Symbiotic Activity of Lupin when Adding Zoohumus to the Substrate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The aim of the work was to study the effect of various fertilization technologies on the processes of growth, synthesis of photosynthetic pigments, nodule formation and the dynamics of changes in their nitrogenase activity in different varieties of lupine (white and narrow-leaved). The emphasis in the work was shifted to the additional positive effect obtained from the introduction of a liquid extract of black soldier fly zoohumus (Hermetia illucens) into the lupine-rhizobial agrocenosis. According to the biomass indicators, it was found that narrow-leaved lupine was more responsive to the organo-microbial effect, the increase in which, on average, by variants amounted to 36%, compared to the control. On white lupine, it reached only 9%. It should be noted that in terms of vegetative biomass accumulation, white lupine prevailed over narrow-leaved lupine in all experimental variants by an average of 3 times. However, with a relatively small increase in weight, narrow-leaved lupine showed an increased synthesis of total chlorophyll. On average, the increase in it from the effect of the organomicrobial consortium was 19%. Regarding the values of symbiotic activity, a positive effect of zoohumus was recorded against the background of inoculation, which was reflected in an increase in the number, weight and nitrogenase activity of formed nodules in the vegetation phases. A direct correlation was found between these indicators. The highest peak in fixation for both species occurred at the budding phase, amounting to 17 059 C2H4 /g–1 h–1 nmol for white lupine and 2719 C2H4 /g–1 h–1 for narrow-leaved lupine. As both lupine species matured, the number of nodules decreased and the process of symbiotic nitrogen fixation decreased. The results obtained indicate a positive effect of H. illucens zoohumus on the studied indicators and allow us to recommend the use of its liquid extracts in lupine cultivation.

Texto integral

Acesso é fechado

Sobre autores

S. Loskutov

All-Russian Research Institute of Food Additives – a branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatova

Email: puhalskyyan@gmail.com

PhD in Agricultural Sciences, Head of the Laboratory of Industrial Biotechnological Innovation

Rússia, Saint Petersburg

Ya. Pukhalsky

All-Russian Research Institute of Food Additives – a branch of the Federal Scientific Center for Food Systems named after V.M. Gorbatova

Autor responsável pela correspondência
Email: puhalskyyan@gmail.com

Researcher

Rússia, Saint Petersburg

A. Osipov

Agrophysical Institute of the Russian Academy of Agricultural Sciences

Email: puhalskyyan@gmail.com

Grand PhD in Agricultural Sciences, Professor, Chief Researcher

Rússia, Saint Petersburg

A. Yakubovskaya

Research Institute of Agriculture of Crimea

Email: puhalskyyan@gmail.com

PhD in Biological Sciences

Rússia, Simferopol

D. Meshcheryakov

Led for Plant

Email: puhalskyyan@gmail.com

Research Engineer

Rússia, Krasnoyarsk

I. Kameneva

Research Institute of Agriculture of Crimea

Email: puhalskyyan@gmail.com
Rússia, Simferopol

Bibliografia

  1. Ageeva P.A., Pochutina N.L. Realizaciya biologicheskogo potenciala kul’tury uzkolistnogo lyupina selekcionnym putem // Kormoproizvodstvo. 2005. № 6. S. 6–8.
  2. Alisova S.M., Chunderova S.M. Metodicheskie ukazaniya po ispol’zovaniyu acetilenovogo metoda pri selekcii bobovyh kul’tur na povyshenie azotfiksacii. L., 1982. 11 s.
  3. Artyuhov A.I., Lukashevich M.I., Ageeva P.A., Novik N.V. Lyupin – selekciya i adaptaciya v agrolandshafty Rossii // Trudy Kubanskogo gosudarstvennogo agrarnogo universiteta. 2016. № 59. S. 51–60.
  4. Dospekhov V.A. Metodika polevogo opyta s osnovami statisticheskoj obrabotki rezul’tatov issledovanij. M.: Agropromizdat, 1985. 351 s.
  5. Kononov A.S. Lyupin: tekhnologiya vozdelyvaniya v Rossii. Bryansk, 2003. 211 s.
  6. Kononchuk V.V., Nikitochkin D.N., Timoshenko S.M. i dr. Zernovaya produktivnost’ i azotfiksiruyushchaya sposobnost’ lyupina uzkolistnogo v zavisimosti ot norm vyseva, udobrenij i primeneniya gerbicidov pri raznyh pogodnyh usloviyah v centre nechernozemnoj zony Rossii // Zernobobovye i krupyanye kul’tury. 2021. № 2 (38). S. 104–114. https://doi.org/10.24412/2309-348X-2021-2-104-114
  7. Kupcov N.S., Mironova G.P. Selekciya sladkih sortov – ocherednoj etap uzkolistnogo lyupina // Kormoproizvodstvo. 2005. № 6. S. 8–10.
  8. Orlova A.G., Rapina O.G. Sravnitel’naya produktivnost’ razlichnyh sortov lyupina belogo v usloviyah Leningradskoj oblasti // Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta. 2019. № 57. S. 17–22. https://doi.org/10.24411/2078-1318-2019-14017
  9. Parahin N.V., Petrova S.N. Sel’skohozyajstvennye aspekty simbioticheskoj azotfiksacii. M.: Kolos, 2006. 151 s.
  10. Persikova T.F., Radkevich M.L. Vliyanie mikroelementov, regulyatorov rosta rastenij i bakterial’nyh udobrenij na pokazateli struktury urozhajnosti lyupina uzkolistnogo // Vestnik Belorusskoj gosudarstvennoj sel’skohozyajstvennoj akademii. 2017. № 2. S. 37–40.
  11. Cygutkin A.S., Blinnikova V.D., Kaufman A.L. i dr. Ob optimal’nom znachenii kislotnosti rastvora pri prorastanii semyan belogo lyupina (Lupinus albus L.) // Prirodoobustrojstvo. 2016. № 1. S. 91–97.
  12. Fernández-Pascual M., Pueyo J.J., de Felipe M.R. et al. Singular Features of the Bradyrhizobium-Lupinus Symbiosis // Dynamic Soil, Dynamic Plant. 2007. No. 1. P. 1–16.
  13. Lambers H., Shane M.W., Cramer M.D. et al. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits // Annals of Botany. 2006. No. 98. P. 693–713. https://doi.org/10.1093/aob/mcl114
  14. Neumann G., Massonneau A., Langlade N. et al. Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.) // Annals of Botany. 2000. No. 85. P. 909–919. https://doi.org/10.1006/anbo.2000.1135
  15. Peix A., Ramírez-Bahena M.H., Flores-Félix J.D. et al. Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov // International Journal of Systematic and Evolutionary Microbiology. 2015. 65 (Pt 4). P. 1213–1219. https://doi.org/10.1099/ijs.0.000082.
  16. Pueyo J.J., Quiñones M.A., Coba de la Peña T. et al. Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots // Frontiers in Plant Science. 2021. No. 12. 644218. https://doi.org/10.3389/fpls.2021.644218
  17. Schulze J., Temple G., Temple S.J. et al. Nitrogen Fixation by White Lupin under Phosphorus Deficiency // Annals of Botany. 2006. 98(4). P. 731–740. https://doi.org/10.1093/aob/mcl154
  18. Wang X., Ding W., Lambers H. Nodulation promotes cluster-root formation in Lupinus albus under low phosphorus conditions // Plant and Soil. 2019. No. 439. P. 233–242. https://doi.org/10.1007/s11104-018-3638-1

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Influence of zoogumus suspension on the dynamics of changes in morphometric indices of lupine-rhizobial symbiosis by experiment variants.

Baixar (347KB)
3. Fig. 2. Effect of zoogumus suspension on nitrogenase activity of lupine-rhizobial symbiosis by vegetation phases.

Baixar (98KB)
4. Fig. 3. Effect of zoogumus suspension on the content of total chlorophyll in leaves of lupine-rhizobial symbiosystem at the end of the experiment.

Baixar (92KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.