Prospects for using pesticides of “AGROKHIM-XXI” LLC in adaptive technologies for protecting grapes from harmful organisms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, more than 130 fungicides and 70 insecticides of various foreign and domestic producers, including Agrokhim-XXI LLC, are approved for the use in protecting the vineyards of Russian Federation against plant pests. The assortment of grape plant protection products of this company includes preparations with both well-known and widely used active ingredients – fungicide Minhati, SC (250 g/l flutriafol), insecticide Gladiator, EC (50 g/l lambda-cyhalothrin); and new ones – fungicide Shpaga, SC (160 g/l cyazofamid), insecticide Emamectin, EC (100 g/l emamectin benzoate). In 2024, a study was conducted in the vineyards of Crimea to assess the biological effectiveness of biogenic preparation Emamectin, EC, in order to protect plants from grapevine moth Lobesia botrana Den. et Schiff., the active substance of which is produced by soil actinomycete Streptomices avermitilis MSTD. The level of biological effectiveness of the studied insecticide at application rates of 0.2 l/ha and 0.3 l/ha was 93.3%. It allowed us to classify the preparation as a highly effective tool for controlling the population level of this economically significant phytophage. Currently, field studies on assessing the biological effectiveness of fungicide Shpaga, SC (160 g/l cyazofamid; 0.5 l/ha) are being conducted in order to recommend it for general application in the practice of protecting grape plants from diseases. Using of the studied preparations produced by Agrokhim-XXI LLC with favorable ecological and ecotoxicological profile can become a viable and essential alternative to the plant protection products already available in the market.

Full Text

Restricted Access

About the authors

Natalya V. Aleynikova

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru

Grand PhD in Agricultural Science

Russian Federation, Yalta, Republic of Crimea

Yana E. Radionovskaya

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru

PhD in Agricultural Science

Russian Federation, Yalta, Republic of Crimea

Evgenia S. Galkina

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru

PhD in Agricultural Science

Russian Federation, Yalta, Republic of Crimea

Pavel A. Didenko

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru

PhD in Agricultural Science

Russian Federation, Yalta, Republic of Crimea

Vladimir N. Shaporenko

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru

PhD in Agricultural Science

Russian Federation, Yalta, Republic of Crimea

Elena A. Bolotyanskaya

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru

PhD in Agricultural Science

Russian Federation, Yalta, Republic of Crimea

Sergey Y. Belash

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Author for correspondence.
Email: aleynikova@magarach-institut.ru
Russian Federation, Yalta, Republic of Crimea

Vladimir V. Andreev

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru
Russian Federation, Yalta, Republic of Crimea

Liana V. Didenko

Federal State Budget Scientific Institution All-Russian National Research Institute of Viticulture and Winemaking «Magarach» SRC «Kurchatov Institute»

Email: aleynikova@magarach-institut.ru
Russian Federation, Yalta, Republic of Crimea

References

  1. Алейникова Н.В., Радионовская Я.Э., Диденко Л.В. и др. Развитие хеморегуляторного метода мониторинга вредителей винограда // «Магарач». Виноградарство и виноделие. 2021. № 23(3). С. 253–259. https://doi.org/10.35547/IM.2021.84.20.008
  2. Государственный каталог пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации. Краснодар: ИП Луцаева Н.Я. «Полиграфические услуги», Ежегодник. Вып. 9. 807 с.
  3. Гришечкина Л.Д., Долженко В.И., Кунгурцева О.В. и др. Развитие исследований по формированию современного ассортимента фунгицидов // Агрохимия. 2020. № 9. С. 32–47.
  4. Долженко В.И., Лаптиев А.Б. Современный ассортимент средств защиты растений: биологическая эффективность и безопасность // Плодородие. 2021. № 3. С. 71–75. https://doi.org/10.25680/S19948603.2021.120.13
  5. Долженко В.И., Сухорученко Г.И., Буркова Л.А. и др. Совершенствование ассортимента средств борьбы с вредителями растений в XXI веке // Агрохимия. 2021. № 1. С. 31–40. https://doi.org/10.31857/S000218812101004X
  6. Долженко В.И., Сухорученко Г.И., Лаптиев А.Б. Развитие химического метода защиты растений в России // Защита и карантин растений. 2021. № 4. С. 3–13. https://doi.org/10.47528/1026-8634_2021_4_3
  7. Долженко Т.В. Критерии формирования биологизированного ассортимента средств защиты растений от вредителей. Мат. ХII сессии Генеральной Ассамблеи ВПРС МОББ (в связи с 40-летием деятельности) и докл. Межд. науч. конф. «Биологическая защита растений: успехи, проблемы, перспективы», Санкт-Петербург, 2017. С. 111–115.
  8. Долженко Т.В., Каракотов С.Д., Долженко В.И. Новые отечественные инсектоакарициды на основе авермектинов // Российская сельскохозяйственная наука. 2018. № 5. C. 32–35.
  9. Доспехов Б.А. Методика полевого опыта с основами статистической обработки результатов исследований. М.: Альянс, 2014. 352 с.
  10. Методические указания по регистрационным испытаниям инсектицидов, акарицидов, феромонов, моллюскоцидов и родентицидов в растениеводстве: информ. изд. М.: ФГБНУ «Росинформагротех», 2022. 508 с.
  11. Петрова М.О., Черменская Т.Д. Экологически безопасное применение пестицидов при выращивании винограда // Виноградарство и виноделие: Сб. науч. тр. ФГБУН «ВННИИВиВ «Магарач» РАН». Ялта, 2020. Т. XLIX. С. 172–174.
  12. Приказ Минсельхоза Крыма от 22 сентября 2020 г. № 661 «О территориальном делении виноградопригодных земель Республики Крым». – URL: http://www.msh.rk.gov.ru/document/show/2021_01_12_14_19_prikaz_ot_22_09_2020_661_o_territorialnom_delenii_vinogradoprigodnykh_zemel_respubliki_krym
  13. Aleinikova, N.V., Galkina, Y.S., Andreyev, V.N. et al. The prospects of using Bacillus amyloliquefaciens in the biological control of grape diseases // IOP Conference Series: Earth and Environmental Science, 2023. V. 1206. https://doi.org/10.1088/1755-1315/1206/1/012025
  14. Benelli G., Lucchi A., Anfora G. et al. European grapevine moth, Lobesia botrana Part II: Prevention and management // Entomologia. 2023. V. 43(2). PP. 281–304. https://doi.org/10.1127/entomologia/2023/1947
  15. Boselli M., Scannavini M., Cavazza F., Franceschelli F. Valutazione dell’efficacia di emamectina benzoato (Affirm) nella lotta a Lobesia botrana // ATTI Giornate Fitopatologiche. 2008. V. 1. PP. 175–180.
  16. Civolani S., Boselli M., Butturini A. et al. Assessment of Insecticide Resistance of Lobesia botrana (Lepidoptera: Tortricidae) in Emilia-Romagna Region // Journal of Economic Entomology. 2014. V. 107(3). PP. 1245–1249. https://doi.org/10.1603/EC13537
  17. Dolzhenko T., Burkova L., Dolzhenko O., Laptiev A. Biorational insectoacaricides based on avermectins to protect grapes. BIO Web of Conferences. 2021. V. 34. https://doi.org/10.1051/bioconf/20213404010
  18. Pang N., Dou X., Hu J. Residue behaviours, dissipation kinetics and dietary risk assessment of pyaclostrobin, cyazofamid and its metabolite in grape // J. Sci. Food Agric. 2019. V. 99(14). PP. 6167–6172. https://doi.org/10.1002/jsfa.9877
  19. Pertot I., Caffi T., Rossi V. et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture // Crop Protection. 2017. V. 97. PP. 70–84. https://doi.org/10.1016/j.cropro.2016.11.025
  20. van Lexmond M.B., Bonmatin J.M., Goulson D., Noome D.A. Worldwide Integrated Assessment on systemic pesticides: global collapse of the entomofauna: exploring the role of systemic insecticides // Environ Sci. Pollut. Res. Int. 2015. V. 22(1). PP. 1–4. https://doi.org/10.1007/s11356-014-3220-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Seasonal dynamics of the number of grape leaf rollers in the Rkatsiteli vineyard according to pheromone monitoring data (KZPPR, 2024).

Download (60KB)

Copyright (c) 2025 Russian Academy of Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.