Potential Neuroprotective Strategies using Smart Drug Delivery Systems for Alzheimer’s Disease


Cite item

Full Text

Abstract

Background:Alzheimer's disease (AD) is the most common neurological disorder, affecting more than 50 million individuals worldwide and causing gradual but progressive cognitive decline. The rising cost of medical treatment is mostly attributable to AD. There are now mainly a few slightly symptomatic therapeutic options accessible. Although this is not the primary reason, the failure to develop effective treatments for AD is often attributed to the disease's complicated pathophysiology and the wide range of underlying ideas.

Objective:Studies undertaken over the past decade have aimed to find novel methods of overcoming these barriers and effectively delivering drugs to the central nervous system. As a result, nanotechnology provides a promising alternative to the standard means of administering anti-amyloidosis drugs, enhancing expectations for a successful treatment of Alzheimer's disease. These therapeutic implications of using nanoparticle-based approaches for the treatment of Alzheimer's disease are discussed in this paper.

Methodology:Published articles from PubMed, SciFinder, Google Scholar, ClinicalTrials.org, and the Alzheimer Association reports were carefully examined to compile information on the various strategies for combating AD. That has been studied to summarize the recent advancements and clinical studies for the treatment of Alzheimer's disease (AD). Statistics is the study and manipulation of data, including ways to gather, review, analyze, and draw conclusions from data.

Conclusion:The biology of the BBB and its processes of penetration must be carefully taken into account while creating DDSs. If we have a better grasp of the disease's mechanism, we might be able to overcome the shortcomings of current treatments for AD. Different DDSs show interesting properties for delivering medication tailored to the brain. This review paper examines the recent applications of DDSs in diverse domains. By selecting the best targeting vectors and optimizing the combination of carriers, multifunctionalized DDS may be produced, and these DDS have a significant impact on AD therapy potential. To develop DDSs with the best therapeutic efficacy and manageable side effects, experts from a variety of fields may need to contribute their efforts. Currently, the therapeutic use of nanotechnology-based DDSs appears to be a promising prospect for AD therapy, and as the pathophysiology of AD is better understood, this strategy will develop over time.

About the authors

Javed Khan

Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University

Email: info@benthamscience.net

Shikha Yadav

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Author for correspondence.
Email: info@benthamscience.net

Md. Alam

Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University

Email: info@benthamscience.net

References

  1. Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216. doi: 10.1016/j.biotechadv.2016.12.005 PMID: 28043897
  2. Noetzli, M.; Eap, C.B. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin. Pharmacokinet., 2013, 52(4), 225-241. doi: 10.1007/s40262-013-0038-9 PMID: 23408070
  3. Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 51(3), 169-188. doi: 10.5114/fn.2013.37702 PMID: 24114635
  4. Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517. doi: 10.1016/S0140-6736(15)01124-1 PMID: 26921134
  5. Gaugler, J.; Bryan James, T.J.; Reimer, J.; Weuve, J. 2021 Alzheimer’s Disease Facts and Figures; Alzheimer’s Dementia: Chicago, IL, USA, 2021, p. 17.
  6. Iqubal, A.; Rahman, S.O.; Ahmed, M.; Bansal, P.; Haider, M.R.; Iqubal, M.K.; Najmi, A.K.; Pottoo, F.H.; Haque, S.E. current quest in natural bioactive compounds for Alzheimer’s disease: Multi-targeted-designed-ligand based approach with preclinical and clinical based evidence. Curr. Drug Targets, 2021, 22(6), 685-720. doi: 10.2174/18735592MTEysMjQe4 PMID: 33302832
  7. Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease.. Lancet, 2021, 397(10284), 1577-1590. doi: 10.1016/S0140-6736(20)32205-4 PMID: 33667416
  8. Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 2021, 190, 108352. doi: 10.1016/j.neuropharm.2020.108352 PMID: 33035532
  9. Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci., 2019, 20(9), 2313. doi: 10.3390/ijms20092313 PMID: 31083327
  10. Kaur, D.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bungau, S. Multifaceted alzheimer’s disease: Building a roadmap for advancement of novel therapies. Neurochem. Res., 2021, 46(11), 2832-2851. doi: 10.1007/s11064-021-03415-w PMID: 34357520
  11. Trottier, G.; Boström, P.J.; Lawrentschuk, N.; Fleshner, N.E. Nutraceuticals and prostate cancer prevention: A current review. Nat. Rev. Urol., 2010, 7(1), 21-30. doi: 10.1038/nrurol.2009.234 PMID: 19997071
  12. Zeisel, S.H. Regulation of "Nutraceuticals". Science, 1999, 285(5435), 1853-1855. doi: 10.1126/science.285.5435.1853 PMID: 10515789
  13. Sadhukhan, P.; Saha, S.; Dutta, S.; Mahalanobish, S.; Sil, P.C. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer’s disease. Pharmacol. Res., 2018, 129, 100-114. doi: 10.1016/j.phrs.2017.11.028 PMID: 29183770
  14. Ahmad, S.S.; Khalid, M.; Kamal, M.A.; Younis, K. Study of nutraceuticals and phytochemicals for the management of alzheimer’s disease: A review. Curr. Neuropharmacol., 2021, 19(11), 1884-1895. doi: 10.2174/1570159X19666210215122333 PMID: 33588732
  15. Kumar Thakur, A.; Kamboj, P.; Goswami, K.; Ahuja, K. Pathophysiology and management of alzheimer’s disease: An overview. J. Anal. Pharm. Res., 2018, 7(2) doi: 10.15406/japlr.2018.07.00230
  16. Akhondzadeh, S.; Abbasi, S.H. Herbal medicine in the treatment of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(2), 113-118. doi: 10.1177/153331750602100211 PMID: 16634467
  17. Kumar, A.; Singh, A.; Ekavali A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203. doi: 10.1016/j.pharep.2014.09.004 PMID: 25712639
  18. Terry, A.V., Jr; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306(3), 821-827. doi: 10.1124/jpet.102.041616 PMID: 12805474
  19. Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335. doi: 10.2174/1570159X11311030006 PMID: 24179466
  20. Liu, Z.; Zhang, A.; Sun, H.; Han, Y.; Kong, L.; Wang, X. Two decades of new drug discovery and development for Alzheimer’s disease. RSC Advances, 2017, 7(10), 6046-6058. doi: 10.1039/C6RA26737H
  21. Farina, M.; Avila, D.S.; da Rocha, J.B.T.; Aschner, M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int., 2013, 62(5), 575-594. doi: 10.1016/j.neuint.2012.12.006 PMID: 23266600
  22. Bolognin, S.; Messori, L.; Zatta, P. Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med., 2009, 11(4), 223-238. doi: 10.1007/s12017-009-8102-1 PMID: 19946766
  23. Savelieff, M.G.; Lee, S.; Liu, Y.; Lim, M.H. Untangling amyloid-β, Tau, and metals in Alzheimer’s disease. ACS Chem. Biol., 2013, 8(5), 856-865. doi: 10.1021/cb400080f PMID: 23506614
  24. Popescu, B.F.; Frischer, J.M.; Webb, S.M.; Tham, M.; Adiele, R.C.; Robinson, C.A.; Fitz-Gibbon, P.D.; Weigand, S.D.; Metz, I.; Nehzati, S.; George, G.N.; Pickering, I.J.; Brück, W.; Hametner, S.; Lassmann, H.; Parisi, J.E.; Yong, G.; Lucchinetti, C.F. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol., 2017, 134(1), 45-64. doi: 10.1007/s00401-017-1696-8 PMID: 28332093
  25. Zheng, W.; Monnot, A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther., 2012, 133(2), 177-188. doi: 10.1016/j.pharmthera.2011.10.006 PMID: 22115751
  26. Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem., 2010, 345(1-2), 91-104. doi: 10.1007/s11010-010-0563-x PMID: 20730621
  27. Muhoberac, B.B.; Vidal, R. Abnormal iron homeostasis and neurodegeneration. Front. Aging Neurosci., 2013, 5, 32. doi: 10.3389/fnagi.2013.00032 PMID: 23908629
  28. Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis., 2005, 8(2), 171-182. doi: 10.3233/JAD-2005-8210 PMID: 16308486
  29. Walton, J.R. Aluminum involvement in the progression of Alzheimer’s disease. J. Alzheimers Dis., 2013, 35(1), 7-43. doi: 10.3233/JAD-121909 PMID: 23380995
  30. Campbell, A. The role of aluminum and copper on neuroinflammation and Alzheimer’s disease. J. Alzheimers Dis., 2006, 10(2-3), 165-172. doi: 10.3233/JAD-2006-102-304 PMID: 17119285
  31. House, E.; Esiri, M.; Forster, G.; Ince, P.G.; Exley, C. Aluminium, iron and copper in human brain tissues donated to the medical research council’s cognitive function and ageing study. Metallomics, 2012, 4(1), 56-65. doi: 10.1039/C1MT00139F PMID: 22045115
  32. Prakash, A.; Dhaliwal, G.K.; Kumar, P.; Majeed, A.B.A. Brain biometals and Alzheimer’s disease - boon or bane? Int. J. Neurosci., 2017, 127(2), 99-108. doi: 10.3109/00207454.2016.1174118 PMID: 27044501
  33. Menghani, Y.R.; Bhattad, D.M.; Chandak, K.K.; Taksande, J.R.; Umekar, M.J. Review: Pharmacological and herbal remedies in The Management of Neurodegenerative disorder (Alzheimer’s). Int. J. Pharmacog. Life Sci., 2021, 2(1), 18-27. doi: 10.33545/27072827.2021.v2.i1a.23
  34. Sun, X.; Jin, L.; Ling, P. Review of drugs for Alzheimer’s disease. Drug Discov. Ther., 2012, 6(6), 285-290. PMID: 23337815
  35. Nazareth, A.M. Type 2 diabetes mellitus in the pathophysiology of Alzheimer’s disease. Dement. Neuropsychol., 2017, 11(2), 105-113. doi: 10.1590/1980-57642016dn11-020002 PMID: 29213501
  36. Ghezzi, L.; Scarpini, E.; Galimberti, D. Disease-modifying drugs in Alzheimer’s disease. Drug Des. Devel. Ther., 2013, 7, 1471-1478. PMID: 24353405
  37. Aranda-Abreu, G.E.; Hernandez, M.E.; Manzo, J.; Garcia, L.I.; Herrera Rivero, M. Rehabilitating a brain with Alzheimer’s: A proposal. Clin. Interv. Aging, 2011, 6, 53-59. doi: 10.2147/CIA.S14008 PMID: 21472092
  38. Benjamin, B.; Burns, A. Donepezil for Alzheimer’s disease. Expert Rev. Neurother., 2007, 7(10), 1243-1249. doi: 10.1586/14737175.7.10.1243 PMID: 17939763
  39. Sivaraman, D.; Anbu, N.; Kabilan, N.; Kumar, M.P.; Shanmugapriya, P.; Christian, G.J. Review on current treatment strategy in Alzheimer’s disease and role of herbs in treating neurological disorders. Int J Trans Res Ind Med., 2019, 1(1), 33-43.
  40. Ago, Y.; Koda, K.; Takuma, K.; Matsuda, T. Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J. Pharmacol. Sci., 2011, 116(1), 6-17. doi: 10.1254/jphs.11R01CR PMID: 21498956
  41. Seltzer, B. Galantamine-ER for the treatment of mild-to-moderate Alzheimer’s disease. Clin. Interv. Aging, 2010, 5, 1-6. PMID: 20169037
  42. Xing, SH; Zhu, CX; Zhang, R; An, L Huperzine a in the treatment of Alzheimer's disease and vascular dementia: A meta-analysis. Evid Based Complement. Alternat. Med, 2014, 2014, 363985. doi: 10.1155/2014/363985
  43. Fu, L.M.; Li, J.T. A systematic review of single chinese herbs for Alzheimer’s disease treatment. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8. doi: 10.1093/ecam/nep136 PMID: 19737808
  44. Bar-On, P.; Millard, C.B.; Harel, M.; Dvir, H.; Enz, A.; Sussman, J.L.; Silman, I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry, 2002, 41(11), 3555-3564. doi: 10.1021/bi020016x PMID: 11888271
  45. Kurz, A.; Farlow, M.; Lefèvre, G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimer’s disease: A review. Int. J. Clin. Pract., 2009, 63(5), 799-805. doi: 10.1111/j.1742-1241.2009.02052.x PMID: 19392927
  46. Venneri, A.; Lane, R. Effects of cholinesterase inhibition on brain white matter volume in Alzheimer’s disease. Neuroreport, 2009, 20(3), 285-288. doi: 10.1097/WNR.0b013e3283207d21 PMID: 19444953
  47. Muthuraju, S.; Maiti, P.; Solanki, P.; Sharma, A.K.; Amitabh; Singh, S.B.; Prasad, D.; Ilavazhagan, G. Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav. Brain Res., 2009, 203(1), 1-14. doi: 10.1016/j.bbr.2009.03.026 PMID: 19446892
  48. Giacobini, E. Cholinesterases: New roles in brain function and in Alzheimer’s disease. Neurochem. Res., 2003, 28(3/4), 515-522. doi: 10.1023/A:1022869222652 PMID: 12675140
  49. Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in alzheimer’s disease. J. Formos. Med. Assoc., 2016, 115(1), 3-10. doi: 10.1016/j.jfma.2015.04.001 PMID: 26220908
  50. Danysz, W.; Parsons, C.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: Preclinical evidence. Int. J. Geriatr. Psychiatry, 2003, 18(S1), S23-S32. doi: 10.1002/gps.938 PMID: 12973747
  51. Birrenbach, G.; Speiser, P.P. Polymerized micelles and their use as adjuvants in immunology. J. Pharm. Sci., 1976, 65(12), 1763-1766. doi: 10.1002/jps.2600651217 PMID: 1036442
  52. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931. doi: 10.1016/j.arabjc.2017.05.011
  53. Loureiro, J.; Andrade, S.; Duarte, A.; Neves, A.; Queiroz, J.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.; Pereira, M. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules, 2017, 22(2), 277. doi: 10.3390/molecules22020277 PMID: 28208831
  54. Leszek, J.; Md Ashraf, G.; Tse, W.H.; Zhang, J.; Gasiorowski, K.; Avila-Rodriguez, M.F.; Tarasov, V.V.; Barreto, G.E.; Klochkov, S.G.; Bachurin, S.O.; Aliev, G. Nanotechnology for alzheimer disease. Curr. Alzheimer Res., 2017, 14(11), 1182-1189. PMID: 28164767
  55. Jain, A.; Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control. Release, 2017, 245, 27-40. doi: 10.1016/j.jconrel.2016.11.016 PMID: 27865853
  56. Hadavi, D.; Poot, A.A. Biomaterials for the Treatment of Alzheimer’s Disease. Front. Bioeng. Biotechnol., 2016, 4, 49. doi: 10.3389/fbioe.2016.00049 PMID: 27379232
  57. Kaur, I.P.; Garg, A.; Singla, A.K.; Aggarwal, D. Vesicular systems in ocular drug delivery: An overview. Int. J. Pharm., 2004, 269(1), 1-14. doi: 10.1016/j.ijpharm.2003.09.016 PMID: 14698571
  58. Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm., 1998, 165(2), 129-168. doi: 10.1016/S0378-5173(98)00006-4
  59. Fonseca-Santos, B.; Chorilli, M.; Palmira Daflon Gremião, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003. doi: 10.2147/IJN.S87148 PMID: 26345528
  60. Gastaldi, L.; Battaglia, L.; Peira, E.; Chirio, D.; Muntoni, E.; Solazzi, I.; Gallarate, M.; Dosio, F. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm., 2014, 87(3), 433-444. doi: 10.1016/j.ejpb.2014.05.004 PMID: 24833004
  61. Mishra, B; Patel, BB; Tiwari, S Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed.: Nanotechnol., Biol. Med., 2009, 6(1), 9-24.
  62. Md, S.; Bhattmisra, S.K.; Zeeshan, F.; Shahzad, N.; Mujtaba, M.A.; Srikanth Meka, V.; Radhakrishnan, A.; Kesharwani, P.; Baboota, S.; Ali, J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol., 2018, 43, 295-310. doi: 10.1016/j.jddst.2017.09.022
  63. Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109. doi: 10.1016/j.jconrel.2007.12.018 PMID: 18313785
  64. Neves, A.R.; Queiroz, J.F.; Weksler, B.; Romero, I.A.; Couraud, P.O.; Reis, S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology, 2015, 26(49), 495103. doi: 10.1088/0957-4484/26/49/495103 PMID: 26574295
  65. Robinson, M.; Lee, B.Y.; Leonenko, Z. Drugs and drug delivery systems targeting amyloid-b {eta} in Alzheimers disease. arXiv, 2017, 2017, 08313.
  66. Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55. doi: 10.2174/187221013804484827 PMID: 22946628
  67. Haimov, E; Harel, Y; Polani, S; Weitman, H; Zitoun, D; Lellouche, JP; Shefi, O Metal-based nanoparticles as carriers of mTHPC drug for effective photodynamic therapy. In: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI; SPIE, 2019; 10891, pp. 125-134. doi: 10.1117/12.2508456
  68. Das, S.; Dowding, J.M.; Klump, K.E.; McGinnis, J.F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 2013, 8(9), 1483-1508. doi: 10.2217/nnm.13.133 PMID: 23987111
  69. Ahmad, J.; Akhter, S.; Rizwanullah, M.; Khan, M.A.; Pigeon, L.; Addo, R.T.; Greig, N.H.; Midoux, P.; Pichon, C.; Kamal, M.A. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr. Alzheimer Res., 2017, 14(11), 1164-1181. PMID: 28482786
  70. Do, T.D.; Amin, F.U.; Noh, Y.; Kim, M.O.; Yoon, J. Guidance of magnetic nanocontainers for treating Alzheimer’s disease using an electromagnetic, targeted drug-delivery actuator. J. Biomed. Nanotechnol., 2016, 12(3), 569-574. doi: 10.1166/jbn.2016.2193 PMID: 27280254
  71. Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313. doi: 10.15171/apb.2015.043 PMID: 26504751
  72. Bernardi, A.; Frozza, R.L.; Meneghetti, A.; Hoppe, J.B.; Oliveira Battastini, A.M.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C.G. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int. J. Nanomedicine, 2012, 7, 4927-4942. doi: 10.2147/IJN.S35333 PMID: 23028221
  73. Brambilla, D.; Verpillot, R.; Le Droumaguet, B.; Nicolas, J.; Taverna, M.; Kóňa, J.; Lettiero, B.; Hashemi, S.H.; De Kimpe, L.; Canovi, M.; Gobbi, M.; Nicolas, V.; Scheper, W.; Moghimi, S.M.; Tvaroška, I.; Couvreur, P.; Andrieux, K. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano, 2012, 6(7), 5897-5908. doi: 10.1021/nn300489k PMID: 22686577
  74. Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3), e32616. doi: 10.1371/journal.pone.0032616 PMID: 22403681
  75. Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J. Alzheimers Dis., 2018, 61(3), 843-866. doi: 10.3233/JAD-170512 PMID: 29332042
  76. den Haan, J.; Morrema, T.H.J.; Rozemuller, A.J.; Bouwman, F.H.; Hoozemans, J.J.M. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s disease brains: Implications for in vivo diagnostics. Acta Neuropathol. Commun., 2018, 6(1), 75. doi: 10.1186/s40478-018-0577-2 PMID: 30092839
  77. Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750. doi: 10.1002/jnr.20025 PMID: 14994335
  78. Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377. doi: 10.1523/JNEUROSCI.21-21-08370.2001 PMID: 11606625
  79. Patil, R.; Gangalum, P.R.; Wagner, S.; Portilla-Arias, J.; Ding, H.; Rekechenetskiy, A.; Konda, B.; Inoue, S.; Black, K.L.; Ljubimova, J.Y.; Holler, E. Curcumin targeted, polymalic acid‐based MRI contrast agent for the detection of Aβ plaques in Alzheimer’s disease. Macromol. Biosci., 2015, 15(9), 1212-1217. doi: 10.1002/mabi.201500062 PMID: 26036700
  80. Zhang, C.; Zheng, X.; Wan, X.; Shao, X.; Liu, Q.; Zhang, Z.; Zhang, Q. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J. Control. Release, 2014, 192, 317-324. doi: 10.1016/j.jconrel.2014.07.050 PMID: 25102404
  81. Cupaioli, F.A.; Zucca, F.A.; Boraschi, D.; Zecca, L. Engineered nanoparticles. How brain friendly is this new guest? Prog. Neurobiol., 2014, 119-120, 20-38. doi: 10.1016/j.pneurobio.2014.05.002 PMID: 24820405
  82. Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194. doi: 10.1016/j.jconrel.2012.12.013 PMID: 23262199
  83. Karatas, H.; Aktas, Y.; Gursoy-Ozdemir, Y.; Bodur, E.; Yemisci, M.; Caban, S.; Vural, A.; Pinarbasli, O.; Capan, Y.; Fernandez-Megia, E.; Novoa-Carballal, R.; Riguera, R.; Andrieux, K.; Couvreur, P.; Dalkara, T. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci., 2009, 29(44), 13761-13769. doi: 10.1523/JNEUROSCI.4246-09.2009 PMID: 19889988
  84. Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247. doi: 10.1038/nrd4503 PMID: 25598505
  85. Silva, A.C.; Santos, D.; Ferreira, D.; Lopes, C.M. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: Peroral and mucosal routes. Curr. Med. Chem., 2012, 19(26), 4495-4510. doi: 10.2174/092986712803251584 PMID: 22834821
  86. Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70(3), 353-363. doi: 10.1016/S0168-3659(00)00367-9 PMID: 11182205
  87. Pan, H.; Marsh, J.N.; Christenson, E.T.; Soman, N.R.; Ivashyna, O.; Lanza, G.M.; Schlesinger, P.H.; Wickline, S.A. Postformulation peptide drug loading of nanostructures. In: Methods in enzymology; Academic Press, 2012; 508, pp. 17-39.
  88. Fernandes, C.; Soni, U.; Patravale, V. Nano-interventions for neurodegenerative disorders. Pharmacol. Res., 2010, 62(2), 166-178. doi: 10.1016/j.phrs.2010.02.004 PMID: 20153429
  89. Silva, A.C.; González-Mira, E.; Lobo, J.M.; Amaral, M.H. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimer’s and schizophrenia. Curr. Pharm. Des., 2013, 19(41), 7185-7195. doi: 10.2174/138161281941131219123329 PMID: 23489198
  90. Altinoglu, G.; Adali, T. Alzheimer’s disease targeted nano-based drug delivery systems. Curr. Drug Targets, 2020, 21(7), 628-646. doi: 10.2174/1389450120666191118123151 PMID: 31744447
  91. Sivasankarapillai, V.S.; Jose, J.; Shanavas, M.S.; Marathakam, A.; Uddin, M.S.; Mathew, B. Silicon quantum dots: Promising theranostic probes for the future. Curr. Drug Targets, 2019, 20(12), 1255-1263. doi: 10.2174/1389450120666190405152315 PMID: 30961492
  92. Kamigaito, O. What can be improved by nanometer composites? J. Japan Soci. Powder Powder Metall., 1991, 38(3), 315-321. doi: 10.2497/jjspm.38.315
  93. Thostenson, E.; Li, C.; Chou, T. Nanocomposites in context. Compos. Sci. Technol., 2005, 65(3-4), 491-516. doi: 10.1016/j.compscitech.2004.11.003
  94. Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano, 2018, 12(2), 1321-1338. doi: 10.1021/acsnano.7b07625 PMID: 29364648
  95. Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127. doi: 10.4103/2230-973X.177833 PMID: 27051632
  96. Patel, D.A.; Henry, J.E.; Good, T.A. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: Role of sialic acid attachment. Brain Res., 2007, 1161, 95-105. doi: 10.1016/j.brainres.2007.05.055 PMID: 17604005
  97. Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3. doi: 10.1186/1756-6606-4-3 PMID: 21214928
  98. Lokesh Kumar, P. Design, synthesis, characterization and evaluation of newer potent apolipoprotein E4 inhibitors for the treatment of alzheimer’s disease. Int. J. Pharm. Sci. Res., 2021, 13, 1453-1464.
  99. Balaraman, Y.; Limaye, A.R.; Levey, A.I.; Srinivasan, S. Glycogen synthase kinase 3β and Alzheimer’s disease: Pathophysiological and therapeutic significance. Cell. Mol. Life Sci., 2006, 63(11), 1226-1235. doi: 10.1007/s00018-005-5597-y PMID: 16568235
  100. Martín-Rapun, R.; De Matteis, L.; Ambrosone, A.; Garcia-Embid, S.; Gutierrez, L.; de la Fuente, J.M. Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr. Pharm. Des., 2017, 23(13), 1927-1952. doi: 10.2174/1381612822666161226151011 PMID: 28025949
  101. Rissman, R.A.; De Blas, A.L.; Armstrong, D.M. GABA A receptors in aging and Alzheimer’s disease. J. Neurochem., 2007, 103(4), 1285-1292. doi: 10.1111/j.1471-4159.2007.04832.x PMID: 17714455
  102. Rossor, M.N.; Garrett, N.J.; Johnson, A.L.; Mountjoy, C.Q.; Roth, M.; Iversen, L.L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain, 1982, 105(2), 313-330. doi: 10.1093/brain/105.2.313 PMID: 7082992
  103. Mountjoy, C.Q.; Rossor, M.N.; Iversen, L.L.; Roth, M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain, 1984, 107(2), 507-518. doi: 10.1093/brain/107.2.507 PMID: 6722514
  104. Lowe, S.L.; Francis, P.T.; Procter, A.W.; Palmer, A.M.; Davison, A.N.; Bowen, D.M. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimer’s disease. Brain, 1988, 111(4), 785-799. doi: 10.1093/brain/111.4.785 PMID: 3401683
  105. Ellison, D.W.; Beal, M.F.; Mazurek, M.F.; Bird, E.D.; Martin, J.B. A postmortem study of amino acid neurotransmitters in Alzheimer’s disease. Ann. Neurol., 1986, 20(5), 616-621. doi: 10.1002/ana.410200510 PMID: 2878639
  106. Chu, D.C.M.; Penney, J.B., Jr; Young, A.B. Cortical GABAB and GABAA receptors in Alzheimer’s disease: A quantitative autoradiographic study. Neurology, 1987, 37(9), 1454-1459. doi: 10.1212/WNL.37.9.1454 PMID: 2819782
  107. Froestl, W.; Gallagher, M.; Jenkins, H.; Madrid, A.; Melcher, T.; Teichman, S.; Mondadori, C.G.; Pearlman, R. SGS742: The first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol., 2004, 68(8), 1479-1487. doi: 10.1016/j.bcp.2004.07.030 PMID: 15451390
  108. Sabbagh, M.N. Drug development for Alzheimer’s disease: Where are we now and where are we headed? Am. J. Geriatr. Pharmacother., 2009, 7(3), 167-185. doi: 10.1016/j.amjopharm.2009.06.003 PMID: 19616185
  109. Sternfeld, F.; Carling, R.W.; Jelley, R.A.; Ladduwahetty, T.; Merchant, K.J.; Moore, K.W.; Reeve, A.J.; Street, L.J.; O’Connor, D.; Sohal, B.; Atack, J.R.; Cook, S.; Seabrook, G.; Wafford, K.; Tattersall, F.D.; Collinson, N.; Dawson, G.R.; Castro, J.L.; MacLeod, A.M. Selective, orally active γ-aminobutyric acidA α5 receptor inverse agonists as cognition enhancers. J. Med. Chem., 2004, 47(9), 2176-2179. doi: 10.1021/jm031076j PMID: 15084116
  110. Aisen, P.S.; Saumier, D.; Briand, R.; Laurin, J.; Gervais, F.; Tremblay, P.; Garceau, D. A Phase II study targeting amyloid- with 3APS in mild-to-moderate Alzheimer disease. Neurology, 2006, 67(10), 1757-1763. doi: 10.1212/01.wnl.0000244346.08950.64 PMID: 17082468
  111. Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol., 1999, 55(6), 1101-1107. doi: 10.1124/mol.55.6.1101 PMID: 10347254
  112. Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H 3 receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181. doi: 10.1038/bjp.2008.147 PMID: 18469850
  113. Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.L-H.; Brown, S.H.; Roman, S.; Lai, M.K.P. Characterization of histamine H3 receptors in Alzheimer’s Disease brain and amyloid over-expressing TASTPM mice. Br. J. Pharmacol., 2009, 157(1), 130-138. doi: 10.1111/j.1476-5381.2008.00075.x PMID: 19222483
  114. Leurs, R.; Bakker, R.A.; Timmerman, H.; de Esch, I.J.P. The histamine H3 receptor: From gene cloning to H3 receptor drugs. Nat. Rev. Drug Discov., 2005, 4(2), 107-120. doi: 10.1038/nrd1631 PMID: 15665857
  115. Langbaum, J.B.S.; Chen, K.; Lee, W.; Reschke, C.; Bandy, D.; Fleisher, A.S.; Alexander, G.E.; Foster, N.L.; Weiner, M.W.; Koeppe, R.A.; Jagust, W.J.; Reiman, E.M. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s disease neuroimaging initiative (ADNI). Neuroimage, 2009, 45(4), 1107-1116. doi: 10.1016/j.neuroimage.2008.12.072 PMID: 19349228
  116. Reiman, E.M.; Caselli, R.J.; Yun, L.S.; Chen, K.; Bandy, D.; Minoshima, S.; Thibodeau, S.N.; Osborne, D. Preclinical evidence of Alzheimer’s disease in persons homozygous for the ε 4 allele for apolipoprotein E. N. Engl. J. Med., 1996, 334(12), 752-758. doi: 10.1056/NEJM199603213341202 PMID: 8592548
  117. Manning, C.A.; Stone, W.S.; Korol, D.L.; Gold, P.E. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav. Brain Res., 1998, 93(1-2), 71-76. doi: 10.1016/S0166-4328(97)00136-8 PMID: 9659988
  118. Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; Lofgreen, C.; Latendresse, S.; Petrova, A.; Plymate, S.; Raskind, M.; Grimwood, K.; Veith, R.C. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry, 1999, 56(12), 1135-1140. doi: 10.1001/archpsyc.56.12.1135 PMID: 10591291
  119. Costantini, L.C.; Barr, L.J.; Vogel, J.L.; Henderson, S.T. Hypometabolism as a therapeutic target in Alzheimer’s disease. BMC Neurosci., 2008, 9(S2), S16. doi: 10.1186/1471-2202-9-S2-S16 PMID: 19090989
  120. Henderson, S.T.; Vogel, J.L.; Barr, L.J.; Garvin, F.; Jones, J.J.; Costantini, L.C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab., 2009, 6(1), 31. doi: 10.1186/1743-7075-6-31 PMID: 19664276
  121. Nordberg, A.; Winblad, B. Reduced number of 3Hnicotine and 3Hacetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett., 1986, 72(1), 115-120. doi: 10.1016/0304-3940(86)90629-4 PMID: 3808458
  122. Sabbagh, M.N.; Shah, F.; Reid, R.T.; Sue, L.; Connor, D.J.; Peterson, L.K.N.; Beach, T.G. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch. Neurol., 2006, 63(12), 1771-1776. doi: 10.1001/archneur.63.12.1771 PMID: 17172618
  123. Kadir, A.; Almkvist, O.; Wall, A.; Långström, B.; Nordberg, A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology, 2006, 188(4), 509-520. doi: 10.1007/s00213-006-0447-7 PMID: 16832659
  124. Haydar, S.N.; Ghiron, C.; Bettinetti, L.; Bothmann, H.; Comery, T.A.; Dunlop, J.; La Rosa, S.; Micco, I.; Pollastrini, M.; Quinn, J.; Roncarati, R.; Scali, C.; Valacchi, M.; Varrone, M.; Zanaletti, R. SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem., 2009, 17(14), 5247-5258. doi: 10.1016/j.bmc.2009.05.040 PMID: 19515567
  125. Wong, K.; Riaz, M.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int. J. Mol. Sci., 2019, 20(2), 381. doi: 10.3390/ijms20020381 PMID: 30658419
  126. Dunbar, G.C.; Kuchibhatla, R. Cognitive enhancement in man with ispronicline, a nicotinic partial agonist. J. Mol. Neurosci., 2006, 30(1-2), 169-172. doi: 10.1385/JMN:30:1:169 PMID: 17192668
  127. Potter, A.; Corwin, J.; Lang, J.; Piasecki, M.; Lenox, R.; Newhouse, P.A. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimer’s disease. Psychopharmacology, 1999, 142(4), 334-342. doi: 10.1007/s002130050897 PMID: 10229057
  128. Marighetto, A.; Valerio, S.; Desmedt, A.; Philippin, J.N.; Trocmé-Thibierge, C.; Morain, P. Comparative effects of the α7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology, 2008, 197(3), 499-508. doi: 10.1007/s00213-007-1063-x PMID: 18265960
  129. Tully, T.; Bourtchouladze, R.; Scott, R.; Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov., 2003, 2(4), 267-277. doi: 10.1038/nrd1061 PMID: 12669026
  130. Barco, A.; Pittenger, C.; Kandel, E.R. CREB, memory enhancement and the treatment of memory disorders: Promises, pitfalls and prospects. Expert Opin. Ther. Targets, 2003, 7(1), 101-114. doi: 10.1517/14728222.7.1.101 PMID: 12556206
  131. Vitolo, O.V.; Sant’Angelo, A.; Costanzo, V.; Battaglia, F.; Arancio, O.; Shelanski, M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci., 2002, 99(20), 13217-13221. doi: 10.1073/pnas.172504199 PMID: 12244210
  132. Dall’Igna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (25–35)-induced cognitive deficits in mice. Exp. Neurol., 2007, 203(1), 241-245. doi: 10.1016/j.expneurol.2006.08.008 PMID: 17007839
  133. Gong, B.; Vitolo, O.V.; Trinchese, F.; Liu, S.; Shelanski, M.; Arancio, O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest., 2004, 114(11), 1624-1634. doi: 10.1172/JCI22831 PMID: 15578094
  134. Puzzo, D.; Staniszewski, A.; Deng, S.X.; Privitera, L.; Leznik, E.; Liu, S.; Zhang, H.; Feng, Y.; Palmeri, A.; Landry, D.W.; Arancio, O. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimer’s disease mouse model. J. Neurosci., 2009, 29(25), 8075-8086. doi: 10.1523/JNEUROSCI.0864-09.2009 PMID: 19553447
  135. Xia, M.; Huang, R.; Guo, V.; Southall, N.; Cho, M.H.; Inglese, J.; Austin, C.P.; Nirenberg, M. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc. Natl. Acad. Sci., 2009, 106(7), 2412-2417. doi: 10.1073/pnas.0813020106 PMID: 19196967
  136. Schultheiss, D.; Müller, S.V.; Nager, W.; Stief, C.G.; Schlote, N.; Jonas, U.; Asvestis, C.; Johannes, S.; Münte, T.F. Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: A study with event-related brain potentials. World J. Urol., 2001, 19(1), 46-50. doi: 10.1007/PL00007092 PMID: 11289570
  137. Gopakumar, K.M. The Need to Curb Patents on Known Substances. Econ. Polit. Wkly., 2013, 55-57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers