TREX-2 MRNA EXPORT COMPLEX INTERACTS WITH HLB COMPONENT FLASH AND IS RECRUITED TO PROCESSED HISTONE MRNAS
- Authors: Kurshakova M.M1, Yakusheva Y.A1, Georgieva S.G1
-
Affiliations:
- Engelhardt Institute of Molecular Biology RAS
- Issue: Vol 524, No 1 (2025)
- Pages: 564-569
- Section: Articles
- URL: https://vietnamjournal.ru/2686-7389/article/view/697716
- DOI: https://doi.org/10.7868/S3034543X25050122
- ID: 697716
Cite item
Abstract
Disruption of the normal expression of histone genes lead to the development of various pathologies. One of the key stages of gene expression is the export of mRNA from the nucleus to the cytoplasm. The TREX-2 protein complex regulates the export of the majority of poly(A)-containing mRNAs. Previously, we demonstrated that TREX-2 is also associated with histone mRNA particles and participates in the nuclear export of histone mRNAs, which lack poly(A)-tails. In this study we investigated the interaction of TREX-2 proteins with the histone mRNA processing machinery. It was shown that TREX-2 interacts with the FLASH protein, a key protein of the specialized histone mRNA processing machinery and a component of the histone locus body (HLB). The TREX-2 complex is recruited through its interaction with FLASH to processed histone mRNAs.
Keywords
About the authors
M. M Kurshakova
Engelhardt Institute of Molecular Biology RAS
Email: kursha@mail.ru
Moscow, Russian Federation
Y. A Yakusheva
Engelhardt Institute of Molecular Biology RASMoscow, Russian Federation
S. G Georgieva
Engelhardt Institute of Molecular Biology RASAcademician of the RAS Moscow, Russian Federation
References
- Durovio, R.J., Marzluff, W.F. // RNA Biology. 2017. Vol. 14. No. 6. P. 726–738.
- Geisler, M.S., Kemp, J.pp., Durovio, R.J. // Nucleus. 2023. Vol. 14. No. 1, 2293604.
- Kemp, J.P., Yang, X.-C., Dominski, Z. et al. // Mol. Biol. Cell. 2021. Vol. 32. No. 9. P. 942–955.
- White, A.E., Burch, B.D., Yang, X.-C. et al. // The J. Cell Biol. 2011. Vol. 193. No. 4. P. 677–694.
- Yang, X., Sabath, I., Kunduru, L. et al. // The J. Biol. Chem. 2014. Vol. 289. No. 49. P. 33767–33782.
- Terzo, E.A., Lyons, S.M., Poulton, J.S. et al. // Mol. Biol. Cell. 2015. Vol. 26. No. 8. P. 1559–1574.
- Ma, T., Van Tine, B.A., Wei, Y. et al. // Genes Dev. 2000. Vol. 14. No. 18. P. 2298–2313.
- Hur, W., Kemp, J.P., Tarzia, M. et al. // Dev. Cell. 2020. Vol. 54. No. 3. P. 379–394.
- Yang, X.-C., Sabath, I., Debski, J. et al. // Mol. Cell. Biol. 2013. Vol. 33. No. 1. P. 28–37.
- Huang, Y., Gattoni, R., Stévenin, J., Steitz, J.A. // Mol. Cell. 2003. Vol. 11. No. 3. P. 837–843.
- Erkmann, J.A., Sánchez, R., Treichel, N. et al. // RNA. 2005. Vol. 11. No. 1. P. 45–58.
- Huang, Y., Steitz, J.A. // Mol. Cell. 2001. Vol. 7. No. 4. P. 899–905.
- Fan, J., Wang, K., Du, X. et al. // The EMBO J. 2019. Vol. 38. No. 9, e99910.
- Куршакова М.М., Якушева Ю.А., Георгиева С.Г. // ДАН. Науки о жизни. 2024. Т. 514. № 1. C. 44–49.
- Fischer, T., Strässer, K., Rácz, A. et al. // The EMBO J. 2002. Vol. 21. No. 21. P. 5843–5852.
- Kurshakova M.M., Krasnov A.N., Kopytova D.vol. et al. // The EMBO J. 2007. Vol. 26. No. 24. P. 4956–4965.
- Lu, Q., Tang, X., Tian, G. et al. // The Plant J. 2009. Vol. 61. No. 2. P. 259–270.
- Jani, D., Lutz, S., Hurt, E. et al. // Nucleic Acids Res. 2012. Vol. 40. No. 10. P. 4562–4573.
- Kopytova, D., Popova, V., Kurshakova, M. et al. // Nucleic Acids Res. 2016. Vol. 44. No. 10. P. 4920–4933.
- Куршакова М.М., Краснов А.Н., Набирочкина Е.Н., Георгиева, С.Г. // Мол. биол. 2024. Т. 58. № 3. C. 448–461.
Supplementary files

