Rapidly Evolving SARS-CoV-2: A Brief Review Regarding the Variants and their Effects on Vaccine Efficacies


Cite item

Full Text

Abstract

Since the commencement of Corona Virus Disease 2019 (COVID-19) pandemic, which has resulted in millions of mortalities globally, the efforts to minimize the damages have equally been up to the task. One of those efforts includes the mass vaccine development initiative targeting the deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). So far, vaccines have tremendously decreased the rate of transmission and infection in most parts of the world. However, the repeated resurgence of different types of mutated versions of the virus, also known as variants, has somehow created uncertainties about the efficacies of different types of vaccines. This review discusses some of the interesting SARS-CoV-2 features, including general structure, genomics, and mechanisms of variants development and their consequent immune escape. This review also focuses very briefly on antigenic drift, shift, and vaccine-developing platforms.

About the authors

Shahid Nawaz

Institute of Microbiology and Molecular Genetics, University of the Punjab

Email: info@benthamscience.net

Sara Janiad

Department of Microbiology and Molecular Genetics, The Women University Multan

Author for correspondence.
Email: info@benthamscience.net

Aiman Fatima

Institute of Microbiology and Molecular Genetics, University of the Punjab

Email: info@benthamscience.net

Maira Saleem

Institute of Microbiology and Molecular Genetics, University of the Punjab

Email: info@benthamscience.net

Urooj Fatima

Department of Microbiology and Molecular Genetics, The Women University Multan

Email: info@benthamscience.net

Asad Ali

Institute of Microbiology and Molecular Genetics, University of the Punjab

Email: info@benthamscience.net

References

  1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  2. Vanden Eynde JJ. COVID-19: A brief overview of the discovery clinical trial. Pharmaceuticals 2020; 13(4): 65. doi: 10.3390/ph13040065 PMID: 32290348
  3. Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44. doi: 10.1038/s41564-020-0695-z PMID: 32123347
  4. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the- (Accessed on: June 13, 2021).
  5. Nhamo G, Chikodzi D, Kunene HP, Mashula N. COVID-19 vaccines and treatments nationalism: Challenges for low-income countries and the attainment of the SDGs. Glob Public Health 2021; 16(3): 319-39. doi: 10.1080/17441692.2020.1860249 PMID: 33317389
  6. Hein W, Paschke A. Access to COVID-19 vaccines and medicines-a Global Public Good Zur Verfügung Gestellt in Kooperation Mit/provided in cooperation with: GIGA German Institute of Global and Area Studies Vaccines and Medicines - a Global Public Good. (GIGA Focus Global, 4). GIGA German Institute of Global and Area Studies- Leibniz-Institut Für Globale Und Regionale Studien. Available from: https://Nbn-Resolving.Org/Urn:Nbn:De (Accessed on: June 13, 2021).
  7. Pfefferbaum B, North CS. Mental health and the covid-19 pandemic. N Engl J Med 2020; 383(6): 510-2. doi: 10.1056/NEJMp2008017 PMID: 32283003
  8. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020; 91(1): 157-60.
  9. COVID-19 vaccine tracker and landscape. Available from: https://www.who.int/publications/m/item/draft-landscape-of- (Accessed on: June 14, 2021)
  10. Tracking SARS-CoV-2 variants Available from: https://www.who. int/en/activities/tracking-SARS-CoV-2-variants/?fbclid=IwAR3hxfEG9A7qfk1uZq7s0aMzQ_5M1LQzHFycEZHVbr (Accessed on: September 30, 2021)
  11. Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 variants and COVID-19 vaccine efficacy: What the clinician should know? J Clin Med Res 2021; 13(6): 317-25. doi: 10.14740/jocmr4518 PMID: 34267839
  12. Ashique S, Sandhu NK. "Ayurvedic System": A new possible safe and effective way to get rid of this critical COVID-19 pandemic situation- a review. Curr Tradit Med 2022; 8(1): e130421192818. doi: 10.2174/2215083807666210413113113
  13. Klein S, Cortese M, Winter SL, et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun 2020; 11(1): 5885. doi: 10.1038/s41467-020-19619-7 PMID: 33208793
  14. Emma B. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. 2021. Available from https://covariants.org/
  15. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
  16. Nawaz S. COVID-19, SARS -CoV-2, Origin, transmission and treatment aspects, a brief review. Infect Disord Drug Targets 2021; 21(5): e270421186673. doi: 10.2174/1871526520666201006163641 PMID: 33023459
  17. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2. doi: 10.1038/s41591-020-0820-9 PMID: 32284615
  18. Goldsmith CS, Miller SE, Martines RB, Bullock HA, Zaki SR. Electron microscopy of SARS-CoV-2: A challenging task. Lancet 2020; 395(10238): e99.
  19. Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021; 214: 105778. doi: 10.1016/j.actatropica.2020.105778 PMID: 33253656
  20. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34. doi: 10.1038/nrmicro.2016.81 PMID: 2734495959
  21. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92. doi: 10.1038/s41579-018-0118-9 PMID: 30531947
  22. Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. Int J Biol Sci 2021; 17(1): 8-19. doi: 10.7150/ijbs.52569 PMID: 33390829
  23. Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9. doi: 10.1038/s41401-020-0485-4 PMID: 32747721
  24. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61. doi: 10.1146/annurev-virology-110615-042301 PMID: 27578435
  25. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525(1): 135-40. doi: 10.1016/j.bbrc.2020.02.071 PMID: 32081428
  26. Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol 2020; 11: 585354. doi: 10.3389/fimmu.2020.585354 PMID: 33163000
  27. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116. doi: 10.1016/bs.aivir.2019.08.002
  28. Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020; 369(6501): 330-3. doi: 10.1126/science.abb9983 PMID: 32366695
  29. Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virusdisease 2020; 31(1): 13-21. doi: 10.1007/s13337-020-00571-5 PMID: 32206694
  30. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 2020; 27(8): 763-7. doi: 10.1038/s41594-020-0468-7 PMID: 32647346
  31. Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588(7837): 327-30. doi: 10.1038/s41586-020-2772-0 PMID: 32942285
  32. Europe PMC. Available from: https://europepmc.org/article/PMC/PMC7 (Accessed on: April 22, 2021).
  33. Michieli AG. #Genomic characterization of a novel #SARS-CoV-2 #lineage from #Rio de Janeiro, #Brazil (J Virol., abstract). 2021. Available from: https://etidioh.wordpress. com/2021/03/02/genomic-characterization-of-a-novel sars-cov-2-lineage-from-rio-de-janeiro-brazil-j-virol-ab stract/ (Accessed on: April 24, 2021)
  34. SARS-CoV-2 Variant Classifications and Definitions. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
  35. How the flu virus can change: "Drift" and "Shift". Cent ers for Disease Control and Prevention. 2019. Available from: https://www.cdc. gov/flu/about/viruses/change.htm (Accessed on: April 23, 2021).
  36. Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep 2021; 70(3): 95-9. doi: 10.15585/mmwr.mm7003e2 PMID: 33476315
  37. Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021; 593(7858): 270-4. doi: 10.1038/s41586-021-03426-1 PMID: 33723411
  38. NERVTAGGOV.UK. Available from: https://assets.publishing. service.gov.uk/government/uploads/system/uploads/attachment _data/file/961037/NERVTAG_note_on_B.1.1.7_sever ity_for_SAGE_77__1_.pdf (Accessed on: April 24, 2021).
  39. US COVID-19 Cases Caused by Variants. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant-cases.html (Accessed on: April 24, 2021).
  40. Aine.otoole. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Virological. Available from:. https://virological.org/t/tracking-the-international-spread of-sars-cov-2-lineages-b-1-1-7-and-b-1-351-501y-v2/592
  41. Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021; 27(5): 917-24. doi: 10.1038/s41591-021-01318-5 PMID: 33772244
  42. Vasireddy D, Atluri P, Malayala SV, Vanaparthy R, Mohan G. Review of COVID-19 vaccines approved in the United States of America for emergency use. J Clin Med Res 2021; 13(4): 204-13. doi: 10.14740/jocmr4490 PMID: 34007358
  43. Rita Rubin MA. COVID-19 Vaccines vs. Variants—Determining How Much Immunity Is Enough JAMA 2021; 325(13): 1241-3.
  44. Update on SARS-CoV-2 Variants. GVN. 2021. Available from: https://gvn.org/update-on-sars-cov-2-variants-020521/ (Accessed on: April 2).
  45. Coronavirus mutations and variants: what does it mean? SRHD 2021. Available from: https://srhd.org/news/2021/coronavirus-mutationsand-variants-what-does-it-mean.Published (Accessed on: April 24, 2021)
  46. Aleem A, Akbar SAB, Slenker AK. Emerging variants of SARS-CoV-2 And novel therapeutics against coronavirus (COVID-19).In: StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
  47. Callaway E. Multitude of coronavirus variants found in the US - but the threat is unclear. Nature News. 2021. Available from: https://www.nature.com/articles/d41586-021-00564-4 (Accessed on: May 3, 2021)
  48. Zhang W, Davis BD, Chen SS, Sincuir MJM, Plummer JT, Vail E. Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 2021; 325(13): 1324-6. doi: 10.1001/jama.2021.1612 PMID: 33571356
  49. Coronavirus: ‘Double mutant’ COVID variant found in India. BBC News. 2021. Available from: https://www.bbc.com/news/world-asiaindia-56507988 (Accessed on: June 10, 2021).
  50. Service TN. COVAXIN works against double mutant; reduces hospitalisation, shows Phase 3 interim data. Tribuneindia News Service. Available from: https://www.tribuneindia.com/news/nation/covaxin-works-against-double-mutant-shows78-100-efficacy-against-severe-covid-phase-3-interimdata-242191 (Accessed on: April 24, 2021).
  51. Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 2021; 372(296): n296. doi: 10.1136/bmj.n296 PMID: 33526412
  52. World Health Organization. EG.5 initial risk evaluation. 2023. Available from: www.who.int/docs/default-source/coronaviruse/09082023eg.5_ire_final.pdf
  53. Mahase E. What do we know about XBB.1.5 and should we be worried? BMJ 2023; 380: 153. doi: 10.1136/bmj.p153
  54. Looi MK. What do we know about the Arcturus XBB.1.16 subvariant? BMJ 2023; 381: 1074. doi: 10.1136/bmj.p1074
  55. Centers for Disease Control and Prevention Monitoring variant proportions 2023. Available from: https://covid.cdc.gov/covid-data-tracker/#variant-proportions
  56. UKHSA. SARS-CoV-2 genome sequence prevalence and growth rate update. 2023. Available from: www.gov.uk/government/publications/sars-cov-2-genome-sequence-prevalence-and#growth-rate/sars-cov-2-genome-sequence-prevalence-and-growth-rate-update-2-august-2023
  57. Science Brief: Emerging SARS-CoV-2 Variants. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientificbrief-emerging-variants.html (Accessed on: May 3, 2021).
  58. Keshavarz M, Mirzaei H, Salemi M, et al. Influenza vaccine: Where are we and where do we go? Rev Med Virol 2019; 29(1): e2014. doi: 10.1002/rmv.2014 PMID: 30408280
  59. Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. Polio vaccination: Past, present and future. Future Microbiol 2015; 10(5): 791-808. doi: 10.2217/fmb.15.19 PMID: 25824845
  60. Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines 2019; 7(2): 37. doi: 10.3390/vaccines7020037 PMID: 31022829
  61. Sandbrink JB, Shattock RJ. RNA vaccines: A suitable platform for tackling emerging pandemics? Front Immunol 2020; 11: 608460. doi: 10.3389/fimmu.2020.608460 PMID: 33414790
  62. Hassine IH, Gharbi J, Hamrita B, Almalki MA, Rodríguez JF, Ben M’hadheb M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 2020; 47(4): 2835-43. doi: 10.1007/s11033-020-05333-6 PMID: 32240468
  63. Schillie S, Harris A, Link-Gelles R, Romero J, Ward J, Nelson N. Recommendations of the Advisory Committee on Immunization Practices for use of a hepatitis b vaccine with a novel adjuvant. MMWR Morb Mortal Wkly Rep 2018; 67(15): 455-8. doi: 10.15585/mmwr.mm6715a5 PMID: 29672472
  64. Hensley SE, Das SR, Bailey AL, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 2009; 326(5953): 734-6. doi: 10.1126/science.1178258 PMID: 19900932
  65. Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2020; 182(5): 1295-1310.e20. doi: 10.1016/j.cell.2020.08.012 PMID: 32841599
  66. Silver ZA. Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies. Cell Rep 2020; 30: 1862-1869.e1864..
  67. Das SR, Hensley SE, David A, et al. Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci 2011; 108(51): E1417-22. doi: 10.1073/pnas.1108754108 PMID: 22106257
  68. Andreano E. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 2020. doi: 10.1101/2020.12.28.424451
  69. McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021; 371(6534): 1139-42. doi: 10.1126/science.abf6950 PMID: 33536258
  70. McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021; 184(9): 2332-2347.e16. doi: 10.1016/j.cell.2021.03.028 PMID: 33761326
  71. Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592(7855): 616-22. doi: 10.1038/s41586-021-03324-6 PMID: 33567448
  72. Xie X. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. bioRxiv 2021. doi: 10.1101/2021.01.07.425740
  73. Collier DA, De Marco A, Ferreira IATM, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021; 593(7857): 136-41. doi: 10.1038/s41586-021-03412-7 PMID: 33706364
  74. West AP, Barnes CO, Yang Z, Bjorkman PJ. SARS-CoV-2 lineage B.1.526 emerging in the New York region detected by software utility created to query the spike mutational landscape. bioRxiv 2021. doi: 10.1101/2021.02.14.431043
  75. Faulkner N. Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains. bioRxiv 2021. doi: 10.1101/2021.03.01.433314
  76. Huang B. Neutralization of SARS-CoV-2 VOC 501Y. bioRxiv 2021. doi: 10.1101/2021.02.01.429069
  77. Sapkal GN. Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum. bioRxiv 2021. doi: 10.1101/2021.01.26.426986
  78. Wu K. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021. doi: 10.1101/2021.01.25.427948
  79. Garcia-Beltran WF, Evan CL, Kerri SD. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021; 184(9): 2372-2383.e9.
  80. Emary KRW, Tanya G, Parvinder KA. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial. Lancet 2021; 397(10282): 1351-62.
  81. Zhou W, Wang W. Fast-spreading SARS-CoV-2 variants: Challenges to and new design strategies of COVID-19 vaccines. Sig Transduct Target Ther 2021; 6: 226. doi: 10.1038/s41392-021-00644-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers