Metamaterial-inspired slow-wave structures for w-band traveling-wave tubes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Electromagnetic parameters of the ladder-type slow-wave structures (SWS) formed by a metal plate with periodically arranged slots of a certain shape placed in a waveguide are studied. Modifications of the ladder-type SWS associated with the complication of the slot shape or the waveguide shape are proposed in such a way that the frequency of the slot resonance is lower than the cutoff frequency of the waveguide, and the SWS exhibits the properties of a double-negative metamaterial. It is shown that the fundamental spatial harmonic is backward, while the +1st harmonic acquires normal dispersion and the beam-wave synchronism is possible in a sufficiently wide frequency band. SWS with dumbbell-shaped slots and SWS in a groove-loaded waveguide are designed for W-band traveling-wave tube (75…110 GHz) with a relative bandwidth of about 25% and operating voltages of 8…13 kV. In such structures, there is the possibility of interaction of a slow wave with two sheet electron beams propagating from above and below the plate.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Rostuntsova

Saratov Branch Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Хат алмасуға жауапты Автор.
Email: rostuncova@mail.ru
Ресей, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

E. Kolesnichenko

Saratov Branch Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: rostuncova@mail.ru
Ресей, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

N. Ryskin

Saratov Branch Kotelnikov Institute of Radio Engineering and Electronics RAS; Saratov State University

Email: rostuncova@mail.ru
Ресей, 38 Zelenaya St., Saratov, 410019; 83 Astrakhanskaya St., Saratov, 410012

Әдебиет тізімі

  1. Paoloni C. // IEEE Commun. Magaz. 2021. V. 59. № 5. P. 102. doi: 10.1109/MCOM.001.2000326
  2. Григорьев А.Д. Терагерцевая электроника. М.: Физматлит, 2020.
  3. Альтшулер Ю.Г., Татаренко А.С. Лампы малой мощности с обратной волной. М.: Сов. радио, 1963.
  4. Гершензон Е.М., Голант М.Б., Негирев А.А., Савельев К.С. Лампы обратной волны миллиметрового и субмиллиметрового диапазонов волн / Под ред. Н.Д. Девяткова. М.: Радио и связь, 1985.
  5. Duan Z., Shapiro M.A., Schamiloglu E. et al. // IEEE Trans. 2019. V. ED-66. № 1. P. 207. doi: 10.1109/TED.2018.2878242
  6. Hummelt J.S., Lewis S.M., Shapiro M.A., Temkin R.J. // IEEE Trans. 2014. V. PS-42. № 4. P. 930. doi: 10.1109/TPS.2014.2309597
  7. Hummelt J. S., Lu X., Xu H. et al. // Phys. Rev. Lett. 2016. V. 117. № 23. P. 237701. doi: 10.1103/PhysRevLett.117.237701
  8. Lu X., Stephens J.C., Mastovsky I. et al. // Phys. Plasmas. 2018. V. 25. № 2. P. 023102. doi: 10.1063/1.5016545
  9. High Power Microwave Sources and Technologies Using Metamaterials / Ed. J.W. Luginsland et al. N.Y.: Wiley-IEEE Press, 2021.
  10. Jiang S., Tang X., Huang S. et al. // IEEE Trans. 2023. V. ED-70. № 3. P. 1306. doi: 10.1109/TED.2022.3233814
  11. Karp A. // Proc. IRE. 1957. V. 45. № 4. P. 496. doi: 10.1109/JRPROC.1957.278439
  12. Berry D., Deng H., Dobbs R. et al. // IEEE Trans. 2014. V. ED-61. № 6. P. 1830. doi: 10.1109/TED.2014.2302741
  13. Вендик И.Б., Вендик О.Г. // ЖТФ. 2013. Т. 83. № 1. С. 3.
  14. Yurt S.C., Elfrgani A., Fuks M.I. et al. // IEEE Trans. 2016. V. PS-44. № 8. P. 1280. doi: 10.1109/TPS.2016.2535305
  15. Catalan-Izquierdo S., Bueno-Barrachina J.-M., Cañas-Peñuelas C.-S., Cavallé-Sesé F. // Renew. Energies & Power Quality J. 2009. V. 1. № 7. P. 613. doi: 10.24084/repqj07.451
  16. Butcher P.N. // Proc. IEE. 1957. V. 104. Pt. B. № 14. P. 169. doi: 10.1049/pi-b-1.1957.0132
  17. Starodubov A.V., Galushka V.V., Ryskin N.M. et. al. // Proc. 2023 24th Int. Vacuum Electronics Conf. (IVEC). Chengdu 25-28 Apr. N.Y.: IEEE, 2023. Paper No. 10157320. doi: 10.1109/IVEC56627.2023.10157320
  18. Торгашов Р.А., Ножкин Д.А., Стародубов А.В., Рыскин Н.М. // РЭ. 2023. Т. 68. № 10. С. 992. doi: 10.31857/S0033849423100182

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic diagram of the simplest ladder-type SA with rectangular slots: Hx × Hy - waveguide dimensions, t - plate thickness, p - period, L × l - slit dimensions.

Жүктеу (107KB)
3. Fig. 2. Dispersion characteristic of the main mode of the W-band rectangular slit W-slit WBC (1), the light velocity line (2) and the beam line at 20 kV (3).

Жүктеу (82KB)
4. Fig. 3. Example of deformation of a rectangular slot into an open ring as the slot length L increases. The total slot length is defined as L = w + 2s + 2q (w, s, q are the characteristic dimensions of the rectangular ring, l is the slot thickness).

Жүктеу (80KB)
5. Fig. 4. Dispersion characteristics of the main mode of the WL with slits in the form of open rectangular rings at different slit length L: 1 - degenerate case when the slit is rectangular, Hx > L = 0. 9; curve 2 - Hx ≈ L = 1.0; 3 - Hx < L = 1.1; 4 - Hx < L = 1.4 ; 5 - Hx < L = 1.7; 6 - Hx < L = 2.0 (see Table 2 for details); 7 - light velocity line; 8, 9 and 10 - beam lines at voltages of 14, 10 and 7 kV, respectively.

Жүктеу (109KB)
6. Fig. 5. Schematic diagram of a ladder zone with dumbbell-shaped slots: a × b - dimensions of the wide "ear", w × l - dimensions of the narrow gap.

Жүктеу (101KB)
7. Fig. 6. Dispersion characteristic of the main mode of the W-band dumbbell-shaped slit W-slit wavelengths: points - numerical simulation results, curve 1 - theoretical dependence at fpl = 82 GHz, 2 - light velocity line, 3 and 4 - beam lines at accelerating voltages of 18 and 7.8 kV, respectively, f1 and f2 - lower and upper cutoff frequency, respectively.

Жүктеу (101KB)
8. Fig. 7. Schematic of a ladder WL in a waveguide with grooves: g × h - groove dimensions.

Жүктеу (114KB)
9. Fig. 8. Dependence of the critical frequency of the T-shaped waveguide fkr on the groove depth h at g = 1.1 mm (a) and on the groove width g at h = 1.4 mm (b).

Жүктеу (116KB)
10. Fig. 9. Dispersion of the WL main mode in a grooved waveguide designed for the W-band (1), the light velocity line (2), and the beam lines at accelerating voltages of 35 (3) and 12.7 kV (4).

Жүктеу (85KB)

© Russian Academy of Sciences, 2024