Insight into the Natural Biomolecules (BMs): Promising Candidates as Zika Virus Inhibitors


Cite item

Full Text

Abstract

Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV2, coronavirus, monkeypox (Mpox) virus, etc. ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection. This review examines the last five years of work using natural biomolecules (BMs) to counteract the ZIKV through virtual screening and in vitro investigations. Virtual screening has identified doramectin, pinocembrin, hesperidins, epigallocatechin gallate, pedalitin, and quercetin as potentially active versus ZIKV infection. In vitro, testing has shown that nordihydroguaiaretic acid, mefloquine, isoquercitrin, glycyrrhetinic acid, patentiflorin-A, rottlerin, and harringtonine can reduce ZIKV infections in cell lines. However, in vivo, testing is limited, fortunately, emetine, rottlerin, patentiflorin-A, and lycorine have shown in vivo anti- ZIKV potential. This review focuses on natural biomolecules that show a particularly high selective index (>10). There is limited in vivo and clinical trial data for natural BMs, which needs to be an active area of investigation. This review aims to compile the known reference data and discuss the barriers associated with discovering and using natural BM agents to control ZIKV infection.

About the authors

Kiran Dobhal

College of Pharmacy, Shivalik Campus

Author for correspondence.
Email: info@benthamscience.net

Ruchika Garg

School of Pharmacy, Maharaja Agrasen Universities

Author for correspondence.
Email: info@benthamscience.net

Alka Singh

School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Balawala

Email: info@benthamscience.net

Amit Semwal

College of Pharmacy, Shivalik Campus

Email: info@benthamscience.net

References

  1. Pant P, Pandey S, Dall’Acqua S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem Biodivers 2021; 18(11): e2100345. doi: 10.1002/cbdv.202100345 PMID: 34533273
  2. Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci 2015; 11(8): 982-91. doi: 10.7150/ijbs.12096 PMID: 26157352
  3. Lawson ADG, MacCoss M, Heer JP. Importance of rigidity in designing small molecule drugs to tackle protein–protein interactions (PPIs) through stabilization of desired conformers. J Med Chem 2018; 61(10): 4283-9. doi: 10.1021/acs.jmedchem.7b01120 PMID: 29140691
  4. Azab A, Nassar A, Azab A. Anti-inflammatory activity of natural products. Molecules 2016; 21(10): 1321. doi: 10.3390/molecules21101321 PMID: 27706084
  5. Debnath B, Singh WS, Das M, et al. Role of plant alkaloids on human health: A review of biological activities. Mater Today Chem 2018; 9: 56-72. doi: 10.1016/j.mtchem.2018.05.001
  6. Jin J, Qiu S, Wang P, et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J Exp Clin Cancer Res 2019; 38(1): 377. doi: 10.1186/s13046-019-1351-4
  7. Feng A, Yang S, Sun Y, Zhang L, Bo F, Li L. Development and evaluation of oleanolic acid dosage forms and its derivatives. Biomed Res Int 2020; 2020: 1308749. doi: 10.1155/2020/1308749
  8. Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI. Terpenoids. In: Pharmacognosy Fundamentals, Applications and Strategies. 2017; pp. 233-66. doi: 10.1016/B978-0-12-802104-0.00011-1
  9. van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH. Vincristine-induced peripheral neuropathy in children with cancer: A systematic review. Crit Rev Oncol Hematol 2017; 114: 114-30. doi: 10.1016/j.critrevonc.2017.04.004 PMID: 28477739
  10. Rahman AT. In silico study of the potential of endemic sumatra wild turmeric rhizomes (Curcuma Sumatrana: Zingiberaceae) as anti-cancer. Pharmacogn J 2022; 14: 6.
  11. Garg R. Covid-19: A challenge towards the sustainability of health in platform era. J Pharm Negat Results 2022; 1666-78.
  12. Dobhal K, Ghildiyal P, Ansori ANM, Jakhmola V. An international outburst of new form of monkeypox virus. J Pure Appl Microbiol 2022; 16(S1): 3013-24. doi: 10.22207/JPAM.16.SPL1.01
  13. Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int J Biol Macromol 2021; 172: 524-41. doi: 10.1016/j.ijbiomac.2021.01.076 PMID: 33454328
  14. Plourde AR, Bloch EM. A literature review of zika virus. Emerg Infect Dis 2016; 22(7): 1185-92. doi: 10.3201/eid2207.151990 PMID: 27070380
  15. Lu AY, Gustin A, Newhouse D, Gale M Jr. Viral protein accumulation of zika virus variants links with regulation of innate immunity for differential control of viral replication, spread, and response to interferon. J Virol 2023; 97(5): e01982-22. doi: 10.1128/jvi.01982-22 PMID: 37162358
  16. Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42(5): 1739-80. doi: 10.1002/med.21891 PMID: 35593443
  17. Pandey SC, Pande V, Sati D, Upreti S, Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci 2020; 256: 117956. doi: 10.1016/j.lfs.2020.117956 PMID: 32535078
  18. Kumar APN, Kumar M, et al. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023; 28(2): 887. doi: 10.3390/molecules28020887 PMID: 36677944
  19. Dassanayake MK, Khoo TJ, Chong CH, Di Martino P. Molecular docking and in-silico analysis of natural biomolecules against dengue, ebola, zika, SARS-CoV-2 variants of concern and monkeypox virus. Int J Mol Sci 2022; 23(19): 11131. doi: 10.3390/ijms231911131 PMID: 36232431
  20. Yeasmin M, Molla MMA, Masud HMAA, Saif-Ur-Rahman KM. Safety and immunogenicity of Zika virus vaccine: A systematic review of clinical trials. Rev Med Virol 2023; 33(1): e2385. doi: 10.1002/rmv.2385 PMID: 35986594
  21. Katzelnick LC, Bos S, Harris E. Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. Curr Opin Virol 2020; 43: 59-70. doi: 10.1016/j.coviro.2020.08.006 PMID: 32979816
  22. Poland GA, Ovsyannikova IG, Kennedy RB. Zika vaccine development: Current status. Vaccines 2019; 10: 1816. doi: 10.1016/j.mayocp.2019.05.016
  23. Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of zika immunity and vaccine development: Lessons from dengue and the contribution from controlled human infection model. Pathogens 2022; 11(3): 294. doi: 10.3390/pathogens11030294 PMID: 35335618
  24. Garg R, Piplani M, Singh Y, Joshi Y. Epidemiology, pathophysiology, and pharmacological status of asthma. Curr Respir Med Rev 2022; 18(4): 247-58. doi: 10.2174/1573398X18666220526164329
  25. Javed F, Manzoor KN, Ali M, et al. Zika virus: What we need to know? J Basic Microbiol 2018; 58(1): 3-16. doi: 10.1002/jobm.201700398 PMID: 29131357
  26. Puerta-Guardo H, Glasner DR, Espinosa DA, et al. Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep 2019; 26(6): 1598-613. doi: 10.1016/j.celrep.2019.01.036
  27. Zhang X, Xie X, Zou J, et al. Genetic and biochemical characterizations of Zika virus NS2A protein. Emerg Microbes Infect 2019; 8(1): 585-602. doi: 10.1080/22221751.2019.1598291 PMID: 30958095
  28. Xu S, Ci Y, Wang L, et al. Zika virus NS3 is a canonical RNA helicase stimulated by NS5 RNA polymerase. Nucleic Acids Res 2019; 47(16): 8693-707. doi: 10.1093/nar/gkz650 PMID: 31361901
  29. Hasan SS, Sevvana M, Kuhn RJ, Rossmann MG. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol 2018; 25(1): 13-20. doi: 10.1038/s41594-017-0010-8 PMID: 29323278
  30. Bisia M, Montenegro-Quinoñez CA, Dambach P, et al. Secondary vectors of Zika Virus, a systematic review of laboratory vector competence studies. PLoS Negl Trop Dis 2023; 17(8): e0011591. doi: 10.1371/journal.pntd.0011591 PMID: 37651473
  31. White MK, Wollebo HS, David Beckham J, Tyler KL, Khalili K. Zika virus: An emergent neuropathological agent. Ann Neurol 2016; 80(4): 479-89. doi: 10.1002/ana.24748 PMID: 27464346
  32. Zika Virus Countries. 2023. Available from: https://worldpopulationreview.com/country-rankings/zika-countries
  33. Rastogi M, Sharma N, Singh SK. Flavivirus NS1: A multifaceted enigmatic viral protein. Virol J 2016; 13(1): 131. doi: 10.1186/s12985-016-0590-7 PMID: 27473856
  34. CDC. Zika travel information 2016.cdc.gov/zika/index.html
  35. Buathong R. Lack of association between adverse pregnancy outcomes and zika antibodies among pregnant women in Thailand between 1997 and 2015. 2018. Available from: https://www.fondation-merieux.org/wp-content/uploads/2018/01/arboviruses-2018-rome-buathong.pdf
  36. Bhardwaj U, Pandey N, Rastogi M, Singh SK. Gist of Zika Virus pathogenesis. Virology 2021; 560: 86-95. doi: 10.1016/j.virol.2021.04.008 PMID: 34051478
  37. Gutiérrez-Bugallo G, Piedra LA, Rodriguez M, et al. Vector-borne transmission and evolution of Zika virus. Nat Ecol Evol 2019; 3(4): 561-9. doi: 10.1038/s41559-019-0836-z PMID: 30886369
  38. WHO. Guideline: Infant Feeding in Areas of Zika Virus Transmission. 2016. Available from: http://apps.who.int/iris/bitstream/10665/208875/1/9789 241549660_eng.pdf?ua=1
  39. Agarwal A, Chaurasia D. The expanding arms of Zika virus: An updated review with recent Indian outbreaks. Rev Med Virol 2021; 31(1): 1-9. doi: 10.1002/rmv.2145 PMID: 33216418
  40. Khaiboullina SF, Ribeiro FM, Uppal T, Martynova EV, Rizvanov AA, Verma SC. Zika virus transmission through blood tissue barriers. Front Microbiol 2019; 10: 1465. doi: 10.3389/fmicb.2019.01465
  41. Ayloo S, Gu C. Transcytosis at the blood–brain barrier. Curr Opin Neurobiol 2019; 57: 32-8. doi: 10.1016/j.conb.2018.12.014 PMID: 30708291
  42. Arvidsson M, Collet F, Hedström P. The Trojan-horse mechanism: How networks reduce gender segregation. Sci Adv 2021; 7(16): eabf6730. doi: 10.1126/sciadv.abf6730 PMID: 33863731
  43. Spadoni I, Fornasa G, Rescigno M. Organ-specific protection mediated by cooperation between vascular and epithelial barriers. Nat Rev Immunol 2017; 17(12): 761-73. doi: 10.1038/nri.2017.100 PMID: 28869253
  44. Todorovski T, Mendonça DA, Fernandes-Siqueira LO, et al. Targeting zika virus with new brain- and placenta-crossing peptide–porphyrin conjugates. Pharmaceutics 2022; 14(4): 738. doi: 10.3390/pharmaceutics14040738 PMID: 35456572
  45. Peregrine J, Gurung S, Lindgren MC, et al. Zika virus infection, reproductive organ targeting, and semen transmission in the male olive baboon. J Virol 2019; 94(1): e01434-e014319. doi: 10.1128/JVI.01434-19
  46. Sheridan MA, Zhao X, Fernando RC, et al. Characterization of primary models of human trophoblast. Development 2021; 148(21): dev199749. doi: 10.1242/dev.199749 PMID: 34651188
  47. Komarasamy TV, Adnan NAA, James W, Balasubramaniam VRMT. Zika virus neuropathogenesis: The different brain cells, host factors and mechanisms involved. Front Immunol 2022; 13: 773191. doi: 10.3389/fimmu.2022.773191 PMID: 35371036
  48. Giraldo MI, Xia H, Aguilera-Aguirre L, et al. Envelope protein ubiquitination drives entry and pathogenesis of Zika virus. Nature 2020; 585(7825): 414-9. doi: 10.1038/s41586-020-2457-8 PMID: 32641828
  49. Borges-Vélez G, Arroyo JA, Cantres-Rosario YM, et al. Decreased CSTB, RAGE, and Axl receptor are associated with zika infection in the human placenta. Cells 2022; 11(22): 3627. doi: 10.3390/cells11223627 PMID: 36429055
  50. Pielnaa P, Al-Saadawe M, Saro A, et al. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology 2020; 543: 34-42. doi: 10.1016/j.virol.2020.01.015 PMID: 32056845
  51. Bernardo-Menezes LC, Agrelli A, Oliveira ASLE, Moura RR, Crovella S, Brandão LAC. An overview of Zika virus genotypes and their infectivity. Rev Soc Bras Med Trop 2022; 55: e0263-2022. doi: 10.1590/0037-8682-0263-2022 PMID: 36197380
  52. Li XD, Deng CL, Yuan ZM, Ye HQ, Zhang B. Different degrees of 5'-to-3' DAR interactions modulate zika virus genome cyclization and host-specific replication. J Virol 2020; 94(5): e01602-19. doi: 10.1128/JVI.01602-19
  53. Agrelli A, de Moura RR, Crovella S, Brandão LAC. ZIKA virus entry mechanisms in human cells. Infect Genet Evol 2019; 69: 22-9. doi: 10.1016/j.meegid.2019.01.018 PMID: 30658214
  54. Routhu NK, Lehoux SD, Rouse EA, et al. Glycosylation of zika virus is important in host–virus interaction and pathogenic potential. Int J Mol Sci 2019; 20(20): 5206. doi: 10.3390/ijms20205206 PMID: 31640124
  55. Bos S, Poirier-Beaudouin B, Seffer V, et al. Zika virus inhibits IFN-α response by human plasmacytoid dendritic cells and induces NS1-dependent triggering of CD303 (BDCA-2) signaling. Front Immunol 2020; 11: 582061. doi: 10.3389/fimmu.2020.582061 PMID: 33193389
  56. Wood KM, Smith CJ. Clathrin: The molecular shape shifter. Biochem J 2021; 478(16): 3099-123. doi: 10.1042/BCJ20200740 PMID: 34436540
  57. Persaud M, Martinez-Lopez A, Buffone C, Porcelli SA, Diaz-Griffero F. Infection by Zika viruses requires the transmembrane protein AXL, endocytosis and low pH. Virology 2018; 518: 301-12. doi: 10.1016/j.virol.2018.03.009 PMID: 29574335
  58. Xu MM, Wu B, Huang GG, et al. Hemin protects against Zika virus infection by disrupting virus-endosome fusion. Antiviral Res 2022; 203: 105347. doi: 10.1016/j.antiviral.2022.105347 PMID: 35643150
  59. Hackett BA, Cherry S. Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc Natl Acad Sci 2018; 115(16): 4246-51. doi: 10.1073/pnas.1720032115 PMID: 29610346
  60. Christian KM, Song H, Ming G. Pathophysiology and mechanisms of zika virus infection in the nervous system. Annu Rev Neurosci 2019; 42(1): 249-69. doi: 10.1146/annurev-neuro-080317-062231 PMID: 31283901
  61. Wagner RS. Cortical visual impairment in congenital zika syndrome. J Pediatr Ophthalmol Strabismus 2021; 58(2): 72. doi: 10.3928/01913913-20210204-01 PMID: 34038273
  62. Faizan MI, Abdullah M, Ali S, Naqvi IH, Ahmed A, Parveen S. Zika virus-induced microcephaly and its possible molecular mechanism. Intervirology 2016; 59(3): 152-8. doi: 10.1159/000452950 PMID: 28081529
  63. Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the treatment of zika virus infection. J Med Chem 2020; 63(2): 470-89. doi: 10.1021/acs.jmedchem.9b00775 PMID: 31549836
  64. Marbán-Castro E, Goncé A, Fumadó V, Romero-Acevedo L, Bardají A. Zika virus infection in pregnant women and their children: A review. Eur J Obstet Gynecol Reprod Biol 2021; 265: 162-8. doi: 10.1016/j.ejogrb.2021.07.012 PMID: 34508989
  65. Xu Y, He Y, Momben-Abolfath S, et al. Entry and disposition of zika virus immune complexes in a tissue culture model of the maternal-fetal interface. Vaccines 2021; 9(2): 145. doi: 10.3390/vaccines9020145 PMID: 33670199
  66. Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: Diversity, identity, and cell entry. Front Immunol 2018; 9: 2180. doi: 10.3389/fimmu.2018.02180 PMID: 30319635
  67. Freitas DA, Souza-Santos R, Carvalho LMA, et al. Congenital Zika syndrome: A systematic review. PLoS One 2020; 15(12): e0242367. doi: 10.1371/journal.pone.0242367 PMID: 33320867
  68. Espino A, Gouilly J, Chen Q, et al. The mechanisms underlying the immune control of Zika virus infection at the maternal-fetal interface. Front Immunol 2022; 13: 1000861. doi: 10.3389/fimmu.2022.1000861 PMID: 36483552
  69. Castanha PMS, Marques ETA. A glimmer of hope: Recent updates and future challenges in zika vaccine development. Viruses 2020; 12(12): 1371. doi: 10.3390/v12121371 PMID: 33266129
  70. de Castro Barbosa E, Alves TMA, Kohlhoff M, et al. Searching for plant-derived antivirals against dengue virus and Zika virus. Virol J 2022; 19(1): 31. doi: 10.1186/s12985-022-01751-z PMID: 35193667
  71. Mottin M, Borba JVVB, Braga RC, et al. The A–Z of Zika drug discovery. Drug Discov Today 2018; 23(11): 1833-47. doi: 10.1016/j.drudis.2018.06.014 PMID: 29935345
  72. Rosa RL, Santi L, Berger M, et al. ZIKAVID—Zika virus infection database: A new platform to analyze the molecular impact of Zika virus infection. J Neurovirol 2020; 26(1): 77-83. doi: 10.1007/s13365-019-00799-y PMID: 31512145
  73. Medina-Magües LG, Gergen J, Jasny E, et al. mRNA vaccine protects against zika virus. Vaccines 2021; 9(12): 1464. doi: 10.3390/vaccines9121464 PMID: 34960211
  74. Pereira RS, Santos FCP, Campana PRV, et al. Natural products and derivatives as potential zika virus inhibitors: A comprehensive review. Viruses 2023; 15(5): 1211. doi: 10.3390/v15051211 PMID: 37243296
  75. Chan JFW, Chik KKH, Yuan S, et al. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141: 29-37. doi: 10.1016/j.antiviral.2017.02.002 PMID: 28185815
  76. Cao B, Parnell LA, Diamond MS, Mysorekar IU. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med 2017; 214(8): 2303-13. doi: 10.1084/jem.20170957 PMID: 28694387
  77. Chiu CF, Chu LW, Liao IC, et al. The mechanism of the Zika virus crossing the placental barrier and the blood-brain barrier. Front Microbiol 2020; 11: 214. doi: 10.3389/fmicb.2020.00214 PMID: 32153526
  78. Zou M, Liu H, Li J, et al. Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochem Pharmacol 2020; 177: 113962. doi: 10.1016/j.bcp.2020.113962 PMID: 32272109
  79. Cataneo AHD, Kuczera D, Koishi AC. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci Rep 2019; 9(1): 16348. doi: 10.1038/s41598-019-52626-3
  80. Eberle RJ, Olivier DS, Pacca CC, et al. In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS One 2021; 16(3): e0246319. doi: 10.1371/journal.pone.0246319
  81. Sharma N, Murali A, Singh SK, Giri R. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int J Biol Macromol 2017; 104(Pt A): 1046-54. doi: 10.1016/j.ijbiomac.2017.06.105
  82. Lima CS, Mottin M, de Assis LR, et al. Flavonoids from Pterogyne nitens as Zika virus NS2B-NS3 protease inhibitors. Bioorg Chem 2021; 109: 104719. doi: 10.1016/j.bioorg.2021.104719 PMID: 33636437
  83. Rehman A, Ashfaq UA, Javed MR, Shahid F, Noor F, Aslam S. The screening of phytochemicals against NS5 polymerase to treat zika virus infection: Integrated computational based approach. Comb Chem High Throughput Screen 2022; 25(4): 738-51. doi: 10.2174/1386207324666210712091920 PMID: 34254908
  84. Thirumoorthy G, Tarachand SP, Nagella P, Veerappa Lakshmaiah V. Identification of potential ZIKV NS2B-NS3 protease inhibitors from Andrographis paniculata: An in silico approach. J Biomol Struct Dyn 2022; 40(21): 11203-15. doi: 10.1080/07391102.2021.1956592 PMID: 34319220
  85. Kumar S, El-Kafrawy SA, Bharadwaj S, et al. Discovery of bispecific lead compounds from azadirachta indica against ZIKA NS2B-NS3 protease and NS5 RNA dependent RNA polymerase using molecular simulations. Molecules 2022; 27(8): 2562. doi: 10.3390/molecules27082562
  86. Ramos PRPDS, Mottin M, Lima CS, et al. Natural compounds as non-nucleoside inhibitors of zika virus polymerase through integration of in silico and in vitro approaches. Pharmaceuticals 2022; 15(12): 1493. doi: 10.3390/ph15121493
  87. Mottin M, Caesar LK, Brodsky D, et al. Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins. Bioorg Chem 2022; 120: 105649. doi: 10.1016/j.bioorg.2022.105649 PMID: 35124513
  88. Priya S, Kumar NS, Hemalatha S. Antiviral phytocompounds target envelop protein to control Zika virus. Comput Biol Chem 2018; 77: 402-12. doi: 10.1016/j.compbiolchem.2018.08.008 PMID: 30471642
  89. Sangeetha K, Martín-Acebes MA, Saiz JC, Meena KS. Molecular docking and antiviral activities of plant derived compounds against zika virus. Microb Pathog 2020; 149: 104540. doi: 10.1016/j.micpath.2020.104540 PMID: 33045342
  90. Lee JL, Loe MWC, Lee RCH, Chu JJH. Antiviral activity of pinocembrin against Zika virus replication. Antiviral Res 2019; 167: 13-24. doi: 10.1016/j.antiviral.2019.04.003 PMID: 30959074
  91. Zhu Y, Liang M, Yu J, et al. Repurposing of doramectin as a new anti-zika virus agent. Viruses 2023; 15(5): 1068. doi: 10.3390/v15051068 PMID: 37243154
  92. Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K. Baicalein and baicalin as Zika virus inhibitors. Arch Virol 2019; 164(2): 585-93. doi: 10.1007/s00705-018-4083-4 PMID: 30392049
  93. Merino-Ramos T, Jiménez de Oya N, Saiz JC, Martín-Acebes MA. Antiviral activity of nordihydroguaiaretic acid and its derivative tetra- O -methyl nordihydroguaiaretic acid against west nile virus and zika virus. Antimicrob Agents Chemother 2017; 61(8): e00376-17. doi: 10.1128/AAC.00376-17 PMID: 28507114
  94. Barbosa-Lima G, Moraes AM, Araújo AS, et al. 2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur J Med Chem 2017; 127: 334-40. doi: 10.1016/j.ejmech.2016.12.058 PMID: 28068604
  95. Morales Vasquez D, Park JG, Ávila-Pérez G, et al. Identification of inhibitors of ZIKV replication. Viruses 2020; 12(9): 1041. doi: 10.3390/v12091041 PMID: 32961956
  96. Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol Sin 2017; 32(6): 545-7. doi: 10.1007/s12250-017-4057-9 PMID: 28884445
  97. Gaudry A, Bos S, Viranaicken W, et al. The flavonoid isoquercitrin precludes initiation of zika virus infection in human cells. Int J Mol Sci 2018; 19(4): 1093. doi: 10.3390/ijms19041093
  98. Lin SC, Chen MC, Liu S, et al. Phloretin inhibits Zika virus infection by interfering with cellular glucose utilisation. Int J Antimicrob Agents 2019; 54(1): 80-4. doi: 10.1016/j.ijantimicag.2019.03.017 PMID: 30930299
  99. Batista MN, Braga ACS, Campos GRF, et al. Natural products isolated from oriental medicinal herbs inactivate zika virus. Viruses 2019; 11(1): 49. doi: 10.3390/v11010049
  100. Baltina LA, Lai HC, Liu YC, et al. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg Med Chem 2021; 41: 116204. doi: 10.1016/j.bmc.2021.116204 PMID: 34022526
  101. Mounce BC, Cesaro T, Carrau L, Vallet T, Vignuzzi M. Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res 2017; 142: 148-57. doi: 10.1016/j.antiviral.2017.03.014 PMID: 28343845
  102. Cui X, Zhou R, Huang C, et al. Identification of theaflavin-3,3′-digallate as a novel zika virus protease inhibitor. Front Pharmacol 2020; 11: 514313. doi: 10.3389/fphar.2020.514313
  103. Ruchika G, Mona P, Yogendra S, Pankaj B, Rajat R. An overview of integrated risk factors with prevention and prevalence of asthma at the global level. Curr Tradit Med 2024; 10: e250523217358. doi: 10.2174/2215083810666230525153908
  104. Ferraris P, Yssel H, Missé D. Zika virus infection: An update. Microbes Infect 2019; 21(8-9): 353-60. doi: 10.1016/j.micinf.2019.04.005 PMID: 31158508
  105. Pereira dos Santos MPC, Moll HC, Borella J, et al. Season and shading affect emetine and cephalin production in Carapichea ipecacuanha plants. Plant Biosyst 2022; 156(1): 51-60. doi: 10.1080/11263504.2020.1832602
  106. Chen H, Lao Z, Xu J, et al. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 2020; 546: 88-97. doi: 10.1016/j.virol.2020.04.009 PMID: 32452420
  107. Martinez-Lopez A, Persaud M, Chavez MP, et al. Glycosylated diphyllin as a broad-spectrum antiviral agent against Zika virus. EBioMedicine 2019; 47: 269-83. doi: 10.1016/j.ebiom.2019.08.060 PMID: 31501074
  108. Zhou S, Lin Q, Huang C, et al. Rottlerin plays an antiviral role at early and late steps of Zika virus infection. Virol Sin 2022; 37(5): 685-94. doi: 10.1016/j.virs.2022.07.012 PMID: 35934227
  109. Vázquez-Calvo Á, Jiménez de Oya N, Martín-Acebes MA, Garcia-Moruno E, Saiz JC. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus. Front Microbiol 2017; 8: 1314. doi: 10.3389/fmicb.2017.01314 PMID: 28744282
  110. Zhang C, Feng T, Cheng J, et al. Structure of the NS5 methyltransferase from Zika virus and implications in inhibitor design. Biochem Biophys Res Commun 2017; 492(4): 624-30. doi: 10.1016/j.bbrc.2016.11.098 PMID: 27866982
  111. G Viveiros Rosa S, Fierro IM, C Santos W. Repositioning and investigational drugs for Zika virus infection treatment: A patent review. Expert Opin Ther Pat 2020; 30(11): 847-62. doi: 10.1080/13543776.2020.1811854 PMID: 32842803
  112. Song W, Zhang H, Zhang Y, et al. Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection. Front Med 2021; 15(3): 404-15. doi: 10.1007/s11684-021-0834-9 PMID: 33369711
  113. Karkhah A, Nouri HR, Javanian M, et al. Zika virus: Epidemiology, clinical aspects, diagnosis, and control of infection. Eur J Clin Microbiol Infect Dis 2018; 37(11): 2035-43. doi: 10.1007/s10096-018-3354-z PMID: 30167886
  114. Munoz-Jordan JL. Diagnosis of Zika virus infections: Challenges and opportunities. J Infect Dis 2017; 216(S10): S951-6. doi: 10.1093/infdis/jix502 PMID: 29267922
  115. Zhang B, Pinsky BA, Ananta JS, et al. Diagnosis of Zika virus infection on a nanotechnology platform. Nat Med 2017; 23(5): 548-50. doi: 10.1038/nm.4302 PMID: 28263312
  116. Pena LJ, Miranda Guarines K, Duarte Silva AJ, et al. In vitro and in vivo models for studying Zika virus biology. J Gen Virol 2018; 99(12): 1529-50. doi: 10.1099/jgv.0.001153 PMID: 30325302
  117. Ohki CMY, Benazzato C, Russo FB, Beltrão-Braga PCB. Developing animal models of Zika virus infection for novel drug discovery. Expert Opin Drug Discov 2019; 14(6): 577-89. doi: 10.1080/17460441.2019.1597050 PMID: 30991850
  118. Miller MR, Fagre AC, Clarkson TC, Markle ED, Foy BD. Three immunocompetent small animal models that do not support zika virus infection. Pathogens 2021; 10(8): 971. doi: 10.3390/pathogens10080971 PMID: 34451435

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers