Identification of Genes Encoded Toxin-Antitoxin System in Mycobacterium Tuberculosis Strains from Clinical Sample


Cite item

Full Text

Abstract

Background:The toxin-antitoxin system is a genetic element that is highly present in Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. The toxin-antitoxin sys-tem comprises toxin protein and antitoxin protein or non-encoded RNA interacting with each other and inhibiting toxin activity. M. Tuberculosis has more classes of TA loci than non-tubercle bacilli and other microbes, including VapBC, HigBA, MazEF, ParDE, RelBE, MbcTA, PemIK, DarTG, MenTA, one tripartite type II TAC chaperone system, and hypothetical proteins.

Aims:The study aims to demonstrate the genes encoded toxin-antitoxin system in mycobacterium tuberculosis strains from clinical samples.

Materials and Methods:The pulmonary and extra-pulmonary tuberculosis clinical samples were collected, and smear microscopy (Ziehl-Neelsen staining) was performed for the detection of high bacilli (3+) count, followed by nucleic acid amplification assay. Bacterial culture and growth assay, genomic DNA extraction, and polymerase chain reaction were also carried out.

Results:The positive PTB and EPTB samples were determined by 3+ in microscopy smear [20], and the total count of tubercle bacilli determined by NAAT assay was 8.0×1005 in sputum and 1.3×1004 CFU/ml in tissue abscess. Moreover, the genomic DNA was extracted from culture, and the amplification of Rv1044 and Rv1045 genes in 624 and 412 base pairs (between 600-700 and 400-500 in ladder), respectively, in the H37Rv and clinical samples was observed.

Conclusion:It has been found that Rv1044 and Rv1045 are hypothetical proteins with 624 and 882 base pairs belonging to the AbiEi/AbiEii family of toxin-antitoxin loci. Moreover, the signifi-cant identification of TA-encoded loci genes may allow for the investigation of multidrug-resistant and extensively drug-resistant tuberculosis.

About the authors

Karthikeyan Sundaram

Department of Microbiology,, SRM Medical College Hospital and Research Centre

Author for correspondence.
Email: info@benthamscience.net

Leela Kagithakara Vajravelu

Department of Microbiology, SRM Medical College Hospital and Research Centre

Email: info@benthamscience.net

Ravichandiran Velayutham

Department of Natural Products, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

Utpal Mohan

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research

Email: info@benthamscience.net

References

  1. Tandon H, Sharma A, Wadhwa S, et al. Bioinformatic and mutational studies of related toxin–antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J Biol Chem 2019; 294(23): 9048-63. doi: 10.1074/jbc.RA118.006814 PMID: 31018964
  2. Global tuberculosis report. Who int 2023. Available from: Global tuberculosis report 2023 (who. int) cited 25 Nov 2023.
  3. Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009; 5(12): e1000767. doi: 10.1371/journal.pgen.1000767 PMID: 20011113
  4. Richardson W, Kang GW, Lee HJ, Kwon KM, Kim S, Kim HJ. Chasing the structural diversity of the transcription regulator Mycobacterium tuberculosis HigA2. IUCrJ 2021; 8(5): 823-32. doi: 10.1107/S2052252521007715 PMID: 34584743
  5. Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5(5): 666. doi: 10.3389/fmicb.2014.00666 PMID: 25538690
  6. Ariyachaokun K, Grabowska AD, Gutierrez C, Neyrolles O. Multi-stress induction of the mycobacterium tuberculosis MbcTA bactericidal toxin-antitoxin system. Toxins 2020; 12(5): 329. doi: 10.3390/toxins12050329 PMID: 32429486
  7. Ahn DH, Lee KY, Lee SJ, et al. Structural analyses of the MazEF4 toxin-antitoxin pair in Mycobacterium tuberculosis provide evidence for a unique extracellular death factor. J Biol Chem 2017; 292(46): 18832-47. doi: 10.1074/jbc.M117.807974 PMID: 28972145
  8. Bordes P, Genevaux P. Control of toxin-antitoxin systems by proteases in mycobacterium tuberculosis. Front Mol Biosci 2021; 8: 691399. doi: 10.3389/fmolb.2021.691399 PMID: 34079824
  9. Albrethsen J, Agner J, Piersma SR, et al. Proteomic profiling of mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics 2013; 12(5): 1180-91. doi: 10.1074/mcp.M112.018846 PMID: 23345537
  10. Schifano JM, Cruz JW, Vvedenskaya IO, et al. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res 2016; 44(3): 1256-70. doi: 10.1093/nar/gkv1370 PMID: 26740583
  11. Kang SM, Kim DH, Lee KY, et al. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: Insights into unique binding and antibiotic peptides. Nucleic Acids Res 2017; 45(14): 8564-80. doi: 10.1093/nar/gkx489 PMID: 28575388
  12. Zaveri A, Wang R, Botella L, et al. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA‐damage response and leads to cell death. Mol Microbiol 2020; 114(4): 641-52. doi: 10.1111/mmi.14571 PMID: 32634279
  13. Roy TB, Sarma SP. Insights into the solution structure and transcriptional regulation of the MazE9 antitoxin inMYCOBACTERIUM TUBERCULOSIS. Proteins 2023; prot.26589.. doi: 10.1002/prot.26589 PMID: 37737533
  14. Saha R, Bhattacharje G, De S, Das AK. Deciphering the conformational stability of MazE7 antitoxin in Mycobacterium tuberculosis from molecular dynamics simulation study. J Biomol Struct Dyn 2023; 1-17. doi: 10.1080/07391102.2023.2280675 PMID: 37965715
  15. Thakur Z, Saini V, Arya P, Kumar A, Mehta PK. Computational insights into promoter architecture of toxin-antitoxin systems of Mycobacterium tuberculosis. Gene 2018; 641: 161-71. doi: 10.1016/j.gene.2017.10.054 PMID: 29066303
  16. Ziemski M, Leodolter J, Taylor G, Kerschenmeyer A, Weber-Ban E. Genome‐wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin–antitoxin systems as a major sub-strate class. FEBS J 2021; 288(1): 99-114. doi: 10.1111/febs.15335 PMID: 32301575
  17. Dougan DA, Alver R, Turgay K. Exploring a potential Achilles heel of Mycobacterium tuberculosis: Defining the ClpC1 interactome. FEBS J 2021; 288(1): 95-8. doi: 10.1111/febs.15430 PMID: 32571006
  18. Andrews ESV, Arcus VL. PhoH2 proteins couple RNA helicase and RNAse activities. Protein Sci 2020; 29(4): 883-92. doi: 10.1002/pro.3814 PMID: 31886915
  19. Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci Rep 2019; 9(1): 5949. doi: 10.1038/s41598-019-41548-9 PMID: 30976025
  20. Kisuya J, Chemtai A, Raballah E, Keter A, Ouma C. The diagnostic accuracy of Th1 (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4, IL-6 and IL-10) cytokines response in AFB microscopy smear negative PTB- HIV co-infected patients. Sci Rep 2019; 9(1): 2966. doi: 10.1038/s41598-019-39048-x PMID: 30814543
  21. Nikam C, Jagannath M, Narayanan MM, et al. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: A near-care approach. PLoS One 2013; 8(1): e51121. doi: 10.1371/journal.pone.0051121 PMID: 23349670
  22. Yu X, Gao X, Zhu K, et al. Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism. Commun Biol 2020; 3(1): 216. doi: 10.1038/s42003-020-0941-1 PMID: 32382148
  23. Torrey HL, Keren I, Via LE, Lee JS, Lewis K. High persister mutants in mycobacterium tuberculosis. PLoS One 2016; 11(5): e0155127. doi: 10.1371/journal.pone.0155127 PMID: 27176494
  24. Cruz JW, Sharp JD, Hoffer ED, et al. Growth-regulating mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat Commun 2015; 6(1): 7480. doi: 10.1038/ncomms8480 PMID: 26158745
  25. Ndhlovu V, Mandala W, Sloan D, Kamdolozi M, Caws M, Davies G. Evaluation of the efficacy of two methods for direct extraction of DNA from Mycobacterium tuberculosis sputum. J Infect Dev Ctries 2018; 12(12): 1067-72. doi: 10.3855/jidc.10592 PMID: 32027607
  26. Kahbazi M, Sarmadian H, Ahmadi A, et al. Novel mutations in pncA gene of pyrazinamide resistant clinical isolates of mycobacterium tuberculosis. Sci Pharm 2018; 86(2): 15. doi: 10.3390/scipharm86020015 PMID: 29659533
  27. Dhanaraj B, Papanna MK, Adinarayanan S, Vedachalam C, Sundaram V, Shanmugam S. Prevalence and risk factors for adult pulmonary tuberculosis in a metropolitan city of south India. plos one 2015; 10: e0124260. doi: 10.1371/journal.pone.0124260
  28. Eddabra R, Ait Benhassou H. Rapid molecular assays for detection of tuberculosis. Pneumonia 2018; 10(1): 4. doi: 10.1186/s41479-018-0049-2 PMID: 29876241
  29. Sharma A, Sagar K, Chauhan NK, et al. HigB1 toxin in Mycobacterium tuberculosis is upregulated during stress and required to establish infection in guinea pigs. Front Microbiol 2021; 12: 748890. doi: 10.3389/fmicb.2021.748890 PMID: 34917044
  30. Eun HJ, Lee J, Kang SJ, Lee BJ. The structural and functional investigation of the VapBC43 complex from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2022; 616: 19-25. doi: 10.1016/j.bbrc.2022.05.061 PMID: 35636251
  31. Lu Z, Wang H, Yu T. The SecB-like chaperone Rv1957 from Mycobacterium tuberculosis: Crystallization and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2016; 72(6): 457-61. doi: 10.1107/S2053230X16007287 PMID: 27303898
  32. Dawson CC, Cummings JE, Starkey JM, Slayden RA. Discovery of a novel type IIb RelBE toxin‐antitoxin system in Mycobacterium tuberculosis defined by co‐regulation with an antisense RNA. Mol Microbiol 2022; 117(6): 1419-33. doi: 10.1111/mmi.14917 PMID: 35526138
  33. Gupta M, Nayyar N, Chawla M, Sitaraman R, Bhatnagar R, Banerjee N. The chromosomal parDE2 toxin–antitoxin system of mycobacterium tuberculosis H37Rv: Genetic and functional characterization. Front Microbiol 2016; 7: 886. doi: 10.3389/fmicb.2016.00886 PMID: 27379032
  34. Tandon H, Melarkode Vattekatte A, Srinivasan N, Sandhya S. Molecular and structural basis of cross-reactivity in M. tuberculosis toxin–antitoxin systems. Toxins 2020; 12(8): 481. doi: 10.3390/toxins12080481 PMID: 32751054
  35. Deep A, Tiwari P, Agarwal S, et al. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin–antitoxin system: Targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 2018; 46(21): 11639-55. doi: 10.1093/nar/gky924 PMID: 30329074
  36. Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP, Singh R. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 2015; 6(1): 6059. doi: 10.1038/ncomms7059 PMID: 25608501
  37. Roy M, Kundu A, Bhunia A, Das Gupta S, De S, Das AK. Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: Insights into VapB46– DNA binding. FEBS J 2019; 286(6): 1174-90. doi: 10.1111/febs.14737 PMID: 30576065
  38. Bajaj RA, Arbing MA, Shin A, Cascio D, Miallau L. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response. Acta Crystallogr F Struct Biol Commun 2016; 72(12): 863-9. doi: 10.1107/S2053230X16017957 PMID: 27917833
  39. GenBank Overview Available from https://www.ncbi.nlm.nih.gov/genbank
  40. Cai Y, Usher B, Gutierrez C, et al. A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. Sci Adv 2020; 6(31): eabb6651. doi: 10.1126/sciadv.abb6651 PMID: 32923609
  41. Talwar S, Pandey M, Sharma C, et al. Role of VapBC12 toxin-antitoxin locus in cholesterol-induced mycobacterial persistence. mSystems 2020; 5(6): e00855-20. doi: 10.1128/mSystems.00855-20 PMID: 33323416
  42. Sharma A, Chattopadhyay G, Chopra P, et al. VapC21 toxin contributes to drug-tolerance and interacts with non-cognate VapB32 antitoxin in mycobacterium tuberculosis. Front Microbiol 2020; 11: 2037. doi: 10.3389/fmicb.2020.02037 PMID: 33042034
  43. Muthuramalingam M, White J, Bourne C. Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins 2016; 8(7): 214. doi: 10.3390/toxins8070214 PMID: 27409636
  44. Zhao J, Liu W, Xie W, Cao X, Yuan L. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China. Infect Drug Resist 2018; 11(11): 345-58. doi: 10.2147/IDR.S148648 PMID: 29563815
  45. Kazemian H, Heidari H, Kardan-Yamchi J, et al. Comparison of toxin-antitoxin expression among drug-susceptible and drug-resistant clinical isolates of Mycobacterium tuberculosis. Adv Respir Med 2021; 89(2): 110-4. doi: 10.5603/ARM.a2021.0033 PMID: 33966258
  46. Ramirez MV, Dawson CC, Crew R, England K, Slayden RA. MazF6 toxin of Mycobacterium tuberculosis demonstrates antitoxin specificity and is coupled to regulation of cell growth by a Soj-like protein. BMC Microbiol 2013; 13(1): 240. doi: 10.1186/1471-2180-13-240 PMID: 24172039
  47. Barth VC, Woychik NA. The sole mycobacterium smegmatis mazf toxin targets tRNALys to impart highly selective, codon-dependent proteome reprogramming. Front Genet 2020; 10: 1356. doi: 10.3389/fgene.2019.01356 PMID: 32117414
  48. Barth VC, Zeng JM, Vvedenskaya IO, Ouyang M, Husson RN, Woychik NA. Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nat Commun 2019; 10(1): 3035. doi: 10.1038/s41467-019-10869-8 PMID: 31292443
  49. Hoffer ED, Miles SJ, Dunham CM. The structure and function of Mycobacterium tuberculosis MazF-mt6 toxin provide insights into conserved features of MazF endonucleases. J Biol Chem 2017; 292(19): 7718-26. doi: 10.1074/jbc.M117.779306 PMID: 28298445
  50. Chen R, Zhou J, Xie W. Mechanistic insight into the peptide binding modes to two M. tb mazf toxins. Toxins 2021; 13(5): 319. doi: 10.3390/toxins13050319 PMID: 33925254
  51. Park JY, Kim HJ, Pathak C, et al. Induced DNA bending by unique dimerization of HigA antitoxin. IUCrJ 2020; 7(4): 748-60. doi: 10.1107/S2052252520006466 PMID: 32695421
  52. Schuessler DL, Cortes T, Fivian-Hughes AS, et al. Induced ectopic expression of HigB toxin inM ycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90(1): 195-207. doi: 10.1111/mmi.12358 PMID: 23927792
  53. Beck IN, Usher B, Hampton HG, Fineran PC, Blower TR. Antitoxin autoregulation of M. tuberculosis toxin-antitoxin expression through negative cooperativity arising from multiple inverted repeat sequences. Biochem J 2020; 477(12): 2401-19. doi: 10.1042/BCJ20200368 PMID: 32519742
  54. Xie Y, Wei Y, Shen Y, et al. TADB 2.0: An updated database of bacterial type II toxin–antitoxin loci. Nucleic Acids Res 2018; 46(D1): D749-53. doi: 10.1093/nar/gkx1033 PMID: 29106666
  55. Shao Y, Harrison EM, Bi D, et al. TADB: A web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res 2011; 39(Database issue) (Suppl. 1): D606-11. doi: 10.1093/nar/gkq908 PMID: 20929871

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers