Automated control complex of agrotechnology in precision farming

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper presents a project of an automated complex for managing agricultural technology. The complex consists of two inseparable components, a control unit and an executive robotic technological machine. The control unit implements the modern theory of controlling a complex dynamic system, which is an agricultural field with sowing crops. The main distinctive feature of the proposed management theory is that the object of management is an agrocenoses, which includes sowing crops and weeds. This feature is transferred to the executive technological machine, through which the simultaneous application of mineral fertilizers and herbicide treatment is carried out. At the same time, the formation of optimal technological operations is carried out on the basis of Earth remote sensing data. Based on these data, the parameters of the state of the agrocenoses are assessed, and the resulting estimates are system-wide feedback through which agricultural technology is managed. The presented complex is of interest to specialists developing individual components of modern precision farming systems.

Texto integral

Acesso é fechado

Sobre autores

I. Mikhaylenko

Agrophysical Research Institute

Autor responsável pela correspondência
Email: ilya.mihailenko@yandex.ru

Grand PhD in Engineering Sciences

Rússia, Sankt-Peterburg

V. Timoshin

Agrophysical Research Institute

Email: ilya.mihailenko@yandex.ru

PhD in Engineering Sciences

Rússia, Sankt-Peterburg

Bibliografia

  1. Emel’yanov Yu.Ya., Kopylov E.V., Kirillova E.V. Effektivnost’ gerbicidov v sochetanii s udobreniyami na yarovoj pshenice // Niva Zauralya. 2014. Vol. 6 (106). S. 18–23. https://doi.org/10.32861/jac.91.130.136
  2. Korsakov K.V., Strizhkov N.I., Pron’ko V.V. Kombinirovannoe primenenie udobrenij, gerbicidov i regulyatorov rosta pri vozdelyvanii ovsa i prosa v Povolzh’e. // Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2013. № 4 (120). PP. 24–32.
  3. Mihajlenko I.M. Sposob odnovremennogo differencirovannogo vneseniya zhidkih mineral’nyh udobrenij i gerbicidov i ustrojstvo dlya ego osushchestvleniya. Patent RF № 2772889 ot 26 maya 2022 g.
  4. Mihajlenko I.M. Teoreticheskie osnovy i tekhnicheskaya realizaciya upravleniya agrotekhnologiyami. Izd. SPbGTU. 2017. 250 s.
  5. Tochnoe zemledelie: uchebnik. Prakticheskoe posobie / pod red. D. Shpaar, A.V. Zaharenko, V.P. Yakusheva. SPb. Pushkin. 2009. 397 s.
  6. Benjamin L.R., Milne A.E., Parsons D.J. et al. Using stochastic dynamic programming to support weed management decisions over a rotation //Weed Res. 2009. Vol. 49. PP. 207–216. https://doi.org/10.1111 /J.1365-3180.2008.00678.X
  7. Bessette D., Wilson R., Beaudrie C., Schroeder C. An online decision support tool to evaluate ecological weed management strategies // Weed Sci. 2019. Vol. 67. PP. 463–473. https://doi.org/10.1017/wsc2019.21
  8. Bohanec M., Cortet J. Griffiths B. et al. A qualitative multi-attribute model for assessing the impact of cropping systems on soil quality // Pedobiologia. 2007. Vol. 51 (3). PP. 239–250. https://doi.org/10.1016/j.pedobi.2007.03.006
  9. Emmi L., Gonzalez-De-Soto M., Pajares G., Gonzalez-De-Santos P. New trends in robotics for agriculture: Integration and assessment of a real fleet of robots // The Scientific World Journal. 2014. 21 p. https://doi.org/10.1155/2014/404059
  10. Oliver M., Bishop T., Marchant B. An overview of precision agriculture. In Precision Agriculture for Sustainability and Environmental Protection // Eds. Rout. London. 2013. https://doi.org/10.4324/970203128329
  11. Precision agriculture technology for crop farming. Edited by Qin Zhang. Washington State University Prosser, Washington, USA. 2016. 382 P. https://doi.org/10.1111/sum.12320

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1 Functional diagram of the automated complex for managing the state of the agrocenosis.

Baixar (126KB)
3. Fig. 2. Structural diagram of the functioning of the automated complex for managing the state of the agrocenosis.

Baixar (421KB)
4. Fig. 3. Functional diagram of a robotic technological machine for optimal control of the state of the agrocenosis.

Baixar (198KB)
5. Fig. 4. Technological diagram of the working parts of a robotic technological machine.

Baixar (98KB)
6. Fig. 5. Block diagram of the general control device of a robotic technological machine.

Baixar (98KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.