Solid Polymer Electrolytes Based on Reactive Copolymers of Glycidyl Methacrylate with 2-Hydroxyethyl Methacrylate

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Issues related to the use of 2-hydroxyethyl methacrylate–glycidyl methacrylate copolymers as a polymer matrix for developing solid polymer electrolytes are considered. Effect of the composition of copolymers with varying ratio of oxygen atoms in hydroxyl, carbonyl, ether, and epoxy groups and the amount of the added lithium salt on the ionic conductivity of the solid polymer electrolytes is studied. The resulting polymer films exhibit a high ionic conductivity reaching up to 1.2 × 10‒4 to 1.2 × 10‒3 S/cm at 25 and 80°С, respectively.

Sobre autores

V. Klimov

Department of Chemistry, Moscow State University; Volgograd State Technical University

Email: vicklimov@gmail.com
119991, Moscow, Russia; 400005, Volgograd, Russia

A. Kubarkov

Department of Chemistry, Moscow State University

Email: vicklimov@gmail.com
119991, Moscow, Russia

O. Kolyaganova

Volgograd State Technical University

Email: vicklimov@gmail.com
400005, Volgograd, Russia

E. Bryuzgin

Volgograd State Technical University

Email: vicklimov@gmail.com
400005, Volgograd, Russia

A. Babkin

Department of Chemistry, Moscow State University

Email: vicklimov@gmail.com
119991, Moscow, Russia

A. Navrotskyi

Volgograd State Technical University

Email: vicklimov@gmail.com
400005, Volgograd, Russia

V. Sergeyev

Department of Chemistry, Moscow State University

Email: vicklimov@gmail.com
119991, Moscow, Russia

I. Novakov

Volgograd State Technical University

Email: vicklimov@gmail.com
400005, Volgograd, Russia

E. Antipov

Department of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: vicklimov@gmail.com
119991, Moscow, Russia

Bibliografia

  1. Deng J., Bae C., Marcicki J., Masias A., Miller T. // Nat. Energy. 2018. V. 3. P. 261.
  2. Srivastava S., Schaefer J.L., Yang Z., Tu Z., Archer L.A. // Adv. Mater. 2014. V. 26. P. 201.
  3. Zhang J., Zhao J., Yue L., Wang Q., Chai J., Liu Z., Zhou X., Li H., Guo Y., Cui G., Chen L. // Adv. Energy Mater. 2015. V. 5. P. 1501082.
  4. Zhang J., Zhao N., Zhang M., Li Y., Chu P.K., Guo X., Di Z., Wang X., Li H. // Nano Energy. 2016. V. 28. P. 447.
  5. Fu K. (Kelvin), Gong Y., Dai J., Gong A., Han X., Yao Y., Wang C., Wang Y., Chen Y., Yan C., Li Y., Wachsman E.D., Hu L. // Proc. Natl. Acad. Sci. 2016. V. 113. P. 7094.
  6. Jiang L., Wang Q., Li K., Ping P., Jiang L., Sun J. // Sustainable Energy Fuels. 2018. V. 2. P. 1323.
  7. Fenton D.E., Parker J.M., Wright P.V. // Polymer. 1973. V. 14. P. 589.
  8. Stolwijk N.A., Heddier C., Reschke M., Wiencierz M., Bokeloh J., Wilde G. // Macromolecules. 2013. V. 46. P. 8580.
  9. Siva Kumar J., Subrahmanyam A.R., Jaipal Reddy M., Subba Rao U.V. // Mater. Lett. 2006. V. 60. P. 3346.
  10. Liu T., Chang Z., Yin Y., Chen K., Zhang Y., Zhang X. // Solid State Ionics. 2018. V. 318. P. 88.
  11. Agrawal R.C., Pandey G.P. // J. Phys., Appl. Phys. 2008. V. 41. P. 223001.
  12. Mindemark J., Lacey M.J., Bowden T., Brandell D. // Prog. Polym. Sci. 2018. V. 81. P. 114.
  13. Dobic S., Jovasevic J., Vojisavljevic M., Tomic S. // Hem Ind. 2011. V. 65. P. 675.
  14. Smolin Y.Y., Nejati S., Bavarian M., Lee D., Lau K.K.S., Soroush M. // J. Power Sourc. 2015. V. 274. P. 156.
  15. Gurusiddappa J., Madhuri W., Padma Suvarna R., Priya Dasan K. // Mater. Today Proc. 2016. V. 3. P. 1451.
  16. Manthiram A., Yu X., Wang S. // Nat. Rev. Mater. 2017. V. 2. P. 16103.
  17. Quartarone E., Mustarelli P. // Chem. Soc. Rev. 2011. V. 40. P. 2525.
  18. Tarascon J.-M., Armand M. // Nature. 2001. V. 414. P. 359.
  19. Bachman J.C., Muy S., Grimaud A., Chang H.-H., Pour N., Lux S.F., Paschos O., Maglia F., Lupart S., Lamp P., Giordano L., Shao-Horn Y. // Chem. Rev. 2016. V. 116. P. 140.
  20. Song J.Y., Wang Y.Y., Wan C.C. // J. Power Sourc. 1999. V. 77. P. 183.
  21. Kim J.G., Son B., Mukherjee S., Schuppert N., Bates A., Kwon O., Choi M.J., Chung H.Y., Park S. // J. Power Sourc. 2015. V. 282. P. 299.
  22. Long L., Wang S., Xiao M., Meng Y.J. // Mater. Chem. A. 2016. V. 4. P. 10038.
  23. Varzi A., Raccichini R., Passerini S., Scrosati B.J. // Mater. Chem. A. 2016. V. 4. P. 17251.
  24. Sreepathi Rao S., Jaipal Reddy M., Laxmi Narsaiah E., Subba Rao U.V. // Mater. Sci. Eng. B. 1995. V. 33. P. 173.
  25. Venkata Subba Rao C., Ravi M., Raja V., Balaji Bhargav P., Sharma A.K., Narasimha Rao V.V.R. // Iran Polym. J. 2012. V. 21. P. 531.
  26. Yoon H.-K., Chung W.-S., Jo N.-J. // Electrochim. Acta. 2004. V. 50. P. 289.
  27. Pandurangan S., Kaliyappan K., Ramaswamy A.P., Ramaswamy M. // Mater. Today Energy. 2021. V. 21. P. 100836.
  28. Masoud E.M., El-Bellihi A.-A., Bayoumy W.A., Mousa M.A. // Mater. Res. Bull. 2013. V. 48. P. 1148.
  29. Xu K. // Chem. Rev. 2014. V. 114. P. 11503.
  30. Buriez O., Han Y.B., Hou J., Kerr J.B., Qiao J., Sloop S.E., Tian M., Wang S. // J. Power Sourc. 2000. V. 89. P. 149.
  31. Zhu Y., Wang F., Liu L., Xiao S., Chang Z., Wu Y. // Energy Environ. Sci. 2013. V. 6. P. 618.
  32. Tamilselvi P., Hema M. // Polymer Science A. 2016. V. 58. № 5. P. 776.
  33. Abarna S., Hirankumar G. // Polymer Science A. 2017. V. 59. № 5. P. 660.
  34. Zhao W., Yi J., He P., Zhou H. // Electrochem. Energ. Rev. 2019. V. 2. P. 574.
  35. Yu Z., Qin D., Zhang Y., Sun H., Luo Y., Meng Q., Li D. // Energy Environ. Sci. 2011. V. 4. P. 1298.
  36. Dobić S.N., Filipović J.M., Tomić S.L., jnr. // Chem. Eng. J. 2012. V. 179. P. 372.
  37. Zanardi C., Pigani L., Maccaferri G., Degli Esposti M., Fabbri P., Zannini P., Seeber R. // Electrochem. Commun. 2016. V. 62. P. 34.
  38. Lee A.-R., Kim Y.-D., Lee S.-K., Jo N.-J. // J. Nanosci. Nanotech. 2013. V. 13. P. 7208.
  39. Wafi N.I.B., Daud W.R.W., Ahmad A., Majlan E.H., Somalu M.R. // Polym. Bull. 2019. V. 76. P. 3693.
  40. Wang Y., Chen Q., Chen M., Guan Y., Zhang Y. // Polym. Chem. 2019. V. 10. P. 4844.
  41. Wu G.M., Lin S.J., Yang C.C. // J. Power Sourc. 2013. V. 244. P. 287.
  42. Zhao Y., Wu C., Peng G., Chen X., Yao X., Bai Y., Wu F., Chen S., Xu X. // J. Power Sourc. 2016. V. 301. P. 47.
  43. Blank W.J., He Z.A., Picci M. // J. Coatings Tech. 2002. V. 74. P. 33.
  44. Schechter L., Wynstra J., Kurkjy R. // Ind. Eng. Chem. 1957. V. 49. P. 1107.
  45. Zygadło-Monikowska E., Florjańczyk Z., Wieczorek W. // J. Macromol. Sci. A. 1994. V. 31. P. 1121.
  46. Ellis L.D., Buteau S., Hames S.G., Thompson L.M., Hall D.S., Dahn J.R. // J. Electrochem. Soc. 2018. V. 165. P. A256.
  47. Manuel Stephan A. // Eur. Polym. J. 2006. V. 42. P. 21.
  48. Xue Z., He D., Xie X. // J. Mater. Chem. A. 2015. V. 3. P. 19218.
  49. Munshi M.Z.A., Owens B.B. // Polym. J. 1988. V. 20. P. 577.
  50. Latif F., Aziz M., Katun N., Ali A.M.M., Yahya M.Z. // J. Power Sourc. 2006. V. 159. P. 1401.
  51. Zhang Y., Feng W., Zhen Y., Zhao P., Wang X., Li L. // Ionics. 2022. V. 28. P. 2751.
  52. Quartarone E. // Solid State Ionics. 1998. V. 110. P. 1.
  53. Ibrahim S., Yassin M.M., Ahmad R., Johan M.R. // Ionics. 2011. V. 17. P. 399.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (104KB)
3.

Baixar (215KB)
4.

Baixar (47KB)
5.

Baixar (31KB)
6.

Baixar (139KB)

Declaração de direitos autorais © В.В. Климов, А.В. Кубарьков, О.В. Коляганова, Е.В. Брюзгин, А.В. Бабкин, А.В. Навроцкий, В.Г. Сергеев, И.А. Новаков, Е.В. Антипов, 2023