Strategies to Overcome Antimicrobial Resistance in Nosocomial Infections, A Review and Update


Cite item

Full Text

Abstract

Nosocomial infections, also known as healthcare-associated infections, are a significant global concern due to their strong association with high mortality and morbidity in both developed and developing countries. These infections are caused by a variety of pathogens, particularly the ESKAPE group of bacteria, which includes the six pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. These bacteria have demonstrated noteworthy resistance to different antibiotics.

:Antimicrobial resistance mechanisms can manifest in various forms, including restricting drug uptake, modifying drug targets, inactivating drugs, active drug efflux, and biofilm formation. Accordingly, various strategies have been developed to combat antibiotic-resistant bacteria. These strategies encompass the development of new antibiotics, the utilization of bacteriophages that specifically target these bacteria, antimicrobial combination therapy and the use of peptides or enzymes that target the genomes or essential proteins of resistant bacteria.

:Among promising approaches to overcome antibiotic resistance, the CRISPR/Cas system stands out and offers many advantages. This system enables precise and efficient editing of genetic material at specific locations in the genome. Functioning as a bacterial \"adaptive immune system,\" the CRISPR/Cas system recognizes, degrades, and remembers foreign DNA sequences through the use of spacer DNA segments that are transcribed into CRISPR RNAs (crRNA).

:This paper has focused on nosocomial infections, specifically the pathogens involved in hospital infections, the mechanisms underlying bacterial resistance, and the strategies currently employed to address this issue. Special emphasis has been placed on the application of CRISPR/Cas technology for overcoming antimicrobial resistance.

About the authors

Nasim Bakhtiyari

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Safar Farajnia

Drug Applied Research Center, Tabriz University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Samaneh Ghasemali

Student Research Committee, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Sahar Farajnia

Biotechnology Research Center, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Ali Pormohammad

Department of Biological Sciences, University of Calgary

Email: info@benthamscience.net

Shabnam Saeidvafa

, Islamic Azad University

Email: info@benthamscience.net

References

  1. Jain N, Jansone I, Obidenova T, et al. Antimicrobial resistance in nosocomial isolates of gram-negative bacteria: Public health implications in the latvian context. Antibiotics 2021; 10(7): 791. doi: 10.3390/antibiotics10070791 PMID: 34209766
  2. Zohra T, Numan M, Ikram A, et al. Cracking the challenge of antimicrobial drug resistance with CRISPR/Cas9, Nanotechnology and other strategies in ESKAPE pathogens. Microorganisms 2021; 9(5): 954. doi: 10.3390/microorganisms9050954 PMID: 33946643
  3. Suleyman G, Alangaden GJ. Nosocomial fungal infections. Infect Dis Clin North Am 2021; 35(4): 1027-53. doi: 10.1016/j.idc.2021.08.002 PMID: 34752219
  4. Greninger AL, Zerr DM. NGSocomial infections: High-resolution views of hospital-acquired infections through genomic epidemiology. J Pediatric Infect Dis Soc 2021; 10 (Suppl. 4): S88-95. doi: 10.1093/jpids/piab074 PMID: 34951469
  5. Dadi NCT. Radochová B, Vargová J, Bujdáková H. Impact of healthcare-associated infections connected to medical devices—an update. Microorganisms 2021; 9(11): 2332. doi: 10.3390/microorganisms9112332 PMID: 34835457
  6. Revelas A. Healthcare - associated infections: A public health problem. Niger Med J 2012; 53(2): 59-64. doi: 10.4103/0300-1652.103543 PMID: 23271847
  7. Inweregbu K, Dave J, Pittard A. Nosocomial infections. Contin Educ Anaesth Crit Care Pain 2005; 5(1): 14-7. doi: 10.1093/bjaceaccp/mki006
  8. Hemez C, Clarelli F, Palmer AC, et al. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20: 4688-703. doi: 10.1016/j.csbj.2022.08.030 PMID: 36147681
  9. C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol 2018; 4(3): 482-501. doi: 10.3934/microbiol.2018.3.482 PMID: 31294229
  10. Tilahun M. Multi-drug resistance profile, prevalence of extended-spectrum beta-lactamase and carbapenemase-producing gram negative bacilli among admitted patients after surgery with suspected of surgical site nosocomial infection north east Ethiopia. Infect Drug Resist 2022; 15: 3949-65. doi: 10.2147/IDR.S376622 PMID: 35924020
  11. Gupta A, Mahajan S, Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotechnol Rep 2015; 6: 51-5. doi: 10.1016/j.btre.2015.02.001 PMID: 28626697
  12. Cerveira MM, Vianna HS, Ferrer EMK, et al. Bioprospection of novel synthetic monocurcuminoids: Antioxidant, antimicrobial, and in vitro cytotoxic activities. Biomed Pharmacother 2021; 133: 111052. doi: 10.1016/j.biopha.2020.111052 PMID: 33378958
  13. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int 2016; 2016: 1-8. doi: 10.1155/2016/2475067 PMID: 27274985
  14. De Oliveira DMP, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 2020; 33(3): e00181-19. doi: 10.1128/CMR.00181-19 PMID: 32404435
  15. Olawale KO, Fadiora SO, Taiwo SS. Prevalence of hospital acquired enterococci infections in two primary-care hospitals in Osogbo, Southwestern Nigeria. Afr J Infect Dis 2011; 5(2): 40-6. doi: 10.4314/ajid.v5i2.66513 PMID: 23878706
  16. Dapkevicius MLE, Sgardioli B, Câmara SPA, Poeta P, Malcata FX. Current trends of enterococci in dairy products: A comprehensive review of their multiple roles. Foods 2021; 10(4): 821. doi: 10.3390/foods10040821 PMID: 33920106
  17. Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of enterococci. Microbiol Spectr 2019; 7(4): 7.4.9. doi: 10.1128/microbiolspec.GPP3-0053-2018 PMID: 31298205
  18. Azzam A, Elkafas H, Khaled H, Ashraf A, Yousef M, Elkashef AA. Prevalence of vancomycin-resistant enterococci (VRE) in Egypt (2010–2022): A systematic review and meta-analysis. J Egypt Public Health Assoc 2023; 98(1): 8. doi: 10.1186/s42506-023-00133-9 PMID: 37037955
  19. Ahmed MO, Baptiste KE. Vancomycin-resistant Enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist 2018; 24(5): 590-606. doi: 10.1089/mdr.2017.0147 PMID: 29058560
  20. Bender JK, Cattoir V, Hegstad K, et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist Updat 2018; 40: 25-39. doi: 10.1016/j.drup.2018.10.002 PMID: 30447411
  21. Torres C, Alonso CA, Ruiz-Ripa L. León-Sampedro R, Del Campo R, Coque TM. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr 2018; 6(4): 6.4.24. doi: 10.1128/microbiolspec.ARBA-0032-2018 PMID: 30051804
  22. Parker D, Prince A. Immunopathogenesis of Staphylococcus aureus pulmonary infection. Semin Immunopathol 2012; 34(2): 281-97. doi: 10.1007/s00281-011-0291-7 PMID: 22037948
  23. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 2019; 17(4): 203-18. doi: 10.1038/s41579-018-0147-4 PMID: 30737488
  24. Kang YR, Kim SH, Chung DR, et al. Impact of vancomycin use trend change due to the availability of alternative antibiotics on the prevalence of Staphylococcus aureus with reduced vancomycin susceptibility: a 14-year retrospective study. Antimicrob Resist Infect Control 2022; 11(1): 101. doi: 10.1186/s13756-022-01140-9 PMID: 35932086
  25. Álvarez A, Fernández L, Gutiérrez D, Iglesias B, Rodríguez A, García P. Methicillin-Resistant Staphylococcus aureus in Hospitals: Latest Trends and Treatments Based on Bacteriophages. J Clin Microbiol 2019; 57(12): e01006-19. doi: 10.1128/JCM.01006-19 PMID: 31578263
  26. Dadashi M, Hajikhani B, Darban-Sarokhalil D, van Belkum A, Goudarzi M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J Glob Antimicrob Resist 2020; 20: 238-47. doi: 10.1016/j.jgar.2019.07.032 PMID: 31442624
  27. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41(3): 252-75. doi: 10.1093/femsre/fux013 PMID: 28521338
  28. Opoku-Temeng C, Kobayashi SD, DeLeo FR. Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J 2019; 17: 1360-6. doi: 10.1016/j.csbj.2019.09.011 PMID: 31762959
  29. Zhang S, Zhang X, Wu Q, et al. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China. Antimicrob Resist Infect Control 2019; 8(1): 166. doi: 10.1186/s13756-019-0615-2 PMID: 31673355
  30. Lee JH, Hong H, Tamburrini M, Park CM. Percutaneous transthoracic catheter drainage for lung abscess: A systematic review and meta-analysis. Eur Radiol 2022; 32(2): 1184-94. doi: 10.1007/s00330-021-08149-5 PMID: 34327579
  31. Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol Rev 2019; 43(2): 123-44. doi: 10.1093/femsre/fuy043 PMID: 30452654
  32. Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: Its clinical significance in human and veterinary medicine. Pathogens 2021; 10(2): 127. doi: 10.3390/pathogens10020127 PMID: 33513701
  33. Samuelson DR, Gu M, Shellito JE, et al. Pulmonary immune cell trafficking promotes host defense against alcohol-associated Klebsiella pneumonia. Commun Biol 2021; 4(1): 997. doi: 10.1038/s42003-021-02524-0 PMID: 34426641
  34. Labrador I, Araque M. First description of KPC-2-producing klebsiella oxytoca isolated from a pediatric patient with nosocomial pneumonia in venezuela. Case Rep Infect Dis 2014; 2014: 1-4. doi: 10.1155/2014/434987 PMID: 25405043
  35. Yang J, Long H, Hu Y, Feng Y, McNally A, Zong Z. Klebsiella oxytoca Complex: Update on taxonomy, antimicrobial resistance, and virulence. Clin Microbiol Rev 2022; 35(1): e00006-21. doi: 10.1128/CMR.00006-21 PMID: 34851134
  36. Howard A, O’Donoghue M, Feeney A, Sleator RD. Acinetobacter baumannii. Virulence 2012; 3(3): 243-50. doi: 10.4161/viru.19700 PMID: 22546906
  37. Gonzalez-Villoria AM, Valverde-Garduno V. Antibiotic-resistant acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J Pathogens 2016; 2016: 1-10. doi: 10.1155/2016/7318075 PMID: 26966582
  38. Lăzureanu V, Poroșnicu M, Gândac C, Moisil T, Bădițoiu L, Laza R. Infection with Acinetobacter baumannii in an intensive care unit in the Western part of Romania. BMC Infect Dis 2016; 16(Suppl 1) doi: 10.1186/s12879-016-1399-0
  39. van Duin D, Paterson DL. Multidrug-resistant bacteria in the community. Infect Dis Clin North Am 2020; 34(4): 709-22. doi: 10.1016/j.idc.2020.08.002 PMID: 33011046
  40. Alrahmany D, Omar AF, Alreesi A, Harb G, Ghazi IM. Acinetobacter baumannii infection-related mortality in hospitalized patients: Risk factors and potential targets for clinical and antimicrobial stewardship interventions. Antibiotics 2022; 11(8): 1086. doi: 10.3390/antibiotics11081086 PMID: 36009955
  41. Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs 2021; 81(18): 2117-31. doi: 10.1007/s40265-021-01635-6 PMID: 34743315
  42. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol Adv 2019; 37(1): 177-92. doi: 10.1016/j.biotechadv.2018.11.013 PMID: 30500353
  43. Motbainor H, Bereded F, Mulu W. Multi-drug resistance of blood stream, urinary tract and surgical site nosocomial infections of Acinetobacter baumannii and Pseudomonas aeruginosa among patients hospitalized at Felegehiwot referral hospital, Northwest Ethiopia: A cross-sectional study. BMC Infect Dis 2020; 20(1): 92. doi: 10.1186/s12879-020-4811-8 PMID: 32000693
  44. Erfanimanesh S, Emaneini M, Modaresi MR, et al. Distribution and characteristics of bacteria isolated from cystic fibrosis patients with pulmonary exacerbation. Can J Infect Dis Med Microbiol 2022; 2022: 1-13. doi: 10.1155/2022/5831139 PMID: 36593975
  45. Mangiaterra G, Amiri M, Di Cesare A, et al. Detection of viable but non-culturable Pseudomonas aeruginosa in cystic fibrosis by qPCR: A validation study. BMC Infect Dis 2018; 18(1): 701. doi: 10.1186/s12879-018-3612-9 PMID: 30587160
  46. Ahmed SM, Gupta R, Malik A, Rizvi M. Incidence of multidrug-resistant pseudomonas spp. In ICU patients with special reference to ESBL, AMPC, MBL and biofilm production. J Glob Infect Dis 2016; 8(1): 25-31. doi: 10.4103/0974-777X.176142 PMID: 27013841
  47. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; A critical review. Genes Dis 2019; 6(2): 109-19. doi: 10.1016/j.gendis.2019.04.001 PMID: 31194018
  48. Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci 2021; 22(6): 3128. doi: 10.3390/ijms22063128 PMID: 33803907
  49. Floret N, Bertrand X, Thouverez M, Talon D. Nosocomial infections caused by Pseudomonas aeruginosa: Exogenous or endogenous origin of this bacterium? Pathol Biol 2009; 57(1): 9-12. doi: 10.1016/j.patbio.2008.07.011 PMID: 18848405
  50. Li X, Wang L, Wang H, Hou X. Outcome and clinical characteristics of nosocomial infection in adult patients undergoing extracorporeal membrane oxygenation: A systematic review and meta-analysis. Front Public Health 2022; 10: 857873. doi: 10.3389/fpubh.2022.857873 PMID: 35812481
  51. Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 2019; 32(4): e00002-19. doi: 10.1128/CMR.00002-19 PMID: 31315895
  52. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis 2017; 215 (Suppl. 1): S28-36. doi: 10.1093/infdis/jiw282 PMID: 28375512
  53. Wu W, Wei L, Feng Y, Xie Y, Zong Z. Precise species identification by whole-genome sequencing of enterobacter bloodstream infection, China. Emerg Infect Dis 2021; 27(1): 161-9. doi: 10.3201/eid2701.190154 PMID: 33350909
  54. Wu W, Feng Y, Zong Z. Precise species identification for Enterobacter : A genome sequence-based study with reporting of two novel species, Enterobacter quasiroggenkampii sp. nov. and Enterobacter quasimori sp. nov msystems 2020; 5(4): e00527-20. doi: 10.1128/mSystems.00527-20 PMID: 32753511
  55. Perez F, Van Duin D. Carbapenem-resistant Enterobacteriaceae: A menace to our most vulnerable patients. Cleve Clin J Med 2013; 80(4): 225-33. doi: 10.3949/ccjm.80a.12182 PMID: 23547093
  56. Bonomo RA. β-Lactamases: A focus on current challenges. Cold Spring Harb Perspect Med 2017; 7(1): a025239. doi: 10.1101/cshperspect.a025239 PMID: 27742735
  57. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74(3): 417-33. doi: 10.1128/MMBR.00016-10 PMID: 20805405
  58. Weibel S, Rücker G, Eberhart LHJ, et al. Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: A network meta-analysis. Cochrane Libr 2020; 2020(11): CD012859. doi: 10.1002/14651858.CD012859.pub2 PMID: 33075160
  59. Friedrich AW. Control of hospital acquired infections and antimicrobial resistance in Europe: The way to go. Wien Med Wochenschr 2019; 169(S1) (Suppl. 1): 25-30. doi: 10.1007/s10354-018-0676-5 PMID: 30623278
  60. de Kraker MEA, Stewardson AJ, Harbarth S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 2016; 13(11): e1002184. doi: 10.1371/journal.pmed.1002184 PMID: 27898664
  61. Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019; 10: 539. doi: 10.3389/fmicb.2019.00539 PMID: 30988669
  62. Dadgostar P. Antimicrobial resistance: Implications and costs. Infect Drug Resist 2019; 12: 3903-10. doi: 10.2147/IDR.S234610 PMID: 31908502
  63. Sultana J, Cutroneo P, Trifirò G. Clinical and economic burden of adverse drug reactions. J Pharmacol Pharmacother 2013; 4(1_suppl)(Suppl. 1): S73-7. doi: 10.4103/0976-500X.120957 PMID: 24347988
  64. Majumder MAA, Rahman S, Cohall D, et al. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect Drug Resist 2020; 13: 4713-38. doi: 10.2147/IDR.S290835 PMID: 33402841
  65. Griffith M, Postelnick M, Scheetz M. Antimicrobial stewardship programs: Methods of operation and suggested outcomes. Expert Rev Anti Infect Ther 2012; 10(1): 63-73. doi: 10.1586/eri.11.153 PMID: 22149615
  66. Goossens H. Antibiotic consumption and link to resistance. Clin Microbiol Infect 2009; 15 (Suppl. 3): 12-5. doi: 10.1111/j.1469-0691.2009.02725.x PMID: 19366364
  67. Pakyz AL, MacDougall C, Oinonen M, Polk RE. Trends in antibacterial use in US academic health centers: 2002 to 2006. Arch Intern Med 2008; 168(20): 2254-60. doi: 10.1001/archinte.168.20.2254 PMID: 19001203
  68. Yu VL. Guidelines for hospital-acquired pneumonia and health-care-associated pneumonia: A vulnerability, a pitfall, and a fatal flaw. Lancet Infect Dis 2011; 11(3): 248-52. doi: 10.1016/S1473-3099(11)70005-6 PMID: 21371658
  69. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18. doi: 10.1179/2047773215Y.0000000030 PMID: 26343252
  70. Munita JM, Arias CA. Mechanisms of Antibiotic Resistance. Microbiol Spectr 2016; 4(2): 4.2.15. doi: 10.1128/microbiolspec.VMBF-0016-2015 PMID: 27227291
  71. Kumar P, Bag S, Ghosh TS, et al. Molecular insights into antimicrobial resistance traits of multidrug resistant enteric pathogens isolated from India. Sci Rep 2017; 7(1): 14468. doi: 10.1038/s41598-017-14791-1 PMID: 29089611
  72. Cox G, Wright GD. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013; 303(6-7): 287-92. doi: 10.1016/j.ijmm.2013.02.009 PMID: 23499305
  73. Fajardo A. Martínez-Martín N, Mercadillo M, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One 2008; 3(2): e1619. doi: 10.1371/journal.pone.0001619 PMID: 18286176
  74. Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of epigenetic mechanisms into non-genotoxic carcinogenicity hazard assessment: Focus on DNA methylation and histone modifications. Int J Mol Sci 2021; 22(20): 10969. doi: 10.3390/ijms222010969 PMID: 34681626
  75. Martinez JL. General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 2014; 11: 33-9. doi: 10.1016/j.ddtec.2014.02.001 PMID: 24847651
  76. Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics 2021; 10(4): 415. doi: 10.3390/antibiotics10040415 PMID: 33920199
  77. Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9(10): 1165-77. doi: 10.2217/fmb.14.66 PMID: 25405886
  78. Gill MJ, Simjee S, Al-Hattawi K, Robertson BD, Easmon CSF, Ison CA. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 1998; 42(11): 2799-803. doi: 10.1128/AAC.42.11.2799 PMID: 9797206
  79. Kumar A, Schweizer H. Bacterial resistance to antibiotics: Active efflux and reduced uptake. Adv Drug Deliv Rev 2005; 57(10): 1486-513. doi: 10.1016/j.addr.2005.04.004 PMID: 15939505
  80. Beceiro A. Tomás M, Bou G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26(2): 185-230. doi: 10.1128/CMR.00059-12 PMID: 23554414
  81. Fisher JF, Mobashery S. β-Lactams against the fortress of the grampositive Staphylococcus aureus bacterium. Chem Rev 2021; 121(6): 3412-63. doi: 10.1021/acs.chemrev.0c01010 PMID: 33373523
  82. Randall CP, Mariner KR, Chopra I, O’Neill AJ. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother 2013; 57(1): 637-9. doi: 10.1128/AAC.02005-12 PMID: 23114759
  83. Kumar S, Mukherjee MM, Varela MF. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. Int J Bacteriol 2013; 2013: 1-15. doi: 10.1155/2013/204141 PMID: 25750934
  84. Roberts MC. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol Biotechnol 2004; 28(1): 47-62. doi: 10.1385/MB:28:1:47 PMID: 15456963
  85. Hawkey PM. Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 2003; 51(90001) (Suppl. 1): 29-35. doi: 10.1093/jac/dkg207 PMID: 12702701
  86. Huovinen P. Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 1995; 39(2): 279-89. doi: 10.1128/AAC.39.2.279 PMID: 7726483
  87. Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 2014; 22(8): 438-45. doi: 10.1016/j.tim.2014.04.007 PMID: 24842194
  88. Vedantam G, Guay GG, Austria NE, Doktor SZ, Nichols BP. Characterization of mutations contributing to sulfathiazole resistance in Escherichia coli. Antimicrob Agents Chemother 1998; 42(1): 88-93. doi: 10.1128/AAC.42.1.88 PMID: 9449266
  89. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015; 13(1): 42-51. doi: 10.1038/nrmicro3380 PMID: 25435309
  90. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 2004; 28(5): 519-42. doi: 10.1016/j.femsre.2004.04.001 PMID: 15539072
  91. Villagra NA, Fuentes JA, Jofré MR, Hidalgo AA. García P, Mora GC. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J Antimicrob Chemother 2012; 67(4): 921-7. doi: 10.1093/jac/dkr573 PMID: 22258924
  92. Piddock LJV. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19(2): 382-402. doi: 10.1128/CMR.19.2.382-402.2006 PMID: 16614254
  93. Schulze A, Mitterer F, Pombo JP, Schild S. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 2021; 8(2): 28-56. doi: 10.15698/mic2021.02.741 PMID: 33553418
  94. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013; 4(3): 223-9. doi: 10.4161/viru.23724 PMID: 23380871
  95. Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol 2012; 7(9): 1061-72. doi: 10.2217/fmb.12.76 PMID: 22953707
  96. Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22(6): 326-33. doi: 10.1016/j.tim.2014.02.001 PMID: 24598086
  97. Vestby LK. Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020; 9(2): 59. doi: 10.3390/antibiotics9020059 PMID: 32028684
  98. Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V. Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front Microbiol 2018; 9: 2990. doi: 10.3389/fmicb.2018.02990 PMID: 30619113
  99. Uddin MJ, Ahn J. Characterization of β-lactamase- and efflux pump-mediated multiple antibiotic resistance in Salmonella typhimurium. Food Sci Biotechnol 2018; 27(3): 921-8. doi: 10.1007/s10068-018-0317-1 PMID: 30263820
  100. Goff DA, Kullar R, Goldstein EJC, et al. A global call from five countries to collaborate in antibiotic stewardship: United we succeed, divided we might fail. Lancet Infect Dis 2017; 17(2): e56-63. doi: 10.1016/S1473-3099(16)30386-3 PMID: 27866945
  101. Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 2015; 14(8): 529-42. doi: 10.1038/nrd4572 PMID: 26139286
  102. Ventola CL. The antibiotic resistance crisis: part 1: Causes and threats. P&T 2015; 40(4): 277-83. PMID: 25859123
  103. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis 2013; 13(12): 1057-98. doi: 10.1016/S1473-3099(13)70318-9 PMID: 24252483
  104. Hof W, Veerman ECI, Helmerhorst EJ, Amerongen AVN. Antimicrobial peptides: Properties and applicability. Biol Chem 2001; 382(4): 597-619. doi: 10.1515/BC.2001.072 PMID: 11405223
  105. Kang SJ, Nam SH, Lee BJ. Engineering approaches for the development of antimicrobial peptide-based antibiotics. Antibiotics 2022; 11(10): 1338. doi: 10.3390/antibiotics11101338 PMID: 36289996
  106. Maani Z, Farajnia S, Rahbarnia L, Hosseingholi EZ, Khajehnasiri N, Mansouri P. Rational design of an anti-cancer peptide inhibiting CD147/Cyp A interaction. J Mol Struct 2023; 1272: 134160. doi: 10.1016/j.molstruc.2022.134160 PMID: 36128074
  107. Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ. Antimicrobial peptides: Therapeutic potentials. Expert Rev Anti Infect Ther 2014; 12(12): 1477-86. doi: 10.1586/14787210.2014.976613 PMID: 25371141
  108. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020; 11: 582779. doi: 10.3389/fmicb.2020.582779 PMID: 33178164
  109. Zhang SK, Song J, Gong F, et al. Design of an α-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity. Sci Rep 2016; 6(1): 27394. doi: 10.1038/srep27394 PMID: 27271216
  110. Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil Med Res 2021; 8(1): 48. doi: 10.1186/s40779-021-00343-2 PMID: 34496967
  111. Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial peptides: An update on classifications and databases. Int J Mol Sci 2021; 22(21): 11691. doi: 10.3390/ijms222111691 PMID: 34769122
  112. Lin L, Chi J, Yan Y, et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11(9): 2609-44. doi: 10.1016/j.apsb.2021.07.014 PMID: 34589385
  113. Schmidt NW, Wong GCL. Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 2013; 17(4): 151-63. doi: 10.1016/j.cossms.2013.09.004 PMID: 24778573
  114. Huang L, Chen D, Wang L, et al. Dermaseptin-PH: A novel peptide with antimicrobial and anticancer activities from the skin secretion of the south American orange-legged leaf frog, pithecopus (phyllomedusa) hypochondrialis. Molecules 2017; 22(10): 1805. doi: 10.3390/molecules22101805 PMID: 29064402
  115. Cardoso MH, Meneguetti BT, Costa BO, et al. Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int J Mol Sci 2019; 20(19): 4877. doi: 10.3390/ijms20194877 PMID: 31581426
  116. Laver DR. The barrel-stave model as applied to alamethicin and its analogs reevaluated. Biophys J 1994; 66(2): 355-9. doi: 10.1016/S0006-3495(94)80784-2 PMID: 7512830
  117. Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217: 112693. doi: 10.1016/j.colsurfb.2022.112693 PMID: 35853393
  118. Ganeshan Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics 2019; 8(3): 131. doi: 10.3390/antibiotics8030131 PMID: 31461990
  119. Ling H, Lou X, Luo Q, He Z, Sun M, Sun J. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm Sin B 2022; 12(12): 4348-64. doi: 10.1016/j.apsb.2022.05.007 PMID: 36561998
  120. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage 2011; 1(2): 111-4. doi: 10.4161/bact.1.2.14590 PMID: 22334867
  121. Opperman CJ, Wojno JM, Brink AJ. Treating bacterial infections with bacteriophages in the 21st century. S Afr J Infect Dis 2022; 37(1): 346. doi: 10.4102/sajid.v37i1.346 PMID: 35399556
  122. Koskella B, Meaden S. Understanding bacteriophage specificity in natural microbial communities. Viruses 2013; 5(3): 806-23. doi: 10.3390/v5030806 PMID: 23478639
  123. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017; 9(3): 50. doi: 10.3390/v9030050 PMID: 28335451
  124. Cui Q, Wang X, Zhang Y, Shen Y, Qian Y. Macrophage-derived MMP-9 and MMP-2 are closely related to the rupture of the fibrous capsule of hepatocellular carcinoma leading to tumor invasion. Biol Proced Online 2023; 25(1): 8. doi: 10.1186/s12575-023-00196-0 PMID: 36918768
  125. Zhang B. CRISPR/Cas gene therapy. J Cell Physiol 2021; 236(4): 2459-81. doi: 10.1002/jcp.30064 PMID: 32959897
  126. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 2019; 20(8): 490-507. doi: 10.1038/s41580-019-0131-5 PMID: 31147612
  127. Ahmadzadeh V, Farajnia S, Baghban R, Rahbarnia L, Zarredar H. CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond. J Cell Biochem 2019; 120(10): 16379-92. doi: 10.1002/jcb.29140 PMID: 31219653
  128. Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends Plant Sci 2019; 24(12): 1102-25. doi: 10.1016/j.tplants.2019.09.006 PMID: 31727474
  129. Loureiro A, da Silva G. CRISPR-Cas: Converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics 2019; 8(1): 18. doi: 10.3390/antibiotics8010018 PMID: 30823430
  130. Hille F, Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc Lond B Biol Sci 2016; 371: 1707. doi: 10.1098/rstb.2015.0496
  131. Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science 2018; 361(6405): 866-9. doi: 10.1126/science.aat5011 PMID: 30166482
  132. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science 2018; 359(6372): eaan4672. doi: 10.1126/science.aan4672 PMID: 29326244
  133. Hunziker J, Nishida K, Kondo A, Kishimoto S, Ariizumi T, Ezura H. Multiple gene substitution by Target-AID base-editing technology in tomato. Sci Rep 2020; 10(1): 20471. doi: 10.1038/s41598-020-77379-2 PMID: 33235312
  134. Fraikin N, Goormaghtigh F, Van Melderen L, Type II. Toxin-Antitoxin Systems: Evolution and revolutions. J Bacteriol 2020; 202(7): e00763-19. doi: 10.1128/JB.00763-19 PMID: 31932311
  135. Goeders N, Van Melderen L. Toxin-antitoxin systems as multilevel interaction systems. Toxins 2014; 6(1): 304-24. doi: 10.3390/toxins6010304 PMID: 24434905
  136. Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: An overview of toxin-antitoxin biology. Mol Cell 2018; 70(5): 768-84. doi: 10.1016/j.molcel.2018.01.003 PMID: 29398446
  137. Van Melderen L. Toxin–antitoxin systems: Why so many, what for? Curr Opin Microbiol 2010; 13(6): 781-5. doi: 10.1016/j.mib.2010.10.006 PMID: 21041110
  138. Riffaud C, Pinel-Marie ML, Felden B. Cross-regulations between bacterial toxin–antitoxin systems: Evidence of an interconnected regulatory network? Trends Microbiol 2020; 28(10): 851-66. doi: 10.1016/j.tim.2020.05.016 PMID: 32540313
  139. Wu Y, Battalapalli D, Hakeem MJ, et al. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J Nanobiotechnology 2021; 19(1): 401. doi: 10.1186/s12951-021-01132-8 PMID: 34863214
  140. Monte DFM, Nethery MA, Berman H, et al. Clustered regularly interspaced short palindromic repeats genotyping of multidrug-resistant salmonella heidelberg strains isolated from the poultry production chain across Brazil. Front Microbiol 2022; 13: 867278. doi: 10.3389/fmicb.2022.867278 PMID: 35783410
  141. Kundar R, Gokarn K. CRISPR-Cas system: A tool to eliminate drug-resistant gram-negative bacteria. Pharmaceuticals 2022; 15(12): 1498. doi: 10.3390/ph15121498 PMID: 36558949

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers