Two Birds with One Stone: Drug Regime Targets Viral Pathogenesis Phases and COVID-19 ARDS at the Same Time
- Autores: Ghavami G.1, Sardari S.2
-
Afiliações:
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran
- Edição: Volume 24, Nº 8 (2024)
- Seção: Medicine
- URL: https://vietnamjournal.ru/1871-5265/article/view/645765
- DOI: https://doi.org/10.2174/0118715265270637240107153121
- ID: 645765
Citar
Texto integral
Resumo
Background:Severe COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a kind of viral pneumonia induced by infection with the coronavirus that causes ARDS. It involves symptoms that are a combination of viral pneumonia and ARDS. Antiviral or immunosuppressive medicines are used to treat many COVID-19 patients. Several drugs are now undergoing clinical studies in order to see if they can be repurposed in the future.
Material and Methods:In this study, in silico biomarker-targeted methodologies, such as target/molecule virtual screening by docking technique and drug repositioning strategy, as well as data mining approach and meta-analysis of investigational data, were used.
Results:In silico findings of used combination of drug repurposing and high-throughput docking methods presented acetaminophen, ursodiol, and β-carotene as a three-drug therapy regimen to treat ARDS induced by viral pneumonia in addition to inducing direct antiviral effects against COVID-19 viral infection.
Conclusion:In the current study, drug repurposing and high throughput docking methods have been employed to develop combination drug regimens as multiple-molecule drugs for the therapy of COVID-19 and ARDS based on a multiple-target therapy strategy. This approach offers a promising avenue for the treatment of COVID-19 and ARDS, and highlights the potential benefits of drug repurposing in the fight against the current pandemic.
Palavras-chave
Sobre autores
Ghazaleh Ghavami
Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran
Email: info@benthamscience.net
Soroush Sardari
Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Long B, Carius BM, Chavez S, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med 2022; 54: 46-57. doi: 10.1016/j.ajem.2022.01.028 PMID: 35121478
- Zoumpourlis V, Goulielmaki M, Rizos E, Baliou S, Spandidos D. The COVID 19 pandemic as a scientific and social challenge in the 21st century. Mol Med Rep 2020; 22(4): 3035-48. doi: 10.3892/mmr.2020.11393 PMID: 32945405
- Our World In Data Coronavirus Pandemic (COVID-19). 2023. Available From: https://ourworldindata.org/coronavirus
- Gibson PG, Qin L, Puah SH. COVID ‐19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre‐ COVID ‐19 ARDS. Med J Aust 2020; 213(2): 54-56.e1. doi: 10.5694/mja2.50674 PMID: 32572965
- Badraoui R, Alrashedi MM, El-May MV, Bardakci F. Acute respiratory distress syndrome: A life threatening associated complication of SARS-CoV-2 infection inducing COVID-19. J Biomol Struct Dyn 2020; 5: 1-10. doi: 10.1080/07391102.2020.1803139 PMID: 32752936
- Ferrari F, Martins VM, Teixeira M, Santos RD, Stein R. COVID-19 and Thromboinflammation: Is There a Role for Statins? Clinics (São Paulo) 2021; 76: e2518. doi: 10.6061/clinics/2021/e2518 PMID: 33787678
- Sultana J, Crisafulli S, Gabbay F, Lynn E, Shakir S. Trifirٍ G. Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Front Pharmacol 2020; 11: 588654. doi: 10.3389/fphar.2020.588654 PMID: 33240091
- Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020; 12(9): 1058. doi: 10.3390/v12091058 PMID: 32972027
- Umscheid CA, Margolis DJ, Grossman CE. Key concepts of clinical trials: A narrative review. Postgrad Med 2011; 123(5): 194-204. doi: 10.3810/pgm.2011.09.2475 PMID: 21904102
- Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun 2018; 11: 156-64. doi: 10.1016/j.conctc.2018.08.001 PMID: 30112460
- Wong NA, Saier MH Jr. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22(3): 1308. doi: 10.3390/ijms22031308 PMID: 33525632
- Yang G, Tan Z, Zhou L, et al. Effects of angiotensin II receptor blockers and ACE (Angiotensin-Converting enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: A single-center retrospective study. Hypertension 2020; 76(1): 51-8. doi: 10.1161/HYPERTENSIONAHA.120.15143 PMID: 32348166
- Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20. doi: 10.1056/NEJMoa2002032 PMID: 32109013
- Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43. doi: 10.1016/j.jmii.2020.03.034 PMID: 32307245
- Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42. doi: 10.1001/jama.2020.2648 PMID: 32091533
- Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9. doi: 10.1111/jth.14817 PMID: 32220112
- Batra N, De Souza C, Batra J, Raetz AG, Yu AM. The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). Int J Mol Sci 2020; 21(17): 6412. doi: 10.3390/ijms21176412 PMID: 32899231
- Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C. Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75. doi: 10.1016/j.cytogfr.2020.06.001
- Liu Y, Yao W, Xu J, et al. The anti-inflammatory effects of acetaminophen and N -acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun 2015; 21(6): 587-97. doi: 10.1177/1753425914566205 PMID: 25575547
- Lin L, Xu L, Lv W, et al. An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog 2019; 15(6): e1007795. doi: 10.1371/journal.ppat.1007795 PMID: 31170267
- Simmons DL, Wagner D, Westover K. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin Infect Dis 2000; 31 (Suppl. 5): S211-8. doi: 10.1086/317517 PMID: 11113025
- Kwon MS, Shim EJ, Seo YJ, et al. Effect of aspirin and acetaminophen on proinflammatory cytokine-induced pain behavior in mice. Pharmacology 2005; 74(3): 152-6. doi: 10.1159/000084548 PMID: 15775706
- Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 2019; 5(1): 18. doi: 10.1038/s41572-019-0069-0 PMID: 30872586
- Janz DR, Bastarache JA, Rice TW, et al. Randomized, placebo-controlled trial of acetaminophen for the reduction of oxidative injury in severe sepsis: The Acetaminophen for the Reduction of Oxidative Injury in Severe Sepsis trial. Crit Care Med 2015; 43(3): 534-41. doi: 10.1097/CCM.0000000000000718 PMID: 25474535
- Zhao WX, Zhang JH, Cao JB, et al. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity. J Neuroinflammation 2017; 14(1): 17. doi: 10.1186/s12974-016-0781-6 PMID: 28109286
- Yoshikawa M, Tsujii T, Matsumura K, et al. Immunomodulatory effects of ursodeoxycholic acid on immune responses. Hepatology 1992; 16(2): 358-64. doi: 10.1002/hep.1840160213 PMID: 1639344
- Ishizaki K, Iwaki T, Kinoshita S, et al. Ursodeoxycholic acid protects concanavalin A-induced mouse liver injury through inhibition of intrahepatic tumor necrosis factor-α and macrophage inflammatory protein-2 production. Eur J Pharmacol 2008; 578(1): 57-64. doi: 10.1016/j.ejphar.2007.08.031 PMID: 17888421
- Manousou P, Kolios G, Drygiannakis I, et al. CXCR3 axis in patients with primary biliary cirrhosis: A possible novel mechanism of the effect of ursodeoxycholic acid. Clin Exp Immunol 2013; 172(1): 9-15. doi: 10.1111/cei.12032 PMID: 23480180
- Ko WK, Lee SH, Kim SJ, et al. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages. PLoS One 2017; 12(6): e0180673. doi: 10.1371/journal.pone.0180673 PMID: 28665991
- Niu F, Li H, Xu X, Sun L, Gan N, Wang A. Ursodeoxycholic acid protects against lung injury induced by fat embolism syndrome. J Cell Mol Med 2020; 24(24): 14626-32. doi: 10.1111/jcmm.15985 PMID: 33145933
- García-Romero CS, Guzman C, Cervantes A, Cerbón M. Liver disease in pregnancy: Medical aspects and their implications for mother and child. Ann Hepatol 2019; 18(4): 553-62. doi: 10.1016/j.aohep.2019.04.009 PMID: 31126882
- Kawata A, Murakami Y, Suzuki S, Fujisawa S. Anti-inflammatory Activity of β-Carotene, Lycopene and Tri-n-butylborane, a Scavenger of Reactive Oxygen Species. In Vivo 2018; 32(2): 255-64. doi: 10.21873/invivo.11232 PMID: 29475907
- Thakor TR, Lo WA. Competition and R&D Financing: Evidence from the Biopharmaceutical Industry. SSRN Elec J 2020 2020; 85 doi: 10.2139/ssrn.3754494
- Araz O. Current Pharmacological Approach to ARDS: The Place of Bosentan. Eurasian J Med 2020; 52(1): 81-5. doi: 10.5152/eurasianjmed.2020.19218 PMID: 32158321
Arquivos suplementares
