ИССЛЕДОВАНИЕ ВОЛЬТЕРРОВЫХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДАМИ ТЕОРИИ ПОЛУГРУПП
- Авторы: Раутиан Н.А.1
 - 
							Учреждения: 
							
- Московский государственный университет имени М.В. Ломоносова, Московский центр фундаментальной и прикладной математики
 
 - Выпуск: Том 513 (2023)
 - Страницы: 88-92
 - Раздел: МАТЕМАТИКА
 - URL: https://vietnamjournal.ru/2686-9543/article/view/647912
 - DOI: https://doi.org/10.31857/S2686954323600283
 - EDN: https://elibrary.ru/XRBNBC
 - ID: 647912
 
Цитировать
Полный текст
Аннотация
Исследуются абстрактные вольтерровы интегро-дифференциальные уравнения, которые являются операторными моделями задач теории вязкоупругости. К рассматриваемому классу уравнений относятся также интегро-дифференциальные уравнения Гуртина-Пипкина, описывающие процесс распространения тепла в средах с памятью. В качестве ядер интегральных операторов могут быть рассмотрены, в частности, суммы убывающих экспонент или суммы функций Работнова с положительными коэффициентами, имеющие широкое применение в теории вязкоупугости и теории распространения тепла.
Об авторах
Н. А. Раутиан
Московский государственный университет имени М.В. Ломоносова, Московский центр фундаментальнойи прикладной математики
							Автор, ответственный за переписку.
							Email: nadezhda.rautian@math.msu.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
 - Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory.Theory and applications. New-York–Dordrecht–Heidelberg–London, Springer, 2012. 576 p.
 - Локшин А.А., Суворова Ю.В. Математическая теория распространения волн в средах с памятью. М.: Изд-во МГУ, 1982. 152 с.
 - Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
 - Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984.
 - Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: “Наука”, 1977. 384 с.
 - Shamaev A.S., Shumilova V.V. Spectrum of one-dimensional eigenoscillations of a medium consisting of viscoelastic material with memory and incompressible viscous fluid // Journal of Mathematical Sciences. 2021. V. 257. № 5. P. 732–742.
 - Vlasov V.V., Rautian N.A. Correct solvability and representation of solutions of Volterra integrodifferential equations with fractional exponential kernels // Doklady Mathematics. 2019. V. 100. № 2. P. 467–471.
 - Rautian N.A. Semigroups Generated by Volterra Integro-Differential Equations // Differential Equations. 2020. V. 56. № 9. P. 1193–1211.
 - Rautian N.A. Exponential stability of semigroups generated by volterra integro-differential equations // Ufa Mathematical Journal. 2021. V. 13. № 4. P. 65–81.
 - Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
 - Kato T. Perturbation theory for linear operators. Springer, 1966.
 - Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М.: “Наука”, 1967. 464 с.
 - Engel K.J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag, New York, 2000. 586 p.
 - Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М. “Наука”, 1989.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



