Two Birds with One Stone: Drug Regime Targets Viral Pathogenesis Phases and COVID-19 ARDS at the Same Time


Cite item

Full Text

Abstract

Background:Severe COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a kind of viral pneumonia induced by infection with the coronavirus that causes ARDS. It involves symptoms that are a combination of viral pneumonia and ARDS. Antiviral or immunosuppressive medicines are used to treat many COVID-19 patients. Several drugs are now undergoing clinical studies in order to see if they can be repurposed in the future.

Material and Methods:In this study, in silico biomarker-targeted methodologies, such as target/molecule virtual screening by docking technique and drug repositioning strategy, as well as data mining approach and meta-analysis of investigational data, were used.

Results:In silico findings of used combination of drug repurposing and high-throughput docking methods presented acetaminophen, ursodiol, and β-carotene as a three-drug therapy regimen to treat ARDS induced by viral pneumonia in addition to inducing direct antiviral effects against COVID-19 viral infection.

Conclusion:In the current study, drug repurposing and high throughput docking methods have been employed to develop combination drug regimens as multiple-molecule drugs for the therapy of COVID-19 and ARDS based on a multiple-target therapy strategy. This approach offers a promising avenue for the treatment of COVID-19 and ARDS, and highlights the potential benefits of drug repurposing in the fight against the current pandemic.

About the authors

Ghazaleh Ghavami

Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran

Email: info@benthamscience.net

Soroush Sardari

Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran

Author for correspondence.
Email: info@benthamscience.net

References

  1. Long B, Carius BM, Chavez S, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med 2022; 54: 46-57. doi: 10.1016/j.ajem.2022.01.028 PMID: 35121478
  2. Zoumpourlis V, Goulielmaki M, Rizos E, Baliou S, Spandidos D. The COVID 19 pandemic as a scientific and social challenge in the 21st century. Mol Med Rep 2020; 22(4): 3035-48. doi: 10.3892/mmr.2020.11393 PMID: 32945405
  3. Our World In Data Coronavirus Pandemic (COVID-19). 2023. Available From: https://ourworldindata.org/coronavirus
  4. Gibson PG, Qin L, Puah SH. COVID ‐19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre‐ COVID ‐19 ARDS. Med J Aust 2020; 213(2): 54-56.e1. doi: 10.5694/mja2.50674 PMID: 32572965
  5. Badraoui R, Alrashedi MM, El-May MV, Bardakci F. Acute respiratory distress syndrome: A life threatening associated complication of SARS-CoV-2 infection inducing COVID-19. J Biomol Struct Dyn 2020; 5: 1-10. doi: 10.1080/07391102.2020.1803139 PMID: 32752936
  6. Ferrari F, Martins VM, Teixeira M, Santos RD, Stein R. COVID-19 and Thromboinflammation: Is There a Role for Statins? Clinics (São Paulo) 2021; 76: e2518. doi: 10.6061/clinics/2021/e2518 PMID: 33787678
  7. Sultana J, Crisafulli S, Gabbay F, Lynn E, Shakir S. Trifirٍ G. Challenges for Drug Repurposing in the COVID-19 Pandemic Era. Front Pharmacol 2020; 11: 588654. doi: 10.3389/fphar.2020.588654 PMID: 33240091
  8. Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020; 12(9): 1058. doi: 10.3390/v12091058 PMID: 32972027
  9. Umscheid CA, Margolis DJ, Grossman CE. Key concepts of clinical trials: A narrative review. Postgrad Med 2011; 123(5): 194-204. doi: 10.3810/pgm.2011.09.2475 PMID: 21904102
  10. Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun 2018; 11: 156-64. doi: 10.1016/j.conctc.2018.08.001 PMID: 30112460
  11. Wong NA, Saier MH Jr. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22(3): 1308. doi: 10.3390/ijms22031308 PMID: 33525632
  12. Yang G, Tan Z, Zhou L, et al. Effects of angiotensin II receptor blockers and ACE (Angiotensin-Converting enzyme) inhibitors on virus infection, inflammatory status, and clinical outcomes in patients with COVID-19 and hypertension: A single-center retrospective study. Hypertension 2020; 76(1): 51-8. doi: 10.1161/HYPERTENSIONAHA.120.15143 PMID: 32348166
  13. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20. doi: 10.1056/NEJMoa2002032 PMID: 32109013
  14. Jean SS, Lee PI, Hsueh PR. Treatment options for COVID-19: The reality and challenges. J Microbiol Immunol Infect 2020; 53(3): 436-43. doi: 10.1016/j.jmii.2020.03.034 PMID: 32307245
  15. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42. doi: 10.1001/jama.2020.2648 PMID: 32091533
  16. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094-9. doi: 10.1111/jth.14817 PMID: 32220112
  17. Batra N, De Souza C, Batra J, Raetz AG, Yu AM. The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19). Int J Mol Sci 2020; 21(17): 6412. doi: 10.3390/ijms21176412 PMID: 32899231
  18. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C. Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev 2020; 54: 62-75. doi: 10.1016/j.cytogfr.2020.06.001
  19. Liu Y, Yao W, Xu J, et al. The anti-inflammatory effects of acetaminophen and N -acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun 2015; 21(6): 587-97. doi: 10.1177/1753425914566205 PMID: 25575547
  20. Lin L, Xu L, Lv W, et al. An NLRP3 inflammasome-triggered cytokine storm contributes to Streptococcal toxic shock-like syndrome (STSLS). PLoS Pathog 2019; 15(6): e1007795. doi: 10.1371/journal.ppat.1007795 PMID: 31170267
  21. Simmons DL, Wagner D, Westover K. Nonsteroidal anti-inflammatory drugs, acetaminophen, cyclooxygenase 2, and fever. Clin Infect Dis 2000; 31 (Suppl. 5): S211-8. doi: 10.1086/317517 PMID: 11113025
  22. Kwon MS, Shim EJ, Seo YJ, et al. Effect of aspirin and acetaminophen on proinflammatory cytokine-induced pain behavior in mice. Pharmacology 2005; 74(3): 152-6. doi: 10.1159/000084548 PMID: 15775706
  23. Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 2019; 5(1): 18. doi: 10.1038/s41572-019-0069-0 PMID: 30872586
  24. Janz DR, Bastarache JA, Rice TW, et al. Randomized, placebo-controlled trial of acetaminophen for the reduction of oxidative injury in severe sepsis: The Acetaminophen for the Reduction of Oxidative Injury in Severe Sepsis trial. Crit Care Med 2015; 43(3): 534-41. doi: 10.1097/CCM.0000000000000718 PMID: 25474535
  25. Zhao WX, Zhang JH, Cao JB, et al. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity. J Neuroinflammation 2017; 14(1): 17. doi: 10.1186/s12974-016-0781-6 PMID: 28109286
  26. Yoshikawa M, Tsujii T, Matsumura K, et al. Immunomodulatory effects of ursodeoxycholic acid on immune responses. Hepatology 1992; 16(2): 358-64. doi: 10.1002/hep.1840160213 PMID: 1639344
  27. Ishizaki K, Iwaki T, Kinoshita S, et al. Ursodeoxycholic acid protects concanavalin A-induced mouse liver injury through inhibition of intrahepatic tumor necrosis factor-α and macrophage inflammatory protein-2 production. Eur J Pharmacol 2008; 578(1): 57-64. doi: 10.1016/j.ejphar.2007.08.031 PMID: 17888421
  28. Manousou P, Kolios G, Drygiannakis I, et al. CXCR3 axis in patients with primary biliary cirrhosis: A possible novel mechanism of the effect of ursodeoxycholic acid. Clin Exp Immunol 2013; 172(1): 9-15. doi: 10.1111/cei.12032 PMID: 23480180
  29. Ko WK, Lee SH, Kim SJ, et al. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages. PLoS One 2017; 12(6): e0180673. doi: 10.1371/journal.pone.0180673 PMID: 28665991
  30. Niu F, Li H, Xu X, Sun L, Gan N, Wang A. Ursodeoxycholic acid protects against lung injury induced by fat embolism syndrome. J Cell Mol Med 2020; 24(24): 14626-32. doi: 10.1111/jcmm.15985 PMID: 33145933
  31. García-Romero CS, Guzman C, Cervantes A, Cerbón M. Liver disease in pregnancy: Medical aspects and their implications for mother and child. Ann Hepatol 2019; 18(4): 553-62. doi: 10.1016/j.aohep.2019.04.009 PMID: 31126882
  32. Kawata A, Murakami Y, Suzuki S, Fujisawa S. Anti-inflammatory Activity of β-Carotene, Lycopene and Tri-n-butylborane, a Scavenger of Reactive Oxygen Species. In Vivo 2018; 32(2): 255-64. doi: 10.21873/invivo.11232 PMID: 29475907
  33. Thakor TR, Lo WA. Competition and R&D Financing: Evidence from the Biopharmaceutical Industry. SSRN Elec J 2020 2020; 85 doi: 10.2139/ssrn.3754494
  34. Araz O. Current Pharmacological Approach to ARDS: The Place of Bosentan. Eurasian J Med 2020; 52(1): 81-5. doi: 10.5152/eurasianjmed.2020.19218 PMID: 32158321

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers