide are studied. Modifications of the ladder-type SWS associated with the complication of the slot shape or the waveguide shape are proposed in such a way that the frequency of the slot resonance is lower than the cutoff frequency of the waveguide, and the SWS exhibits the properties of a double-negative metamaterial. It is shown that the fundamental spatial harmonic is backward, while the +1st harmonic acquires normal dispersion and the beam-wave synchronism is possible in a sufficiently wide frequency band. SWS with dumbbell-shaped slots and SWS in a groove-loaded waveguide are designed for W-band traveling-wave tube (75…110 GHz) with a relative bandwidth of about 25% and operating voltages of 8…13 kV. In such structures, there is the possibility of interaction of a slow wave with two sheet electron beams propagating from above and below the plate.