Separation of water-oil emulsion by polyamide membranes treated with corona plasma

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Studies were carried out on the separation of the water-oil emulsion by polyamide membranes with a pore size of 0.2 μm treated with corona discharge plasma at a voltage of 5–25 kV and a time of 1–5 minutes. An increase in the productivity and efficiency of the separation of the water-oil emulsion by corona-treated polyamide membranes was revealed. Increase of roughness and change of chemical structure of modified membranes are shown.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Dryakhlov

Kazan National Research Technological University

Хат алмасуға жауапты Автор.
Email: vladisloved@mail.ru
Ресей, Kazan, Karl Marx St., 68

I. Shaikhiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
Ресей, Kazan, Karl Marx St., 68

D. Fazullin

Kazan (Volga Region) Federal University

Email: vladisloved@mail.ru

Naberezhnye Chelny Institute

Ресей, Naberezhnye Chelny, ave. Mira, 68/19

I. Nizameev

Kazan National Research Technical University named after A.N. Tupolev

Email: vladisloved@mail.ru
Ресей, Kazan, Karl Marx St., 10

M. Galikhanov

Institute of Applied Research, Tatarstan Academy of Sciences

Email: vladisloved@mail.ru
Ресей, Kazan, Bauman str., 20

I. Mukhamadiev

Kazan National Research Technological University

Email: vladisloved@mail.ru
Ресей, Kazan, Karl Marx St., 68

Әдебиет тізімі

  1. McCay D.F., Rowe J.J., Whittier N., Sankaranarayanan S., Etkin D.S. // J. Hazardous Materials. 2004. V. 107. P. 11.
  2. Pak A., Mohammadi T. // Desalination. 2008. V. 222. P. 249.
  3. Nassar N.N., Hassan A., Carbognani L., Lopez- F., Pereira-Almao P. // Fuel. 2012. V. 95. P. 257.
  4. Haruna A., Merican Z.M.A., Musa S.G. // J. Industrial and Engineering Chemistry. 2022. V. 112. P. 20.
  5. Deng S., Wang Z., Gu Q., Meng F., Li J., Wang H. // Fuel Processing Technology. 2011. V. 92(5). P. 1062.
  6. Peng B., Yao Z., Wang X., Crombeen M., Sweeney D.G., Tam K.C. // Green Energy & Environment. 2020 V. 5(1). P. 37.
  7. Albatrni H., Qiblawey H., Almomani F., Adham S., Khraisheh M. // Chemosphere. 2019. V. 233. P. 809.
  8. Varjani S., Joshi R., Srivastava V.K., Ngo H.H., Guo W. // Environmental Science and Pollution Research. 2020. V. 27. P. 27172.
  9. Mohammadi L., Rahdar A., Bazrafshan E., Dahmardeh H., Susan M.A.B.H., Kyzas G.Z. // Processes. 2020. V. 8(4). № 447.
  10. Dmitrieva E.S., Anokhina T.S., Novitsky E.G., Volkov V.V., Borisov I.L., Volkov A.V. // Polymers. 2022. V. 14(5). № 980.
  11. Muthukumar K., Kaleekkal N.J., Lakshmi D.S., et all. // J. Appl. Polym. Sci. 2019. № 24. P. 1–10.
  12. Fazullin D.D., Mavrin G.V. // Chemical and Petroleum Engineering. 2020. № 56. P. 215222.
  13. Шайхиев И.Г., Галиханов М.Ф., Дряхлов В.О., Алексеева М.Ю., Фазуллин Д.Д. // Вода: Химия и Экология. 2019. № 1–2 (118). С. 77–82.
  14. Алексеева М.Ю., Дряхлов В.О., Галиханов М.Ф., Низамеев И.Р., Шайхиев И.Г. // Мембраны И Мембранные Технологии. 2018. Т. 8. № 1. С. 59–65.
  15. Fedotova A.V., Shaikhiev I.G., Dryakhlov V.O., Nizameev. I.R., Abdullin I.S. // Petroleum Chemistry. 2017. V. 57. P. 159.
  16. Fedotova A.V., Dryakhlov V.O., Shaikhiev I.G., Nizameev I.R., Garaeva G.F. // Surface Engineering and Applied Electrochemistry. 2018. V. 54. P. 174.
  17. Shaikhiev I.G., Dryakhlov V.O., Galikhanov M.F., Fazullin D.D., Mavrin G.V // Inorganic Materials: Applied Research. 2020. V. 11. № 5. P. 1160–1164.
  18. Тарасов А.В., Федотов Ю.А., Лепешин С.А., Панов Ю.Т., Окулов К.В., Вдовина А.И. // Известия Самарского научного центра РАН. 2012. № 14 (1–9). С. 2372.
  19. Панов Ю.Т., Тарасов А.В., Лепешин С.А., Ермолаева Е.В. // Современные наукоемкие технологии. 2015. № 12–2. С. 258.
  20. Tusek L., Nitschke M., Werner C. //Colloids and Surfaces. A: Physicochemical and Engineering Aspects. 2001. V. 195. P. 81–95.
  21. Yang Z., Guo H., Tang Y.C. // Journal of membrane science. 2019. V. 590. P. 117297.
  22. Ridgway H.F., Orbell J., Gray S. // J. Membrane Science. 2017. V. 524. P. 436.
  23. Shao S., Zeng F., Long L., Zhu X., Peng L.E., Wang F., Yang Z. Tang C.Y. // Environmental Science & Technology. 2022. V. 56(18). P. 12811.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Corona device diagram: 1 – high voltage source, 2 – grounded electrode, 3 – corona electrode, 4 – membrane sample.

Жүктеу (45KB)
3. Fig. 2. Performance of separation of oil emulsion by PA membranes treated with corona discharge at: a) U = 5 kV; b) U = 15 kV; c) U = 25 kV.

Жүктеу (269KB)
4. Fig. 3. Graph of the dependence of particle sizes and VNE intensity before and after corona treatment.

Жүктеу (77KB)
5. Fig. 4. Diffraction pattern of the original and treated PA membrane with a pore size of 0.2 µm.

Жүктеу (76KB)
6. Fig. 5. IR spectrum of the original and corona-treated PA membranes with a pore size of 0.2 µm.

Жүктеу (79KB)
7. Fig. 6. Images of the surface with corresponding topographic histograms of the PA membrane: a) original; b) corona-treated.

Жүктеу (878KB)

© Russian Academy of Sciences, 2024