A Comprehensive Review on Molecular Mechanism Involved in Arsenic Trioxide Mediated Cerebral Neurodegenerative and Infectious Diseases


Cite item

Full Text

Abstract

Arsenic is an environmental toxicant and its toxicity is a global health problem affecting millions of people. Arsenic exposure occurs from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Both cancerous, noncancerous and immunological complications are possible after arsenic exposure. The many other target organs like lungs, thymus, spleen, liver, heart, kidney, and brain. Arsenic-mediated neuro, as well as immunotoxicity, is the main concern of this review. Long-term arsenic exposure can lead to various neurological dysfunctions, which may cause neurobehavioral defects and biochemical impairment in the brain, this might negatively affect one's quality of life in later stages. Arsenic also alters the levels of various neurotransmitters such as serotonin, dopamine and norepinephrine in the brain which produces neurotoxic effects and immunological deficiency. So, it is crucial to understand the neurotoxic mechanism of arsenic trioxide-mediated cerebro neurodegenerative and immunerelated alterations. One of the major mechanisms by which it exerts its toxic effect is through an impairment of cellular respiration by inhibition of various mitochondrial enzymes, and the uncoupling of oxidative phosphorylation. This review focuses on the various toxic mechanisms responsible for arsenic-mediated neurobehavioral and immune-related changes. Therefore, this review provides a critical analysis of mitochondrial dysfunctions, oxidative stress, glutamate excitatory, inflammatory and apoptosis-related mechanistic aspects in arsenic-mediated immunotoxicity, neurotoxicity, and neurodegenerative changes.

About the authors

Vaishali Negi

Faculty of Pharmacy, Swami Vivekanand Subharti University

Email: info@benthamscience.net

Prabhat Singh

Faculty of Pharmacy, Swami Vivekanand Subharti University

Author for correspondence.
Email: info@benthamscience.net

Lubhan Singh

Faculty of Pharmacy, Swami Vivekanand Subharti University

Email: info@benthamscience.net

Rupesh Pandey

Faculty of Pharmacy, Swami Vivekanand Subharti University

Email: info@benthamscience.net

Sokindra Kumar

Faculty of Pharmacy, Swami Vivekanand Subharti University

Email: info@benthamscience.net

References

  1. Guo H, Li X, Zhang Y, et al. Metabolic characteristics related to the hazardous effects of environmental arsenic on humans: A metabolomic review. Ecotoxicol Environ Saf 2022; 236: 113459. doi: 10.1016/j.ecoenv.2022.113459 PMID: 35367889
  2. Susan A, Rajendran K, Sathyasivam K, Krishnan UM. An overview of plant-based interventions to ameliorate arsenic toxicity. Biomed Pharmacother 2019; 109: 838-52. doi: 10.1016/j.biopha.2018.10.099 PMID: 30551538
  3. Steinmaus C, Carrigan K, Kalman D, Atallah R, Yuan Y, Smith AH. Dietary intake and arsenic methylation in a U.S. population. Environ Health Perspect 2005; 113(9): 1153-9. doi: 10.1289/ehp.7907 PMID: 16140620
  4. Tchounwou PB, Centeno JA, Patlolla AK. Arsenic toxicity, mutagenesis, and carcinogenesis-a health risk assessment and management approach. Mol Cell Biochem 2004; 255(1/2): 47-55. doi: 10.1023/B:MCBI.0000007260.32981.b9 PMID: 14971645
  5. Hoang DH, Buettner R, Valerio M, et al. Arsenic Trioxide and Venetoclax Synergize against AML progenitors by ROS induction and inhibition of Nrf2 activation. Int J Mol Sci 2022; 23(12): 6568. doi: 10.3390/ijms23126568 PMID: 35743010
  6. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J 2003; 79(933): 391-6. doi: 10.1136/pmj.79.933.391 PMID: 12897217
  7. Shayan M, Barangi S, Hosseinzadeh H, Mehri S. The protective effect of natural or chemical compounds against arsenic-induced neurotoxicity: Cellular and molecular mechanisms. Food Chem Toxicol 2023; 175: 113691. doi: 10.1016/j.fct.2023.113691 PMID: 36871878
  8. Najafi N, Rezaee R, Hayes AW, Karimi G. A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity. Biometals 2022; 1-5. PMID: 36564665
  9. Gan R, Liu H, Wu S, et al. Curcumin alleviates arsenic trioxide–induced inflammation and pyroptosis via the NF-κB/NLRP3 signaling pathway in the hypothalamus of ducks. Biol Trace Elem Res 2022; 1-9. PMID: 35737258
  10. Farzan SF, Li Z, Korrick SA, et al. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. Cohort. Environ Health Perspect 2016; 124(6): 840-7. doi: 10.1289/ehp.1409282 PMID: 26359651
  11. Brown E, Yedjou CG, Tchounwou PB. Cytotoxicity and oxidative stress in human liver carcinoma cells exposed to arsenic trioxide (HepG2). Met Ions Biol Med 2008; 10: 583-7.
  12. M Walker A,. J Stevens J, Ndebele K, Tchounwou PB. Evaluation of arsenic trioxide potential for lung cancer treatment: Assessment of apoptotic mechanisms and oxidative damage. J Cancer Sci Ther 2016; 8(1): 1-9. doi: 10.4172/1948-5956.1000379 PMID: 27158419
  13. Bjørklund G, Oliinyk P, Lysiuk R, et al. Arsenic intoxication: General aspects and chelating agents. Arch Toxicol 2020; 94(6): 1879-97. doi: 10.1007/s00204-020-02739-w PMID: 32388818
  14. Howe PD, Hughes M, Kenyon E, et al. Arsenic and arsenic compounds. World Health Organization 2001.
  15. Al Rmalli SW, Haris PI, Harrington CF, Ayub M. A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Sci Total Environ 2005; 337(1-3): 23-30. doi: 10.1016/j.scitotenv.2004.06.008 PMID: 15626376
  16. Le XC, Cullen WR, Reimer KJ. Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp. Clin Chem 1994; 40(4): 617-24. doi: 10.1093/clinchem/40.4.617 PMID: 8149620
  17. Nemec M, Holson J, Farr C, Hood R. Developmental toxicity assessment of arsenic acid in mice and rabbits. Reprod Toxicol 1998; 12(6): 647-58. doi: 10.1016/S0890-6238(98)00053-7 PMID: 9875698
  18. Ravenscroft P, Brammer H, Richards K. Arsenic in North America and Europe. In: Arsenic Pollution: A Global Synthesis. 2009; pp. 387-454. doi: 10.1002/9781444308785.ch9
  19. Chung JY, Yu SD, Hong YS. Environmental source of arsenic exposure. J Prev Med Public Health 2014; 47(5): 253-7. doi: 10.3961/jpmph.14.036 PMID: 25284196
  20. Gu S, Chen C, Jiang X, Zhang Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem Biol Interact 2016; 245: 100-9. doi: 10.1016/j.cbi.2016.01.005 PMID: 26772155
  21. Soignet SL, Maslak P, Wang ZG, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 1998; 339(19): 1341-8. doi: 10.1056/NEJM199811053391901 PMID: 9801394
  22. Porcelli AJ, Delgado MR. Stress and decision making: effects on valuation, learning, and risk-taking. Curr Opin Behav Sci 2017; 14: 33-9. doi: 10.1016/j.cobeha.2016.11.015 PMID: 28044144
  23. Bjelaković G, Beninati S, Pavlović D, et al. Glucocorticoids and oxidative stress. J Basic Clin Physiol Pharmacol 2007; 18(2): 115-27. doi: 10.1515/JBCPP.2007.18.2.115 PMID: 17715567
  24. Sreekumar R, Unnikrishnan J, Fu A, et al. Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 2002; 283(1): E38-43. doi: 10.1152/ajpendo.00387.2001 PMID: 12067840
  25. Mansour HH, Hafez HF, Fahmy NM. Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J Biochem Mol Biol 2006; 39(6): 656-61. PMID: 17129399
  26. Wasserman GA, Liu X, Parvez F, et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 2004; 112(13): 1329-33. doi: 10.1289/ehp.6964 PMID: 15345348
  27. Chandravanshi LP, Yadav RS, Shukla RK, et al. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 2014; 34(1): 60-75. doi: 10.1016/j.ijdevneu.2014.01.007 PMID: 24517892
  28. Zhong G, Wan F, Wu S, et al. Corrigendum to "Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice". Sci otal Environ (2021) volume 777, 10 July 2021, 146082 Sci Total Environ 2022; 817: 152983. doi: 10.1016/j.scitotenv.2022.152983 PMID: 35033841
  29. Cohen SM, Arnold LL, Eldan M, Lewis AS, Beck BD. Methylated arsenicals: the implications of metabolism and carcinogenicity studies in rodents to human risk assessment. Crit Rev Toxicol 2006; 36(2): 99-133. doi: 10.1080/10408440500534230 PMID: 16736939
  30. Guerra-Castellano A, Díaz-Quintana A, Pérez-Mejías G, et al. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci USA 2018; 115(31): 7955-60. doi: 10.1073/pnas.1806833115 PMID: 30018060
  31. Forman HJ. Redox signaling: An evolution from free radicals to aging. Free Radic Biol Med 2016; 97: 398-407. doi: 10.1016/j.freeradbiomed.2016.07.003 PMID: 27393004
  32. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121(8): 799-817. doi: 10.1007/s00702-014-1180-8 PMID: 24578174
  33. Yeşilören E, Yalcin GD. The Regulation of GLT-1 Degradation Pathway by SIRT4. Neurochem Res 2023; 48(9): 2847-56. doi: 10.1007/s11064-023-03947-3 PMID: 37178383
  34. Prakash C, Soni M, Kumar V. Biochemical and Molecular Alterations Following Arsenic-Induced Oxidative Stress and Mitochondrial Dysfunction in Rat Brain. Biol Trace Elem Res 2015; 167(1): 121-9. doi: 10.1007/s12011-015-0284-9 PMID: 25764338
  35. Dwivedi N, Mehta A, Yadav A, Binukumar BK, Gill KD, Flora SJS. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats. Toxicol Appl Pharmacol 2011; 256(3): 241-8. doi: 10.1016/j.taap.2011.04.004 PMID: 21513725
  36. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 2004; 25(4): 365-451. doi: 10.1016/j.mam.2004.03.001 PMID: 15302203
  37. Rizzuto R, Bernardi P, Pozzan T. Mitochondria as all-round players of the calcium game. J Physiol 2000; 529(1): 37-47. doi: 10.1111/j.1469-7793.2000.00037.x PMID: 11080249
  38. Scorrano L. The changing shape of mitochondrial apoptosis. Trends in Endocrinology & Metabolism. 2009 Aug 1;20(6):287-94. Wasilewski M, Scorrano L. The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab 2009; 20(6): 287-94. PMID: 19647447
  39. Piquereau J, Caffin F, Novotova M, et al. Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 2013; 4: 102. doi: 10.3389/fphys.2013.00102 PMID: 23675354
  40. Tseng H-P, Wang Y-H, Wu M-M. Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J Health Popul Nutr 2006.
  41. Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14: 1114231. doi: 10.3389/fphys.2023.1114231 PMID: 37179826
  42. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 2003; 9(5-8): 125-34. doi: 10.1007/BF03402177 PMID: 14571320
  43. Koj A. Termination of acute-phase response: role of some cytokines and anti-inflammatory drugs. Gen Pharmacol 1998; 31(1): 9-18. doi: 10.1016/S0306-3623(97)00435-7 PMID: 9595271
  44. Gollnick SO, Evans SS, Baumann H, et al. Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 2003; 88(11): 1772-9. doi: 10.1038/sj.bjc.6600864 PMID: 12771994
  45. Li J, Li N, Yan S, et al. Ursolic acid alleviates inflammation and against diabetes induced nephropathy through TLR4 mediated inflammatory pathway. Mol Med Rep 2018; 18(5): 4675-81. doi: 10.3892/mmr.2018.9429 PMID: 30221655
  46. Jiang X, Liu J, Lin Q, et al. Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res Bull 2017; 135: 40-6. doi: 10.1016/j.brainresbull.2017.09.010 PMID: 28941603
  47. Braida D, Sacerdote P, Panerai AE, et al. Cognitive function in young and adult IL (interleukin)-6 deficient mice. Behav Brain Res 2004; 153(2): 423-9. doi: 10.1016/j.bbr.2003.12.018 PMID: 15265638
  48. Jiang M, Qin P, Yang X. Comorbidity between depression and asthma via immune-inflammatory pathways: A meta-analysis. J Affect Disord 2014; 166: 22-9. doi: 10.1016/j.jad.2014.04.027 PMID: 25012406
  49. Jin X, Gao X, Lan M, Li C, Sun J, Zhang H. Study the mechanism of peimisine derivatives on NF-κB inflammation pathway on mice with acute lung injury induced by lipopolysaccharide. Chem Biol Drug Des 2022; 99(5): 717-26. doi: 10.1111/cbdd.14013 PMID: 34939324
  50. Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004; 190 (Suppl. 1): 8-21. doi: 10.1016/j.expneurol.2004.03.027 PMID: 15498537
  51. Venugopal A, Iyer M, Balasubramanian V, Vellingiri B. Mitochondrial calcium uniporter as a potential therapeutic strategy for Alzheimer’s disease. Acta Neuropsychiatr 2020; 32(2): 65-71. doi: 10.1017/neu.2019.39 PMID: 31556366
  52. Lu C, Wang Y, Xu T, et al. Genistein ameliorates scopolamine-induced amnesia in mice through the regulation of the cholinergic neurotransmission, antioxidant system and the ERK/CREB/BDNF signaling. Front Pharmacol 2018; 9: 1153. doi: 10.3389/fphar.2018.01153 PMID: 30369882
  53. Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta 2002; 58(1): 201-35. doi: 10.1016/S0039-9140(02)00268-0 PMID: 18968746
  54. Rusyniak DE, Nañagas KA. Organophosphate poisoning 2004. doi: 10.1055/s-2004-830907
  55. Erb C, Troost J, Kopf S, et al. Compensatory mechanisms enhance hippocampal acetylcholine release in transgenic mice expressing human acetylcholinesterase. J Neurochem 2001; 77(2): 638-46. doi: 10.1046/j.1471-4159.2001.00287.x PMID: 11299326
  56. Wyllie AH. Apoptosis: an overview. Br Med Bull 1997; 53(3): 451-65. doi: 10.1093/oxfordjournals.bmb.a011623 PMID: 9374030
  57. D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 2019; 43(6): 582-92. doi: 10.1002/cbin.11137 PMID: 30958602
  58. Doonan F, Cotter TG. Morphological assessment of apoptosis. Methods 2008; 44(3): 200-4. doi: 10.1016/j.ymeth.2007.11.006 PMID: 18314050
  59. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res 2002; 62(14): 3893-903. PMID: 12124315
  60. Ling J, Wang Q, Liang H, Liu Q, Yin D, Lin L. Flavonoid-Rich Extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits Gastric Cancer by Activation of Caspase-Dependent Mitochondrial Apoptosis. Chin J Integr Med 2023; 29(3): 213-23. doi: 10.1007/s11655-022-3679-4 PMID: 36044114
  61. Zheng CY, Lam SK, Li YY, Ho J. Arsenic trioxide-induced cytotoxicity in small cell lung cancer via altered redox homeostasis and mitochondrial integrity. Int J Oncol 2015; 46(3): 1067-78. doi: 10.3892/ijo.2015.2826 PMID: 25572414
  62. Lagares D, Santos A, Grasberger PE, et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci Transl Med 2017; 9(420): eaal3765. doi: 10.1126/scitranslmed.aal3765 PMID: 29237758
  63. Simeonova PP, Luster MI. 2000.
  64. Matrisian LM. The matrix-degrading metalloproteinases. BioEssays 1992; 14(7): 455-63. doi: 10.1002/bies.950140705 PMID: 1445287
  65. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol 2001; 13(5): 534-40. doi: 10.1016/S0955-0674(00)00248-9 PMID: 11544020
  66. McQuibban GA, Gong JH, Tam EM, McCulloch CAG, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 2000; 289(5482): 1202-6. doi: 10.1126/science.289.5482.1202 PMID: 10947989
  67. Mannello F, Luchetti F, Falcieri E, Papa S. Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 2005; 10(1): 19-24. doi: 10.1007/s10495-005-6058-7 PMID: 15711919
  68. Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci 2002; 22(3): 920-30. doi: 10.1523/JNEUROSCI.22-03-00920.2002 PMID: 11826121
  69. Lorente L, Martín MM, Ramos L, et al. Serum tissue inhibitor of matrix metalloproteinase-1 levels are associated with mortality in patients with malignant middle cerebral artery infarction. BMC Neurol 2015; 15(1): 111. doi: 10.1186/s12883-015-0364-7 PMID: 26162891
  70. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1): 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
  71. Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci 2010; 118(2): 586-601. doi: 10.1093/toxsci/kfq266 PMID: 20829427
  72. Kushwaha R, Mishra J, Tripathi S, et al. Arsenic attenuates heparin-binding EGF-like growth factor/EGFR signaling that promotes matrix metalloprotease 9-dependent astrocyte damage in the developing rat brain. Toxicol Sci 2018; 162(2): 406-28. doi: 10.1093/toxsci/kfx264 PMID: 29228391
  73. Islam J, Islam Z, Haque N, et al. Fenugreek seed powder protects mice against arsenic-induced neurobehavioral changes. Current Research in Toxicology 2023; 5: 100114. doi: 10.1016/j.crtox.2023.100114 PMID: 37554151
  74. Gopnar VV, Rakshit D, Bandakinda M, Kulhari U, Sahu BD, Mishra A. Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-α mediated activation of NLRP3 inflammasome. Neurotoxicology 2023; 97: 133-49. doi: 10.1016/j.neuro.2023.06.006 PMID: 37331635
  75. Xiong L, Huang J, Gao Y, et al. Sodium arsenite induces spatial learning and memory impairment associated with oxidative stress and activates the Nrf2/PPARγ pathway against oxidative injury in mice hippocampus. Toxicol Res (Camb) 2021; 10(2): 277-83. doi: 10.1093/toxres/tfab007 PMID: 33884178
  76. Hu X, Yuan X, Yang M, Han M, Ommati MM, Ma Y. Arsenic exposure induced anxiety-like behaviors in male mice via influencing the GABAergic Signaling in the prefrontal cortex. Environ Sci Pollut Res Int 2023; 30(36): 86352-64. doi: 10.1007/s11356-023-28426-8 PMID: 37402917
  77. Lu Z, Wang F, Xia Y, et al. Involvement of gut-brain communication in arsenite-induced neurobehavioral impairments in adult male mice. Ecotoxicol Environ Saf 2023; 249: 114370. doi: 10.1016/j.ecoenv.2022.114370 PMID: 36508802
  78. Tripathi S, Fhatima S, Parmar D, et al. Therapeutic effects of CoenzymeQ10, Biochanin A and Phloretin against arsenic and chromium induced oxidative stress in mouse (Mus musculus) brain. PubMed Central 2022; 12(5) .
  79. Zhou H, Ling H, Li Y, et al. Downregulation of beclin 1 restores arsenite-induced impaired autophagic flux by improving the lysosomal function in the brain. Ecotoxicol Environ Saf 2022; 229: 113066. doi: 10.1016/j.ecoenv.2021.113066 PMID: 34929507
  80. Silva-Adaya D, Ramos-Chávez LA, Petrosyan P, González-Alfonso WL, Pérez-Acosta A, Gonsebatt ME. Early neurotoxic effects of inorganic arsenic modulate cortical GSH levels associated with the activation of the Nrf2 and NFκB pathways, expression of amino acid transporters and NMDA receptors and the production of hydrogen sulfide. Front Cell Neurosci 2020; 14: 17. doi: 10.3389/fncel.2020.00017 PMID: 32194376
  81. Nelson-Mora J, Escobar ML, Rodríguez-Durán L, et al. Gestational exposure to inorganic arsenic (iAs3+) alters glutamate disposition in the mouse hippocampus and ionotropic glutamate receptor expression leading to memory impairment. Arch Toxicol 2018; 92(3): 1037-48. doi: 10.1007/s00204-017-2111-x PMID: 29204679
  82. Smith E, Juhasz AL, Weber J, Naidu R. Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Sci Total Environ 2008; 392(2-3): 277-83. doi: 10.1016/j.scitotenv.2007.11.023 PMID: 18164371
  83. Allanbutterfield D, Castegna A, Lauderback C, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death1. Neurobiol Aging 2002; 23(5): 655-64. doi: 10.1016/S0197-4580(01)00340-2 PMID: 12392766
  84. Gupta K, Vishwakarma J, Garg A, et al. Arsenic Induces GSK3β-Dependent p-Tau, Neuronal Apoptosis, and Cognitive Impairment via an Interdependent Hippocampal ERα and IL-1/IL-1R1 Mechanism in Female Rats. Toxicol Sci 2022; 190(1): 79-98. doi: 10.1093/toxsci/kfac087 PMID: 35993674
  85. Pandey R, Garg A, Gupta K, et al. Arsenic induces differential neurotoxicity in male, female, and E2-deficient females: Comparative effects on hippocampal neurons and cognition in adult rats. Mol Neurobiol 2022; 59(5): 2729-44. doi: 10.1007/s12035-022-02770-1 PMID: 35175559
  86. Sun H, Yang Y, Gu M, et al. The role of Fas-FasL-FADD signaling pathway in arsenic-mediated neuronal apoptosis in vivo and in vitro. Toxicol Lett 2022; 356: 143-50. doi: 10.1016/j.toxlet.2021.11.012 PMID: 34953944
  87. Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite–induced vascular dementia in rats. Environ Sci Pollut Res Int 2021; 28(44): 63250-62. doi: 10.1007/s11356-021-15189-3 PMID: 34226994
  88. Wu S, Rao G, Wang R, et al. The neuroprotective effect of curcumin against ATO triggered neurotoxicity through Nrf2 and NF-κB signaling pathway in the brain of ducks. Ecotoxicol Environ Saf 2021; 228: 112965. doi: 10.1016/j.ecoenv.2021.112965 PMID: 34775344
  89. Zhang C, Li Y, Yu H, et al. Nanoplastics promote arsenic-induced ROS accumulation, mitochondrial damage and disturbances in neurotransmitter metabolism of zebrafish (Danio rerio). Sci Total Environ 2023; 863: 161005. doi: 10.1016/j.scitotenv.2022.161005 PMID: 36539083
  90. Rachamalla M, Salahinejad A, Khan M, Datusalia AK, Niyogi S. Chronic dietary exposure to arsenic at environmentally relevant concentrations impairs cognitive performance in adult zebrafish (Danio rerio) via oxidative stress and dopaminergic dysfunction. Sci Total Environ 2023; 886: 163771. doi: 10.1016/j.scitotenv.2023.163771 PMID: 37164085
  91. Aydin Y, Orta-Yilmaz B. Synergistic effects of arsenic and fluoride on oxidative stress and apoptotic pathway in Leydig and Sertoli cells. Toxicology 2022; 475: 153241. doi: 10.1016/j.tox.2022.153241 PMID: 35714946
  92. Woo SH, Park IC, Park MJ, et al. Arsenic trioxide sensitizes CD95/Fas-induced apoptosis through ROS-mediated upregulation of CD95/Fas by NF-κB activation. Int J Cancer 2004; 112(4): 596-606. doi: 10.1002/ijc.20433 PMID: 15382040
  93. Bellamri N, Morzadec C, Fardel O, Vernhet L. Arsenic and the immune system. Curr Opin Toxicol 2018; 10: 60-8. doi: 10.1016/j.cotox.2018.01.003
  94. Nouri K, Ricotti CA Jr, Bouzari N, Chen H, Ahn E, Bach A. The incidence of recurrent herpes simplex and herpes zoster infection during treatment with arsenic trioxide. J Drugs Dermatol 2006; 5(2): 182-5. PMID: 16485889
  95. Isik A, Wysocki AP,. Memiş U, Sezgin E, Yezhikova A, Islambekov Y. Factors associated with the occurrence and healing of umbilical pilonidal sinus: a rare clinical entity. Adv Skin Wound Care 2022; 35(8): 1-4. doi: 10.1097/01.ASW.0000833608.27136.d1 PMID: 35856614
  96. Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Lett 2014; 354(2): 211-9. doi: 10.1016/j.canlet.2014.08.016 PMID: 25173797
  97. Srivastava RK, Li C, Chaudhary SC, et al. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption. Toxicol Appl Pharmacol 2013; 272(3): 879-87. doi: 10.1016/j.taap.2013.08.004 PMID: 23954561
  98. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
  99. Rychlik KA, Illingworth EJ, Sanchez IF, et al. Long-term effects of prenatal arsenic exposure from gestational day 9 to birth on lung, heart, and immune outcomes in the C57BL/6 mouse model. Toxicol Lett 2023; 383: 17-32. doi: 10.1016/j.toxlet.2023.05.011 PMID: 37244563
  100. Ray M, Hor P, Singh SN, Mondal KC. Multipotent antioxidant and antitoxicant potentiality of an indigenous probiotic Bifidobacterium sp. MKK4. J Food Sci Technol 2021; 58(12): 4795-804. doi: 10.1007/s13197-021-04975-z PMID: 34629544
  101. Li J, Zhao L, Zhang Y, et al. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. Environ Res 2017; 159: 381-93. doi: 10.1016/j.envres.2017.08.036 PMID: 28843991
  102. Duan X, Gao S, Li J, et al. Acute arsenic exposure induces inflammatory responses and CD4+ T cell subpopulations differentiation in spleen and thymus with the involvement of MAPK, NF-kB, and Nrf2. Mol Immunol 2017; 81: 160-72. doi: 10.1016/j.molimm.2016.12.005 PMID: 27978490
  103. Henderson MW, Madenspacher JH, Whitehead GS, et al. Effects of orally ingested arsenic on respiratory epithelial permeability to bacteria and small molecules in mice. Environ Health Perspect 2017; 125(9): 097024. doi: 10.1289/EHP1878 PMID: 28960179
  104. States JC, Barchowsky A, Cartwright IL, Reichard JF, Futscher BW, Lantz RC. Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect 2011; 119(10): 1356-63. doi: 10.1289/ehp.1103441 PMID: 21684831

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers