Effect of Tempering on Phase Transformations in Low-Alloy Steel with 1.6%Si
- Autores: Dudko V.A.1,2, Yuzbekova D.Y.1,2, Erokhin M.N.1, Gaidar S.M.1, Kaibyshev R.O.1
 - 
							Afiliações: 
							
- Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
 - Belgorod State University
 
 - Edição: Volume 515, Nº 1 (2024)
 - Páginas: 74-79
 - Seção: ТЕХНИЧЕСКИЕ НАУКИ
 - URL: https://vietnamjournal.ru/2686-7400/article/view/651802
 - DOI: https://doi.org/10.31857/S2686740024020116
 - EDN: https://elibrary.ru/KGMDSX
 - ID: 651802
 
Citar
Texto integral
Resumo
Low temperature tempering of a 0.53%C–1.6%Si–0.9%Mn–0.76%Cr–0.14%V–0.05%Nb steel provides combination of high yield stress σ0.2=1890 MPa with elongation-to-failure δ=6% and Charpy V-notch (CVN) impact energy of 11 J/cm2 due to precipitation of non-stoichiometric η-carbide Fe2C. Silicon suppresses precipitation of para-equilibrium cementite both from martensite and retained austenite. Orthoequilibrium cementite precipitate upon tempering at 500°С providing combination of σ0.2=1360 MPa with δ=9% and CVN impact energy of 18 J/cm2.
Palavras-chave
Sobre autores
V. Dudko
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; Belgorod State University
							Autor responsável pela correspondência
							Email: dudko@bsu.edu.ru
				                					                																			                												                	Rússia, 							Moscow; Belgorod						
D. Yuzbekova
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; Belgorod State University
														Email: dudko@bsu.edu.ru
				                					                																			                												                	Rússia, 							Moscow; Belgorod						
M. Erokhin
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
														Email: dudko@bsu.edu.ru
				                					                																			                								
Academician of the RAS
Rússia, MoscowS. Gaidar
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
														Email: dudko@bsu.edu.ru
				                					                																			                												                	Rússia, 							Moscow						
R. Kaibyshev
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
														Email: dudko@bsu.edu.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Malakondaiah G., Srinitlas M., Rama Rao P. Ultrahigh-strength low alloy steels with enhanced fracture toughness // Progr. Mater. Sci. 1997. V. 42 P. 209–242.
 - Li Jihang, Zhan Dongping, Jiang Zhouhua, Zhang Huishu, Yang Yongkun, Zhang Yangpeng. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review // J. Mater. Res. Techn. 2023. V. 23. P. 172–190.
 - Euser V.K., Williamson D.L., Findley K.O., Clarke A.J., Speer J.G. The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated through Rapid Tempering // Metals. 2021. V. 11. P. 1349.
 - Clarke A.J. et al. Perspectives on quenching and tempering 4340 steel // Metall. Mater. Trans. A. 2020. V. 51. P. 4984–5005.
 - Bhadeshia H.K.D.H., Honeycombe R. Steels: microstructure and properties. 4th ed.. Butterworth-Heinemann, Oxford, UK. 2017. P. 237–270.
 - Borisov S. et al. Tempering behavior of a Si-rich low-alloy medium carbon steel // Metals. 2023. V. 13. P. 1403.
 - Борисова Ю.И. и др. Cтруктура, фазовый состав и механические свойства высокопрочной стали с промежуточным карбидом h-Fe2C// ФММ. 2023. Т. 124. № 12. C. 1–15.
 - Mishnev R. et al. Quench and Tempered Embrittlement of Ultra-High Strength Steels with Transition Carbides // Metals. 2023. V. 13. P. 1399.
 - Tkachev E. et al. Effect of quenching and tempering on structure and mechanical properties of a low-alloy 0.25 C steel // Mater. Sci. Eng. A. 2023. V. 868. P. 144757.
 - Galindo-Nava E.I., Rivera-Díaz-del-Castillo P.E.J. A model for the microstructure behaviour and strength evolution in lath martensite // Acta Mater. 2015. V. 98. P. 81–93.
 - Bhadeshia H.K.D.H. Theory of Transformation in Steels. Boca Raton (FL, USA): CRC Press. Taylor & Francis group, 2021.
 - Bhadeshia H.K.D.H. Cementite // Inter. Mater. Rev. 2020. V. 65. P. 1–27.
 - Bhadeshia H.K.D.H. Physical Metallurgy of Steels in Physical Metallurgy / Ed. by D.E. Laughlin, K. Hono. Amsterdam, Netherlands: Elsevier, 2014. P. 2157–2214.
 - Yamada Y., Kuwabara T. Materials for Springs. Berlin, Heidelberg: Springer Verlag, 2007.
 
Arquivos suplementares
				
			
						
						
					
						
						
									


