Pathomorphological changes and immunolocalization of matrix metalloproteinases in the placenta of cows during afterbirth retention

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

For the first time, using histochemical and immunohistochemical methods, epithelialized defects with signs of dystrophy in the crypts of caruncles in cows with afterbirth retention were established. The number of diplocaryocytes per unit area in the placenta of a cow during normal delivery was three times higher than the number of cells in cows with afterbirth retention. In the stroma of the villi of the allantochorion of the cotyledons, an increase in the number of collagen fibers and an increase in the number of fibroblasts, which are larger than in normal childbirth, have been established. In samples obtained from cows with afterbirth retention in the stroma of defragmented maternal crypts, the distribution of MMP was established, and immunopositive cells were fixed around the vessels, with active production of MMP-1 and MMP-3. Decreases in MMP-2 and MMP-9 in placentomas were observed in the allantochorion villi of the fetal part of the placenta. Thus, MMP-2 and МMP-9 are localized in the cotyledon and can affect the timely release of allantochorion villi from the crypts of the caruncles, ensuring the separation of fetal membranes from the maternal placenta in cattle.

Texto integral

Acesso é fechado

Sobre autores

V. Avdeenko

State Educational Institution of Higher Education St. Petersburg State University of Veterinary Medicine

Autor responsável pela correspondência
Email: sashamoroz.shuramoroz@mail.ru

Grand PhD in Veterinary Sciences

Rússia, St. Petersburg

A. Moroz

State Educational Institution of Higher Education St. Petersburg State University of Veterinary Medicine

Email: sashamoroz.shuramoroz@mail.ru

PhD Student

Rússia, St. Petersburg

D. Safronov

State Educational Institution of Higher Education St. Petersburg State University of Veterinary Medicine

Email: sashamoroz.shuramoroz@mail.ru

PhD in Veterinary Sciences

Rússia, St. Petersburg

E. Finageev

State Educational Institution of Higher Education St. Petersburg State University of Veterinary Medicine

Email: sashamoroz.shuramoroz@mail.ru

PhD in Veterinary Science

Rússia, St. Petersburg

S. Makavchik

State Educational Institution of Higher Education St. Petersburg State University of Veterinary Medicine

Email: sashamoroz.shuramoroz@mail.ru

Grand PhD in Veterinary Sciences

Rússia, St. Petersburg

K. Moiseeva

State Educational Institution of Higher Education St. Petersburg State University of Veterinary Medicine

Email: sashamoroz.shuramoroz@mail.ru

PhD Student

Rússia, St. Petersburg

Bibliografia

  1. Evglevskij A.A. Aspekty razvitiya metabolicheskogo acidoza i ketoacidoza u korov v promyshlennom zhivotnovodstve // Vestnik rossijskoj sel’skohozyajstvennoj nauki. 2022. № 3. S. 71–75. https://doi.org/10.30850/vrsn/2022/3/71-75
  2. Klyuchnikova N.F., Klyuchnikov M.T., Klyuchnikova E.M. Effektivnost’ primeneniya akantopanaksa dlya profilaktiki yalovosti korov // Vestnik rossijskoj sel’skohozyajstvennoj nauki. 2023. № 6. S. 91–94. https://doi.org/10.31857/2500-2082/2023/6/91-94
  3. Rodin I.A., Sedov A.V., Kapustin A.V. i dr. Rasprostranennost’ i etiologicheskie faktory, obuslavlivayushchie zaderzhanie plodnyh obolochek u korov // Siberian Journal of Life Sciences and Sciences and Agriculture. 2021. T. 13. № 4. S. 144–158.
  4. Breda F.L., Manchado-Gobatto F.B., de Barros Sousa F.A. et al. Complex networks analysis reinforces centrality hematological role on aerobic–anaerobic performances of the Brazilian Paralympic endurance team after altitude training // Scientific Reports. 2022. Vol. 7. No. 12. PP. 114–120.
  5. Davenport K.M., Ortega M.S., Johnson G.A., Seo H. Implantation and placentation in ruminants // Animal. 2023. Vol. 17. No. 5. PP. 180–196. https://doi.org/10.1016/j.animal.2023.100796.
  6. Davenport K.M., O’Neil E.V., Ortega M.S. et al. Single-cell insights into development of the bovine placenta // 2024. Vol. 110. No. 1. PP. 169–184. https://doi.org/10.1093/biolre/ioad123
  7. Hooshmandabbasi R., Zerbe H., Bauersachs S. et al. Pregnancy-associated glycoproteins in cows with retained fetal membranes // Theriogenology. 2018. Vol. 105. PP. 158–163.
  8. Johnson Gregory A., Bazer Fuller W., Heewon Seo et al. Understanding placentation in ruminants: a review focusing on cows and sheep Reprod Fertil Dev. 2023. Vol. 36. No. 2. PP. 93–111. https://doi.org/10.1071/RD23119
  9. Kamada H., Matsui Y. Twelve-oxoeicosatetraenoic acid-induced fetal membrane release improves postpartum ovarian function, milk production, and blood plasma biochemical parameters in cows // Animal bioscience. 2023. Vol. 36. No 9. PP. 137–146. https://doi.org/10.5713/ab.22.0443
  10. Lean I.J., LeBlanc S.J., Sheedy D.B. et al. Associations of parity with health disorders and blood metabolite concentrations in Holstein cows in different production systems // J Dairy Sci. 2023. Vol. 106. No. 1. PP. 500–518. https://doi.org/10.3168/jds.2021-21673
  11. Sarli G., Castagnetti C., Bianco C. et al. Canine placenta histological findings and microvascular density: the histological basis of a negative neonatal outcome? // Animals. 2021. Vol. 11. No. 5. PP. 1418–1400. https://doi.org/10.3390/ani11051418
  12. Scariot C.A., Scariot J., de Souza Ramos I.A. et al. Bovine anaplasmosis as a risk factor for retained placenta, mastitis, and abomasal displacement in dairy cattle // Res Vet Sci. 2023. Vol. 154. PP. 145–150. https://doi.org/10.1016/j.rvsc.2022.12.011
  13. Scariot P.P., Gobatto C.A., Polisel E.E. et al. Early-life mice housed in standard stocking density reduce the spontaneous physical activity and increase visceral fat deposition before reaching adulthood // Laboratory Animals. 2022. Vol. 4. No. 4. PP. 234–247.
  14. Scariot P.P., Manchado-Gobatto F.B., Beck W.R. et al. Monocarboxylate transporters (MCTs) in skeletal muscle and hypothalamus of less or more physically active mice exposed to aerobic training Life Sciences. 2022. Vol. 1. No. 307. PP. 120–128.
  15. Pereira K.H.N.P., Lourenço M.L. Reanimação neonatal de cães e gatos ao nascimento // Rev Bras Reprod Anim. 2022. Vol. 46. P. 3–16. https://doi.org/10.3390/ani12233426
  16. Tanner A.R., Kennedy V.C., Lynch C.S. et al. In vivo investigation of ruminant placenta function and physiology // Journal of animal science. 2022. Vol. 100. No. 6. PP. 1023–1043. https://doi.org/10.1093/jas/skac045

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural and cellular organization of the trophoblastic lining of the crypts of caruncles and the allantochorion of the villi of cotyledons in the norm and with retention of the placenta. A, B – PAS reaction according to McManus; trichrome staining according to Masson; alcian blue staining according to Steedman; B, D – hematoxylin and eosin-phloxacin staining; PAS reaction according to McManus. Here and in Figs. 2–5, Mayer’s hematoxylin staining, total magnification ×200.

Baixar (774KB)
3. Fig. 2. Immunolocalization of MMP-1 in proliferation of placental cells by the PAP method. A – normal delivery: 1 – localization of MMP-1 in the crypt; 2 – syncytiotrophoblast. Antibodies to MMP-1. B – retention of placenta: 1 – localization of MMP-1 in crypt cells; 2 – in the space of crypts and villi. Antibodies to MMP-1: a – vacuolar degeneration of epithelial cells of the caruncle crypts; b – blood filling of the vessels of the caruncle crypt.

Baixar (366KB)
4. Fig. 3. Immunolocalization of MMP-2 in placental cell proliferation by the PAP method. A – normal delivery: 1 – MMP-2 localization in the crypt; 2 – syncytiotrophoblast. Antibodies to MMP-2. B – retained placenta: 1 – MMP-2 localization in the endothelial cells of the crypts; 2 – crypts and villi. Antibodies to MMP-2.

Baixar (262KB)
5. Fig. 4. Immunolocalization of MMP-3 in placental cell proliferation. A – normal delivery: 1 – MMP-3 localization in the crypt; 2 – syncytiotrophoblast. Antibodies to MMP-3. B – retained placenta: 1 – MMP-3 localization in the endothelial cells of the crypts; 2 – crypts and villi. Antibodies to MMP-3.

Baixar (195KB)
6. Fig. 5. Immunolocalization of MMP-9 in placental cell proliferation by the PAP method. A – normal delivery: 1 – MMP-9 localization in the crypt; 2 – MMP-9 localization in the syncytiotrophoblast. Antibodies to MMP-9. B – retained placenta: 1 – MMP-9 localization in the endothelial cells of the crypts; 2 – MMP-9 localization in the space of the crypts and villi. Antibodies to MMP-9.

Baixar (446KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.