An Insight into the Repurposing of Phytoconstituents obtained from Delhi’s Aravalli Biodiversity Park as Antifungal Agents


Cite item

Full Text

Abstract

The global prevalence of fungal infections is alarming in both the pre- and postCOVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-αdemethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.

About the authors

Amanpreet Kaur

, Delhi Pharmaceutical Sciences and Research University

Email: info@benthamscience.net

Kalicharan Sharma

, Delhi Pharmaceutical Sciences and Research University

Email: info@benthamscience.net

Neetika Sharma

, Delhi Pharmaceutical Sciences and Research University

Email: info@benthamscience.net

Geeta Aggarwal

, Delhi Pharmaceutical Sciences and Research University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Odds FC, Brown AJP, Gow NAR. Antifungal agents: Mechanisms of action. Trends Microbiol 2003; 11(6): 272-9. doi: 10.1016/S0966-842X(03)00117-3 PMID: 12823944
  2. Dubey R, Sen KK, Mohanty SS, Panda S, Goyal M, Menon SM. The rising burden of invasive fungal infections in COVID-19, can structured CT thorax change the game. Egypt J Radiol Nucl Med 2022; 53(1): 18. doi: 10.1186/s43055-022-00694-3
  3. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: A systematic review and meta-analysis. J Infect 2020; 81(2): 266-75. doi: 10.1016/j.jinf.2020.05.046 PMID: 32473235
  4. Fungal Disease Frequency. Available from: www.gaffi.org (Accessed on: Dec 7, 2022).
  5. Seagle EE, Williams SL, Chiller TM. Recent trends in the epidemiology of fungal infections. Infect Dis Clin North Am 2021; 35(2): 237-60. doi: 10.1016/j.idc.2021.03.001 PMID: 34016277
  6. Antibiotic resistance threats in the United States 2019. Available from: www.cdc.gov
  7. Available from: https://www.grandviewresearch.com/industry-analysis/antifungal-drugs-market
  8. Denning DW. Echinocandin antifungal drugs. Lancet 2003; 362(9390): 1142-51. doi: 10.1016/S0140-6736(03)14472-8 PMID: 14550704
  9. Patil A, Majumdar S. Echinocandins in antifungal pharmacotherapy. J Pharm Pharmacol 2017; 69(12): 1635-60. doi: 10.1111/jphp.12780 PMID: 28744860
  10. Grover N. Echinocandins: A ray of hope in antifungal drug therapy. Indian J Pharmacol 2010; 42(1): 9-11. doi: 10.4103/0253-7613.62396 PMID: 20606829
  11. Au-Young J, Robbins PW. Isolation of a chitin synthase gene (CHS 1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol 1990; 4(2): 197-207. doi: 10.1111/j.1365-2958.1990.tb00587.x PMID: 2140148
  12. Ruiz-Herrera J, San-Blas G. Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 2003; 3(1): 77-91. doi: 10.2174/1568005033342064 PMID: 12570735
  13. Chaudhary PM, Tupe SG, Deshpande MV. Chitin synthase inhibitors as antifungal agents. Mini Rev Med Chem 2013; 13(2): 222-36. PMID: 22512590
  14. Schroepfer GJ Jr. Sterol biosynthesis. Annu Rev Biochem 1982; 51(1): 555-85. doi: 10.1146/annurev.bi.51.070182.003011 PMID: 6810750
  15. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids ofSaccharomyces cerevisiae. Yeast 1998; 14(16): 1471-510. doi: 10.1002/(SICI)1097-0061(199812)14:163.0.CO;2-Y PMID: 9885152
  16. Monk BC, Sagatova AA, Hosseini P, Ruma YN, Wilson RK, Keniya MV. Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteomics 2020; 1868(3): 140206. doi: 10.1016/j.bbapap.2019.02.008 PMID: 30851431
  17. Georgopapadakou NH, Dix BA, Smith SA, Freudenberger J, Funke PT. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother 1987; 31(1): 46-51. doi: 10.1128/AAC.31.1.46 PMID: 3551826
  18. Aoki Y, Yoshihara F, Kondoh M, Nakamura Y, Nakayama N, Arisawa M. Ro 09-1470 is a selective inhibitor of P-450 lanosterol C-14 demethylase of fungi. Antimicrob Agents Chemother 1993; 37(12): 2662-7. doi: 10.1128/AAC.37.12.2662 PMID: 8109933
  19. Petranyi G, Ryder NS, Stütz A. Allylamine derivatives: New class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 1984; 224(4654): 1239-41. doi: 10.1126/science.6547247 PMID: 6547247
  20. Georgopapadakou NH, Bertasso A. Effects of squalene epoxidase inhibitors on Candida albicans. Antimicrob Agents Chemother 1992; 36(8): 1779-81. doi: 10.1128/AAC.36.8.1779
  21. Iwatani W, Arika T, Yamaguchi H. Two mechanisms of butenafine action in Candida albicans. Antimicrob Agents Chemother 1993; 37(4): 785-8. doi: 10.1128/AAC.37.4.785 PMID: 8494375
  22. Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta Rev Biomembr 1986; 864(3-4): 257-304. doi: 10.1016/0304-4157(86)90002-X PMID: 3539192
  23. Warnock DW. Amphotericin B: An introduction. J Antimicrob Chemother 1991; 28 (Suppl B): 27-38. doi: 10.1093/jac/28.suppl_B.27
  24. Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012; 2012: 1-26. doi: 10.1155/2012/713687 PMID: 22187560
  25. Mazu TK, Bricker BA, Flores-Rozas H, Ablordeppey SY. The mechanistic targets of antifungal agents: An overview. Mini Rev Med Chem 2016; 16(7): 555-78. doi: 10.2174/1389557516666160118112103 PMID: 26776224
  26. Moen MD, Lyseng-Williamson KA, Scott LJ. Liposomal amphotericin B: A review of its use as empirical therapy in febrile neutropenia and in the treatment of invasive fungal infections. Drugs 2009; 69(3): 361-92. doi: 10.2165/00003495-200969030-00010 PMID: 19275278
  27. Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B. Recent advances in ergosterol biosynthesis and regulation mechanisms in saccharomyces cerevisiae. Indian J Microbiol 2017; 57(3): 270-7. doi: 10.1007/s12088-017-0657-1 PMID: 28904410
  28. Prasad R, Goffeau A. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu Rev Microbiol 2012; 66(1): 39-63. doi: 10.1146/annurev-micro-092611-150111 PMID: 22703054
  29. Toda M, Williams SR, Berkow EL, et al. Population-based active surveillance for culture-confirmed candidemia - four sites, United States, 2012-2016. MMWR Surveill Summ 2019; 68(8): 1-15. doi: 10.15585/mmwr.ss6808a1
  30. Denning DW. Antifungal drug resistance: An update. Eur J Hosp Pharm Sci Pract 2022; 29(2): 109-12. doi: 10.1136/ejhpharm-2020-002604 PMID: 35190454
  31. Bongomin F, Olum R, Nsenga L, Baluku JB. Burden of tinea capitis among children in Africa: Protocol for a systematic review and meta-analysis of observational studies, 1990–2020. BMJ Open 2020; 10(9): e041230. doi: 10.1136/bmjopen-2020-041230 PMID: 32963073
  32. Dragoš V, Lunder M. Lack of efficacy of 6-week treatment with oral terbinafine for tinea capitis due to Microsporum canis in children. Pediatr Dermatol 1997; 14(1): 46-8. doi: 10.1111/j.1525-1470.1997.tb00427.x PMID: 9050765
  33. EUCAST AFST. Overview of antifungal ECOFFs and clinical breakpoints for yeasts, moulds and dermatophytes using the EUCAST E.Def 7.3, E.Def 9.3 and E.Def 11.0 procedures. 2021. Available from: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifu ngals/ (Accessed on: 22 Apr 2021).
  34. Kano R, Kimura U, Kakurai M, et al. Trichophyton indotineae sp. nov.: A new highly terbinafine-resistant anthropophilic dermatophyte species. Mycopathologia 2020; 185(6): 947-58.
  35. Arendrup MC, Jørgensen KM, Guinea J, et al. Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. J Antimicrob Chemother 2020; 75(7): 1807-19. doi: 10.1093/jac/dkaa111 PMID: 32303059
  36. Schelenz S, Barnes RA, Barton RC, et al. British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis 2015; 15(4): 461-74. doi: 10.1016/S1473-3099(15)70006-X PMID: 25771341
  37. Jallow S, Govender NP. Ibrexafungerp: A First-in-Class Oral Triterpenoid Glucan Synthase Inhibitor. J Fungi (Basel) 2021; 7(3): 163. doi: 10.3390/jof7030163 PMID: 33668824
  38. Ghannoum M, Arendrup MC, Chaturvedi VP, et al. Ibrexafungerp: A novel oral triterpenoid antifungal in development for the treatment of candida auris infections. Antibiotics 2020; 9(9): 539. doi: 10.3390/antibiotics9090539 PMID: 32854252
  39. Wiederhold NP. Review of the novel investigational antifungal olorofim. J Fungi 2020; 6(3): 122. doi: 10.3390/jof6030122 PMID: 32751765
  40. Shaw KJ, Ibrahim AS. Fosmanogepix: A review of the first-in-class broad spectrum agent for the treatment of invasive fungal infections. J Fungi (Basel) 2020; 6(4): 239. doi: 10.3390/jof6040239 PMID: 33105672
  41. Miesel L, Lin KY, Ong V. Rezafungin treatment in mouse models of invasive candidiasis and aspergillosis: Insights on the PK/PD pharmacometrics of rezafungin efficacy. Pharmacol Res Perspect 2019; 7(6): e00546. doi: 10.1002/prp2.546 PMID: 31763045
  42. Thompson GR III, Soriano A, Skoutelis A, et al. Rezafungin versus caspofungin in a phase 2, randomized, double-blind study for the treatment of candidemia and invasive candidiasis: The STRIVE trial. Clin Infect Dis 2021; 73(11): e3647-55. doi: 10.1093/cid/ciaa1380 PMID: 32955088
  43. Sandison T, Ong V, Lee J, Thye D. Safety and pharmacokinetics of CD101 IV, a novel echinocandin, in healthy adults. Antimicrob Agents Chemother 2017; 61(2): e01627-16. doi: 10.1128/AAC.01627-16 PMID: 27919901
  44. Zhao Y, Prideaux B, Nagasaki Y, et al. Unraveling drug penetration of echinocandin antifungals at the site of infection in an intra-abdominal abscess model. Antimicrob Agents Chemother 2017; 61(10): e01009-17. doi: 10.1128/AAC.01009-17 PMID: 28739797
  45. Tan BH, Chakrabarti A, Li RY, et al. Incidence and species distribution of candidaemia in Asia: A laboratory-based surveillance study. Clin Microbiol Infect 2015; 21(10): 946-53. doi: 10.1016/j.cmi.2015.06.010
  46. Van Daele R, Spriet I, Wauters J, et al. Antifungal drugs: What brings the future? Med Mycol 2019; 57(S3): S328-43. doi: 10.1093/mmy/myz012 PMID: 31292663
  47. Alkhazraji S, Gebremariam T, Alqarihi A, et al. Fosmanogepix (APX001) is effective in the treatment of immunocompromised mice infected with invasive pulmonary scedosporiosis or disseminated fusariosis. Antimicrob Agents Chemother 2020; 64(3): e01735-19. doi: 10.1128/AAC.01735-19 PMID: 31818813
  48. Oliver JD, Sibley GEM, Beckmann N, et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc Natl Acad Sci 2016; 113(45): 12809-14. doi: 10.1073/pnas.1608304113 PMID: 27791100
  49. Yamashita K, Miyazaki T, Fukuda Y, et al. The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes. Antimicrob Agents Chemother 2019; 63(8): e00374-19. doi: 10.1128/AAC.00374-19 PMID: 31182539
  50. Singh SB, Liu W, Li X, et al. Antifungal spectrum, in vivo efficacy, and structure-activity relationship of ilicicolin h. ACS Med Chem Lett 2012; 3(10): 814-7. doi: 10.1021/ml300173e PMID: 24900384
  51. Mota Fernandes C, Dasilva D, Haranahalli K, et al. The future of antifungal drug therapy: Novel compounds and targets. Antimicrob Agents Chemother 2021; 65(2): e01719-20. doi: 10.1128/AAC.01719-20 PMID: 33229427
  52. McCarty TP, Pappas PG. Antifungal pipeline. Front Cell Infect Microbiol 2021; 11: 732223. doi: 10.3389/fcimb.2021.732223 PMID: 34552887
  53. Gintjee TJ, Donnelley MA, Thompson GR III. Aspiring antifungals: Review of current antifungal pipeline developments. J Fungi 2020; 6(1): 28. doi: 10.3390/jof6010028 PMID: 32106450
  54. Munshi MA, Gardin JM, Singh A, et al. The role of ceramide synthases in the pathogenicity of cryptococcus neoformans. Cell Rep 2018; 22(6): 1392-400. doi: 10.1016/j.celrep.2018.01.035 PMID: 29425496
  55. Bae M, Kim H, Moon K, et al. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org Lett 2015; 17(3): 712-5. doi: 10.1021/ol5037248 PMID: 25622093
  56. Derengowski LS, Tavares AH, Silva S, Procópio LS, Felipe MSS, Silva-Pereira I. Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition. Med Mycol 2008; 46(2): 125-34. doi: 10.1080/13693780701670509 PMID: 18324491
  57. Perfect JR, Tenor JL, Miao Y, Brennan RG. Trehalose pathway as an antifungal target. Virulence 2017; 8(2): 143-9. doi: 10.1080/21505594.2016.1195529 PMID: 27248439
  58. Nambu M, Covel JA, Kapoor M, et al. A calcineurin antifungal strategy with analogs of FK506. Bioorg Med Chem Lett 2017; 27(11): 2465-71. doi: 10.1016/j.bmcl.2017.04.004 PMID: 28412204
  59. Marcyk PT, LeBlanc EV, Kuntz DA, et al. Fungal-selective resorcylate aminopyrazole Hsp90 inhibitors: Optimization of whole-cell anticryptococcal activity and insights into the structural origins of cryptococcal selectivity. J Med Chem 2021; 64(2): 1139-69. doi: 10.1021/acs.jmedchem.0c01777 PMID: 33444025
  60. Yuan R, Tu J, Sheng C, Chen X, Liu N. Effects of Hsp90 inhibitor ganetespib on inhibition of azole-resistant Candida albicans. Front Microbiol 2021; 12: 680382. doi: 10.3389/fmicb.2021.680382 PMID: 34093502
  61. Cowen LE, Singh SD, Köhler JR, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci 2009; 106(8): 2818-23. doi: 10.1073/pnas.0813394106 PMID: 19196973
  62. Whitesell L, Robbins N, Huang DS, et al. Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 2019; 10(1): 402. doi: 10.1038/s41467-018-08248-w PMID: 30679438
  63. Lamoth F, Juvvadi PR, Steinbach WJ. Heat shock protein 90 (Hsp90) in fungal growth and pathogenesis. Curr Fungal Infect Rep 2014; 8(4): 296-301. doi: 10.1007/s12281-014-0195-9
  64. Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 2012; 11(11): 1324-32. doi: 10.1128/EC.00032-12 PMID: 22822234
  65. Yu W, MacKerell AD Jr. Computer-aided drug design methods. Methods Mol Biol 2017; 1520: 85-106. doi: 10.1007/978-1-4939-6634-9_5 PMID: 27873247

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers