An Overview of the Global Alarming Increase of Multiple Drug Resistant: A Major Challenge in Clinical Diagnosis


Cite item

Full Text

Abstract

The increased spreading of antibiotic resistance among different infectious agents has been a fast-growing public health challenge worldwide; this is because of the discovery of new resistance mechanisms and the reduction in quality and effective treatments of general pathogenic infections. This has caused unsuccessful microbial responses to standard therapy, which could lead to a higher risk of mortality, prolonged illness, and more expenditures for health care. Most parasites, bacteria, fungi, and viruses can produce a higher degree of multidrug resistance (MDR) with increased mortality and morbidity. Moreover, the establishment of MDR can be a natural phenomenon, improper utilization of antimicrobial drugs, lack of proper sanitary conditions, poor method of food handling, and absence of infection prevention and control (IPC), which could be responsible for the further spreading of MDR. Moreover, MDR helminth’s mechanism of action can occur via genetic alterations in the drug transport, metabolisms and target sites. MDR bacterial mode of action such as cell wall synthesis inhibitors, DNA synthesis inhibitors and so on. However, there have been different approaches to managing and preventing multi-drug resistance. Hence, this review’s aim is to educate the public about the global increase of multiple drug resistance and the danger ahead if appropriate measures are not put in place to combat microbial infections.

About the authors

John Alara

, Saint John of God Accord

Author for correspondence.
Email: info@benthamscience.net

Oluwaseun Alara

School of Property, Construction and Project Management, RMIT University Melbourne

Email: info@benthamscience.net

References

  1. Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother., 2021, 76(1), 101-109. doi: 10.1093/jac/dkaa390
  2. Doremalen, N.; Doremalen, Neeltje van, Lambe, Teresa, Spencer, Alexandra, BelijRammerstorfer, Sandra, Purushotham, Jyothi N., Port, Julia R., Avanzato, Victoria, Bushmaker, Trenton, Flaxman, Amy, Ulaszewska, Marta, Feldmann, Friederike, Allen, Elizabeth R., Sharpe, Hann. BioResources, 2020.
  3. Elizabeth Gall, M.H.S.; Anna, Long.; M.P.H.; Kendall K. Hall, M.D. Infections Due to Other Multidrug-Resistant Organisms; In: Making Healthcare Safer III: A Critical Analysis of Existing and Emerging Patient Safety Practices;, 2020.
  4. Kwonjune, J.S.; Salmaan, K.; Michael, L.R. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Natl. Libr. Med., 2020, 5(9), a017863.
  5. WHO: . Antimicrobial resistance; World Health Organization, 2021.
  6. HIV drug resistance; WHO,. 2022, 1-4.
  7. Strasfeld, L.; Chou, S. Antiviral drug resistance: Mechanisms and clinical implications. Infect. Dis. Clin. North Am., 2010, 24(2), 413-437. doi: 10.1016/j.idc.2010.01.001 PMID: 20466277
  8. Margeridon-Thermet, S.; Shafer, R.W. Comparison of the mechanisms of drug resistance among HIV, hepatitis B, and hepatitis C. Viruses, 2010, 2(12), 2696-2739. doi: 10.3390/v2122696 PMID: 21243082
  9. Majumder, M.A.A.; Rahman, S.; Cohall, D.; Bharatha, A.; Singh, K.; Haque, M.; Gittens-St Hilaire, M. Antimicrobial stewardship: Fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist., 2020, 13, 4713-4738. doi: 10.2147/IDR.S290835 PMID: 33402841
  10. World Health Organization Director-general opening’s remarks at media briefing on COVID-19; WHO, 2020.
  11. World Antimicrobial Awareness Week; WHO, 2020.
  12. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations; Government of the United Kingdom, 2016.
  13. de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS One, 2016, 13(11), e1002184.
  14. NOAH response to final O’Neill AMR review report July 2016; NAOH, 2016.
  15. Antibiotic resistance threats in the United States; CDC,. 2019.
  16. Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318. doi: 10.1179/2047773215Y.0000000030 PMID: 26343252
  17. WHO Global action plan on antimicrobial resistance; WHO,. 2015.
  18. Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control, 2018, 7(1), 58-68. doi: 10.1186/s13756-018-0336-y PMID: 29713465
  19. Likotrafiti, E. EU-FORA SERIES 1 risk assessment of antimicrobial resistance along the food chain through culture-independent methodologies. Eur. Food Saf. Auth. J., 2018, 16(S1), 1-8.
  20. Pérez-Rodríguez, F.; Mercanoglu, T.B. A state-of-art review on multi-drug resistant pathogens in foods of animal origin: Risk factors and mitigation strategies. Front. Microbiol., 2019, 10, 2091. doi: 10.3389/fmicb.2019.02091 PMID: 31555256
  21. Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654. doi: 10.1073/pnas.1503141112 PMID: 25792457
  22. Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis., 2016, 3(1), 15-21. doi: 10.1177/2049936115621709 PMID: 26862399
  23. Centers for Disease Control (2013); Antibiotic resistance threats in the: United States; CDC, 2013.
  24. Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168. doi: 10.1016/S1473-3099(15)00424-7 PMID: 26603172
  25. Capita, R.; Alonso-Calleja, C. Antibiotic-resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr., 2013, 53(1), 11-48. doi: 10.1080/10408398.2010.519837 PMID: 23035919
  26. Pokharel, S.; Raut, S.; Adhikari, B. Tackling antimicrobial resistance in low-income and middle-income countries. BMJ Glob. Health, 2019, 4(6), e002104. doi: 10.1136/bmjgh-2019-002104 PMID: 31799007
  27. Kuehn, B.M. Excessive antibiotic prescribing for sore throat and acute bronchitis remains common. JAMA, 2013, 310(20), 2135-2136. doi: 10.1001/jama.2013.281452 PMID: 24281441
  28. Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, 2014, 2(145), 145. doi: 10.3389/fpubh.2014.00145 PMID: 25279369
  29. Byarugaba, D.K. Antimicrobial resistance in developing countries and responsible risk factors. Int. J. Antimicrob. Agents, 2004, 24(2), 105-110. doi: 10.1016/j.ijantimicag.2004.02.015 PMID: 15288307
  30. Cave, E. COVID-19 super-spreaders: Definitional quandaries and implications. Asian Bioeth. Rev., 2020, 12(2), 235-242. doi: 10.1007/s41649-020-00118-2
  31. Shears, P. Antimicrobial resistance in the tropics. Trop. Doct., 2000, 30(2), 114-116. doi: 10.1177/004947550003000225 PMID: 10842568
  32. Wernli, D.; Jørgensen, P.S.; Morel, C.M.; Carroll, S.; Harbarth, S.; Levrat, N.; Pittet, D. Mapping global policy discourse on antimicrobial resistance. BMJ Glob. Health, 2017, 2(2), e000378. doi: 10.1136/bmjgh-2017-000378 PMID: 29225939
  33. Catry, B.; Laevens, H.; Devriese, L.A.; Opsomer, G.; de Kruif, A. Antimicrobial resistance in livestock. J. Vet. Pharmacol. Ther., 2003, 26(2), 81-93. doi: 10.1046/j.1365-2885.2003.00463.x PMID: 12667177
  34. Antimicrobial Resistance Global Report on Surveillance; World Health Organization,. 2014.
  35. Mittal, A.K.; Bhardwaj, R.; Mishra, P.; Rajput, S.K. Antimicrobials misuse/overuse: Adverse Effect, mechanism, challenges and strategies to combat resistance. Open Biotechnol. J., 2020, 14(1), 107-112. doi: 10.2174/1874070702014010107
  36. Ahmed, J.; de Mohac, L.; Mackey, T.; Raimi-Abraham, B. A critical review on the availability of substandard and falsified medicines online: Incidence, challenges and perspectives,". J. Med. Acess, 2022, 6, 1-18.
  37. Maxim, L.D.; Niebo, R.; Utell, M.J. Screening tests: a review with examples. Inhal. Toxicol., 2014, 26(13), 811-828. doi: 10.3109/08958378.2014.955932 PMID: 25264934
  38. Huang, L.; Ahmed, S.; Gu, Y.; Huang, J.; An, B.; Wu, C.; Zhou, Y.; Cheng, G. The effects of natural products and environmental conditions on antimicrobial resistance. Molecules, 2021, 26(14), 4277. doi: 10.3390/molecules26144277 PMID: 34299552
  39. Almagor, J.; Temkin, E.; Benenson, I.; Fallach, N.; Carmeli, Y. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PLoS One, 2018, 13(5), e0197111. doi: 10.1371/journal.pone.0197111 PMID: 29758063
  40. Bharadwaj, A.; Rastogi, A.; Pandey, S.; Gupta, S.; Sohal, J.S. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis. BioMed Res. Int., 2022, 2022, 1-17. doi: 10.1155/2022/5419874 PMID: 36105930
  41. What are Multi drug resistant MDR- bacteria; NHS,. 2017.
  42. Vos, T.; Lim, S.S.; Abbafati, C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396(10258), 1204-1222. doi: 10.1016/S0140-6736(20)30925-9 PMID: 33069326
  43. Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 1-7. doi: 10.1155/2014/541340 PMID: 25140175
  44. Bennett, J.W.; Robertson, J.L.; Hospenthal, D.R.; Wolf, S.E.; Chung, K.K.; Mende, K.; Murray, C.K. Impact of extended spectrum beta-lactamase producing Klebsiella pneumoniae infections in severely burned patients. J. Am. Coll. Surg., 2010, 211(3), 391-399. doi: 10.1016/j.jamcollsurg.2010.03.030 PMID: 20800197
  45. Olasehinde, G.; Ojurongbe, O. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts. Malar J, 2014, 13, 63.
  46. Loeffler, J.; Stevens, D.A. Antifungal drug resistance. Clin. Infect. Dis., 2003, 36(S1), S31-S41. doi: 10.1086/344658 PMID: 12516028
  47. Wartu, J. Multidrug resistance by microorganisms: A review. Scientific World J., 2019, 14(4), 49-56.
  48. Jassal, M.; Bishai, W. Extensively drug-resistant tuberculosis. Lancent Infect. Dis, 2009, 22(2), 167-173.
  49. Saha, M.; Sarkar, A. Review on multiple facets of drug resistance: A rising challenge in the 21st century. J. Xenobiot., 2021, 11(4), 197-214. doi: 10.3390/jox11040013 PMID: 34940513
  50. Ndagi, U.; Falaki, A.A.; Abdullahi, M.; Lawal, M.M.; Soliman, M.E. Antibiotic resistance: bioinformatics-based understanding as a functional strategy for drug design. RSC Advances, 2020, 10(31), 18451-18468. doi: 10.1039/D0RA01484B PMID: 35685616
  51. Cao, S. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. ASM J., 2017, 8(3)
  52. Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother., 2018, 73(8), 2003-2020. doi: 10.1093/jac/dky042 PMID: 29506149
  53. Ogawara, H. Comparison of antibiotic resistance mechanisms in antibiotic-producing and pathogenic bacteria. Molecules, 2019, 24(19), 3430. doi: 10.3390/molecules24193430 PMID: 31546630
  54. Sultan, I.; Rahman, S.; Jan, A.; Siddiqui, M.; Mondal, A.; Haq, Q.M. Antibiotics, resistome and resistance rechanisms: A bacterial perspective. Front. Microbiol., 2018, 9, 2066.
  55. Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 2019, 37(1), 177-192. doi: 10.1016/j.biotechadv.2018.11.013 PMID: 30500353
  56. Chuanchuen, R.; Karkhoff-Schweizer, R.R.; Schweizer, H.P. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am. J. Infect. Control, 2003, 31(2), 124-127. doi: 10.1067/mic.2003.11 PMID: 12665747
  57. Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050. doi: 10.1016/j.cell.2007.03.004 PMID: 17382878
  58. Giguère, S.; John, F.; Desmond, J. Antimicrobial Drug Action and Interaction: An Introduction; In: Antimicrobial therapy in Veterinary Medicine,: 4th ed.;, 2006.
  59. Randall, C.P.; Mariner, K.R.; Chopra, I.; O’Neill, A.J. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob. Agents Chemother., 2013, 57(1), 637-639. doi: 10.1128/AAC.02005-12 PMID: 23114759
  60. Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev., 2014, 78(3), 510-543. doi: 10.1128/MMBR.00013-14 PMID: 25184564
  61. Darwich, L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of oxa-48 producing enterobacterales in wildlife in catalonia. PLoS One, 2019, 14(8), e0210686. doi: 10.1371/journal.pone.0210686
  62. Muktan, B. Plasmid mediated colistin resistant Mcr-1 and co-existence of OXA-48 among escherichia coli from clinical and poultry isolates: First report from Nepal. Gut Pathog, 2020, 12, 44.
  63. Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C. Occurrence and characteristics of mobile colistin resistance (Mcr) gene-containing isolates from the environment. A review. Int. J. Environ. Res. Public Health, 2020, 17(3), 1028. doi: 10.3390/ijerph17031028 PMID: 32041167
  64. Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrugresistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281. doi: 10.1111/j.1469-0691.2011.03570.x PMID: 21793988
  65. Mazel, D. Integrons: Agents of bacterial evolution. Nat. Rev. Microbiol., 2006, 4(8), 608-620. doi: 10.1038/nrmicro1462 PMID: 16845431
  66. Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother., 2018, 73(5), 1121-1137. doi: 10.1093/jac/dkx488 PMID: 29370371
  67. Hardison, R. Classes of Transposable Elements; Biology, 2021.
  68. Santoro, F.; Vianna, M.E.; Roberts, A.P. Variation on a theme; An overview of the Tn916/Tn1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front. Microbiol., 2014, 5. doi: 10.3389/fmicb.2014.00535
  69. Smillie, C.; Garcillán-Barcia, M.P.; Francia, M.V.; Rocha, E.P.C.; de la Cruz, F. Mobility of plasmids. Microbiol. Mol. Biol. Rev., 2010, 74(3), 434-452. doi: 10.1128/MMBR.00020-10 PMID: 20805406
  70. Mahillon, J.; Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev., 1998, 62(3), 725-774. doi: 10.1128/MMBR.62.3.725-774.1998 PMID: 9729608
  71. Agnė, G.; Astra, V. Antibiotic resistance mechanisms of clinically important bacteria. Med., 2011, 47(3), 137-146.
  72. He, X.; Li, S.; Kaminskyj, S.G.W. Using Aspergillus nidulans to identify antifungal drug resistance mutations. Eukaryot. Cell, 2014, 13(2), 288-294. doi: 10.1128/EC.00334-13 PMID: 24363365
  73. Multi-drug resistant gonorrhoea; World Health Organization,. 2021.
  74. McKeegan, K.S.; Borges-Walmsley, M.I.; Walmsley, A.R. Microbial and viral drug resistance mechanisms. Trends Microbiol., 2002, 10(S10), s8-s14. doi: 10.1016/S0966-842X(02)02429-0 PMID: 12377562
  75. Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. FEMS Microbiol. Rev., 2014, 38(4), 761-778. doi: 10.1111/1574-6976.12062 PMID: 24484530
  76. Siddiqui, A.; Koirala, J. Methicillin resistant Staphylococcus aureus; National Center for Emerging and Zoonotic Infectious Diseases (NCEZID); , 2022.
  77. Singh, R.; Dwivedi, S.P.; Gaharwar, U.S.; Meena, R.; Rajamani, P.; Prasad, T. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol., 2020, 128(6), 1547-1567. doi: 10.1111/jam.14478 PMID: 31595643
  78. Ejiofor, I.M.I.; Zaman, K.; Das, A. Antidiabetic evaluations of different parts of vernonia amygdalina. IOSR J. Pharm. Biol. Sci., 2017, 12(4), 23-28.
  79. Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928. doi: 10.3389/fmicb.2018.02928 PMID: 30555448
  80. C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501. doi: 10.3934/microbiol.2018.3.482 PMID: 31294229
  81. Zaman, S.; Hussain, M.; Nye, R.; Mehta, K.; Mamun, K.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing., Cureus, 2017, 9(6), e1403.
  82. Das, B.; Verma, J.; Kumar, P.; Ghosh, A.; Ramamurthy, T. Antibiotic resistance in vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine., 2019, 38(1), A83-A92.
  83. Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Invest., 2008, 118(4), 1311-1321. doi: 10.1172/JCI34261 PMID: 18382743
  84. Antibiotic resistance; World Health Organization, . 2020.
  85. Engemann, J.J.; Carmeli, Y.; Cosgrove, S.E.; Fowler, V.G.; Bronstein, M.Z.; Trivette, S.L.; Briggs, J.P.; Sexton, D.J.; Kaye, K.S. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis., 2003, 36(5), 592-598. doi: 10.1086/367653 PMID: 12594640
  86. Rottier, W.C.; Ammerlaan, H.S.M.; Bonten, M.J.M. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: A meta-analysis. J. Antimicrob. Chemother., 2012, 67(6), 1311-1320. doi: 10.1093/jac/dks065 PMID: 22396430
  87. Borer, A.; Saidel-Odes, L.; Riesenberg, K.; Eskira, S.; Peled, N.; Nativ, R.; Schlaeffer, F.; Sherf, M. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol., 2009, 30(10), 972-976. doi: 10.1086/605922 PMID: 19712030
  88. Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev., 2014, 27(3), 587-613. doi: 10.1128/CMR.00010-14 PMID: 24982323
  89. Williamson, D.A.; Barrett, L.K.; Rogers, B.A.; Freeman, J.T.; Hadway, P.; Paterson, D.L. Infectious complications following transrectal ultrasound-guided prostate biopsy: new challenges in the era of multidrug-resistant Escherichia coli. Clin. Infect. Dis., 2013, 57(2), 267-274. doi: 10.1093/cid/cit193 PMID: 23532481
  90. Kim, J.; Kang, C.; Joo, E.; Ha, Y.; Cho, S.; Gwak, G. Risk factors of community-onset spontaneous bacterial peritonitis caused by fluoroquinolone-resistant Escherichia coli in patients with cirrhosis,". Liver Int., 2014, 34, 695-699. doi: 10.1111/liv.12374 PMID: 24267669
  91. One health action plan against antimicrobial resistance; European Commission, 2017.
  92. threats to global health in 2018; World Health Organization,. 2018.
  93. Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. J. Food Prot., 2018, 81(4), 619-627. doi: 10.4315/0362-028X.JFP-17-086 PMID: 29537307
  94. Lee, J.H. Methicillin (Oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Appl. Environ. Microbiol., 2003, 69(11), 6489-6494. doi: 10.1128/AEM.69.11.6489-6494.2003 PMID: 14602604
  95. Normanno, G.; Corrente, M.; La Salandra, G.; Dambrosio, A.; Quaglia, N.C.; Parisi, A.; Greco, G.; Bellacicco, A.L.; Virgilio, S.; Celano, G.V. Methicillin-resistant Staphylococcus aureus (MRSA) in foods of animal origin product in Italy. Int. J. Food Microbiol., 2007, 117(2), 219-222. doi: 10.1016/j.ijfoodmicro.2007.04.006 PMID: 17533002
  96. Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C.; Vignolo, G. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: a focus on meat ecosystems and industrial environments. Microorganisms, 2017, 5(3), 38. doi: 10.3390/microorganisms5030038 PMID: 28696370
  97. Gálvez, A.; Abriouel, H.; Benomar, N.; Lucas, R. Microbial antagonists to food-borne pathogens and biocontrol. Curr. Opin. Biotechnol., 2010, 21(2), 142-148. doi: 10.1016/j.copbio.2010.01.005 PMID: 20149633
  98. Shlaes, D.M.; Gerding, D.N.; John, J.F., Jr; Craig, W.A.; Bornstein, D.L.; Duncan, R.A.; Eckman, M.R.; Farrer, W.E.; Greene, W.H.; Lorian, V.; Levy, S.; McGowan, J.E., Jr; Paul, S.M.; Ruskin, J.; Tenover, F.C.; Watanakunakorn, C. Guidelines for the prevention of antimicrobial resistance in hospitals. Infect. Control Hosp. Epidemiol., 1997, 18(4), 275-291. doi: 10.2307/30141215 PMID: 9131374
  99. WHO Global Action Plan on Antimicrobial Resistance; World Health Organization, 2016.
  100. Yang, F.; Yan, J. Antibiotic resistance and treatment options for multidrug-resistant gonorrhea. IMD, 2020, 2(2), 67-76. doi: 10.1097/IM9.0000000000000024
  101. Han, Y.; Yin, Y.; Dai, X.; Chen, S.; Yang, L.; Zhu, B.; Zhong, N.; Cao, W.; Zhang, X.; Wu, Z.; Yuan, L.; Zheng, Z.; Feng, L.; Liu, J.; Chen, X. Widespread use of high-dose ceftriaxone therapy for uncomplicated gonorrhea without reported ceftriaxone treatment failure: Results from 5 years of multicenter surveillance data in China. Clin. Infect. Dis., 2020, 70(1), 99-105. doi: 10.1093/cid/ciz170 PMID: 30838398
  102. Harris, A. Patient education: Methicillin-resistant Staphylococcus aureus (MRSA); Beyond the Basics, 2022, pp. 1-4.
  103. Choo, E.J.; Chambers, H.F. Treatment of methicillin-resistant staphylococcus aureus bacteremia. Infect. Chemother., 2016, 48(4), 267-273. doi: 10.3947/ic.2016.48.4.267 PMID: 28032484
  104. Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): Updated guidelines from the UK. JAC-Antimicrob, 2021, 3(1), dlaa114. doi: 10.1093/jacamr/dlaa114 PMID: 34223066
  105. Novel antibiotic shows promise in treatment of uncomplicated gonorrhea; NIAID, 2018, 1-3.
  106. The CARB-X 2022-2023 funding rounds have three distinct product themes: Oral therapeutics,, vaccines for neonata spsis, and gonorrhea products; CARB-X, 2023.
  107. Hua, Y.; Luo, T.; Yang, Y.; Dong, D.; Wang, R.; Wang, Y.; Xu, M.; Guo, X.; Hu, F.; He, P. Phage therapy as a promising new treatment for lung in-fection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front. Microbiol., 2018, 8, 2659. doi: 10.3389/fmicb.2017.02659 PMID: 29375524
  108. Nwaiwu, O.; Aduba, C.C. An in silico analysis of acquired antimicrobial resistance genes in Aeromonas plasmids. AIMS Microbiol., 2020, 6(1), 75-91. PMID: 32226916
  109. Panja, A.S.; Sarkar, A.; Biswas, R.; Bandyopadhyay, B.; Bandopadhyay, R. Modification of drug-binding proteins associated with the efflux pump in MDR-MTB in course of evolution: an unraveled clue based on in silico approach. J. Antibiot., 2019, 72(5), 282-290. doi: 10.1038/s41429-019-0146-3 PMID: 30799437
  110. Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; Tyson, G.H.; Klimke, W. AMRFinderPlus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep., 2021, 11(1), 12728. doi: 10.1038/s41598-021-91456-0 PMID: 34135355

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers