Selective limiting concentration of the electrolyte solutions with singly and doubly charged cations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of the anion exchange layer of the copolymer N,N-diallyl-N,N-dimethylammonium chloride and methyl methacrylate on the electrochemical properties of a homogeneous perfluorosulfopolymer-based cation exchange membrane has been studied. Applying a modifying layer with a thickness of 5 microns to a membrane with a thickness of 215 microns leads to a decrease in electrical conductivity by no more than 35%, while the diffusion permeability decreases by more than 5 times and ceases to depend on concentration.

During membrane testing, similar levels of concentration were achieved in the process of the limiting electrodialysis concentration of sodium chloride solution. The effectiveness of a bilayer membrane for selective electrodialysis concentration was demonstrated. During the concentration of sodium and calcium chlorides mixture, the permselectivity coefficient P(Na+/Ca2+) ranged from 0.5 to 1.2 in the case of using the cation exchange membrane. Using a bilayer membrane led to a significant increase of the permselectivity coefficient, ranging from 1.5 to 2.7, depending on current density. This makes it possible to efficiently separate electrolytes with singly and doubly charged ions.

Sobre autores

N. Kovalchuk

Kuban State University; Platov South-Russian State Polytechnic University (NPI)

Autor responsável pela correspondência
Email: kovol13@yandex.ru
Rússia, Krasnodar; Novocherkassk

A. Minenko

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

N. Romanyuk

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

N. Smirnova

Platov South-Russian State Polytechnic University (NPI)

Email: kovol13@yandex.ru
Rússia, Novocherkassk

S. Loza

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

V. Zabolotsky

Kuban State University

Email: kovol13@yandex.ru
Rússia, Krasnodar

Bibliografia

  1. Al-Amshawee S., Yunus M.Y.B.M., Azoddein A.A.M. et al. // Chem. Eng. J. 2020. V. 380. 122231.
  2. Kabir M.M., Sabur G.M., Akter M.M. et al. // Desalination. 2024. V. 569. 117041.
  3. Shi J., Gong L., Zhang T., Sun S. // Membranes. 2022. V. 12. 767.
  4. Mustafa J., Al-Marzouqi A.H., El-Naas M.H., Ghasem N. // Desalination. 2021. V. 520. 115327.
  5. Turek M. // Desalination. 2003. V. 153. 115327.
  6. AlMadani H.M.N. // Renew. Energy. 2003. V. 28 (12). P. 1915–1924.
  7. Tado K., Sakai F., Sano Y., Nakayama A. // Desalination. 2016. V. 378. P. 60–66.
  8. Yan J., Wang H., Fu R. et al. // Desalination. 2022. V. 531. 115690.
  9. Gurreri L., Tamburini A., Cipollina A., Micale G. // Membranes. 2020. V. 10. 146.
  10. Sun B., Zhang M., Huang S. et al. // Sep. Purif. Technol. 2022. V. 281. 119907.
  11. Li C., Ramasamy D.L., Sillanpää M., Repo E. // Sep. Purif. Technol. 2021. V. 254. 117442.
  12. Kabir M.M., Sabur G.Md., Akter Mst. et al. // Desalination. 2024. V. 569. P. 117041.
  13. Cifuentes L., García I., Arriagada P., Casas J.M. // Sep. Purif. Technol. 2009. V. 68 (1). P. 105–108.
  14. Cerrillo-Gonzalez M. del M., Villen-Guzman. M., Rodriguez-Maroto J.M., Paz-Garcia J.M. // Metals. 2024. V. 14. 134857.
  15. Juve J.-M.A., Christensen F.M.S., Wang. Y., Wei Z. // Chem. Eng. J. 2022. V. 435. 134857.
  16. Havelka J., Fárová H., Jiříček T. et al. // Water Sci. Technol. 2019. V. 79 (8). P. 1580–1586.
  17. Balcik-Canbolat C., Sengezer C., Sakar H. et al. // Environ. Technol. 2020. V. 41 (4). P. 440–449.
  18. Moltedo J.J., Schwarz A., Gonzalez-Vogel A. // J. Environ. Manage, 2022. V. 303. 114104.
  19. Patel S.K., Lee B., Westerhoff P., Elimelech M. // Water. Res. 2024. V. 250. 121009.
  20. Sun B., Zhang M., Huang S. et al. // Desalination. 2021. V. 498. 114793.
  21. Cho Y., Kim K., Ahn J., Lee J. // Metals. 2020. V. 10. 851.
  22. Demin A.V., Zabolotskii V.I. // Russ. J. Electrochem. 2008. V. 44. P. 1058–1064.
  23. Лоза С.А., Романюк Н.А., Фалина И.В., Лоза Н.В. // Мембраны и мембранные технологии. 2023. Т. 13. С. 269–290.
  24. Ge L., Wu B., Li Q. et al. // J. Memb. Sci. 2016. V. 498. P. 192–200.
  25. Hube S., Eskafi M., Hrafnkelsdóttir K.F. // Sci. Total Environ. 2020. V. 710. 136375.
  26. Babilas D., Muszyński J., Milewski A. et al. // Chem. Eng. J. 2021. V. 408. P. 127908.
  27. Luo T., Abdu S., Wessling M. // J. Memb. Sci. 2018. V. 555. P. 429–454.
  28. Ge L., Wu B., Yu D. et al. // Chinese J. Chem. Eng. 2017. V. 25. P. 1606–1615.
  29. Lysova A.A., Manin A.D., Golubenko D.V. et al. // J. Memb. Sci. 2025. V. 716. 123518.
  30. Manin A.D., Golubenko D.V., Yurova P.A., Yaroslavtsev A.B. // Mendeleev Commun. 2023. V. 33. P. 365–367.
  31. Golubenko D.V., Manin A.D., Wang Y. et al. // Desalination. 2022. V. 531. 115719.
  32. Golubenko D.V., Karavanova Y.A., Melnikov S.S. et al. // J. Memb. Sci. 2018. V. 563. P. 777–784.
  33. Karavanova Y.A., Kas’kova Z.M., Veresov A.G., Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2010. V. 55. P. 479–483.
  34. Li J., Zhou M.-li, Lin J.-yang et al. // J. Memb. Sci. 2015. V. 486. P. 89–96.
  35. Rehman D., Ahdab Y.D., Lienhard J.H. // Water Res. 2021. V. 199. 117171.
  36. Zhang W., Miao M., Pan J. et al. // Desalination. 2017. V. 411. P. 28–37.
  37. Lambert J., Avila-Rodriguez M., Durand G., Rakib M. // J. Memb. Sci. 2006. V. 280 (1–2). P. 219–225.
  38. Sata. T. // J. Memb. Sci. 1994. V. 93 (2). P. 117–135.
  39. Sata T., Sata T., Yang W. // J. Memb. Sci. 2002. V. 206. № 1–2. P. 31–60.
  40. Hosseini S.M., Alibakhshi H., Jashni E.et al. // J. Hazard. Mater. 2020. V. 381. 120884.
  41. Zhao C., Xue J., Ran F., Sun S. // Prog. Mater. Sci. 2013. V. 58, № 1. P. 76–150.
  42. Yurova, P.A.; Stenina, I.A.; Manin, A.D. et al. // Membr. Membr. Technol. 2024. V. 6. P. 55–62.
  43. Zhong S., Cui X., Fu T., Na H. // J. Power Sources. 2008. V. 180. P. 23–28.
  44. Falina I., Loza N., Loza S. et al. // Membranes. 2021. V. 11. 227.
  45. Salehi E., Hosseini S.M., Ansari S., Hamidi A. // J. Solid State Electrochem. 2016. V. 20. P. 371–377.
  46. Stenina I., Golubenko D., Nikonenko V., Yaroslavtsev A. // Int. J. Mol. Sci. 2020. V. 21. 5517.
  47. Pang X., Tao Y., Xu Y.et al. // J. Memb. Sci. 2020. V. 595. 117544.
  48. Kumar P., Suhag S., Mandal J.R., Shahi V.K. // J. Memb. Sci. 2024. V. 711. 123168.
  49. Karavanova Y.A., Fedina K.G., Yaroslavtsev A.B. // Inorg. Mater. 2011. V. 47. P. 329–333.
  50. Melnikov S., Bondarev D., Nosova E. // Membranes. 2020. V. 10. 346.
  51. Bondarev D., Melnikov S., Zabolotskiy V. // J. Memb. Sci. 2023. V. 675. 121510.
  52. Патент N 2807369 Российская Федерация, МПК B01D 71/40 (2006.01), B01D 71/06 (2006.01). Способ получения гомогенной анионообменной мембраны: 2023124254: заявл. 20.09.2023: опубл. 14.11.2023 / Бондарев Д. А., Ачох А. Р., Беспалов А. В., Заболоцкий В. И.
  53. Achoh A., Bondarev D., Melnikov S., Zabolotsky V. // Electrochem. 2024. V. 5. P. 393–406.
  54. Loza S., Loza N., Kutenko N., Smyshlyaev N. // Membranes. 2022. V. 12. 985.
  55. Protasov K.V., Shkirskaya S.A., Berezina N.P., Zabolotskii V.I. // Russ. J. Electrochem. 2010. V. 46. P. 1131–1140.
  56. Stenina I.A., P.A. Yurova, L. Novak et al. // Colloid Polym. Sci. 2021. V. 299. P. 719–728.
  57. Zabolotsky V.I., Achoh A.R., Lebedev K.A., Melnikov S.S. // J. Memb. Sci. 2020. V. 608. P. 118152.
  58. Mareev, S.A.; Evdochenko, E.; Wessling, M. et al. // J. Memb. Sci. 2020. V. 603. 118010.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024