Potential Neuroprotective Strategies using Smart Drug Delivery Systems for Alzheimers Disease
- Authors: Khan J.1, Yadav S.2, Alam M.2
-
Affiliations:
- Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
- Issue: Vol 24, No 3 (2024)
- Section: Medicine
- URL: https://vietnamjournal.ru/1871-5265/article/view/645530
- DOI: https://doi.org/10.2174/0118715265254985231012065058
- ID: 645530
Cite item
Full Text
Abstract
Background:Alzheimer's disease (AD) is the most common neurological disorder, affecting more than 50 million individuals worldwide and causing gradual but progressive cognitive decline. The rising cost of medical treatment is mostly attributable to AD. There are now mainly a few slightly symptomatic therapeutic options accessible. Although this is not the primary reason, the failure to develop effective treatments for AD is often attributed to the disease's complicated pathophysiology and the wide range of underlying ideas.
Objective:Studies undertaken over the past decade have aimed to find novel methods of overcoming these barriers and effectively delivering drugs to the central nervous system. As a result, nanotechnology provides a promising alternative to the standard means of administering anti-amyloidosis drugs, enhancing expectations for a successful treatment of Alzheimer's disease. These therapeutic implications of using nanoparticle-based approaches for the treatment of Alzheimer's disease are discussed in this paper.
Methodology:Published articles from PubMed, SciFinder, Google Scholar, ClinicalTrials.org, and the Alzheimer Association reports were carefully examined to compile information on the various strategies for combating AD. That has been studied to summarize the recent advancements and clinical studies for the treatment of Alzheimer's disease (AD). Statistics is the study and manipulation of data, including ways to gather, review, analyze, and draw conclusions from data.
Conclusion:The biology of the BBB and its processes of penetration must be carefully taken into account while creating DDSs. If we have a better grasp of the disease's mechanism, we might be able to overcome the shortcomings of current treatments for AD. Different DDSs show interesting properties for delivering medication tailored to the brain. This review paper examines the recent applications of DDSs in diverse domains. By selecting the best targeting vectors and optimizing the combination of carriers, multifunctionalized DDS may be produced, and these DDS have a significant impact on AD therapy potential. To develop DDSs with the best therapeutic efficacy and manageable side effects, experts from a variety of fields may need to contribute their efforts. Currently, the therapeutic use of nanotechnology-based DDSs appears to be a promising prospect for AD therapy, and as the pathophysiology of AD is better understood, this strategy will develop over time.
About the authors
Javed Khan
Department of Pharmacy, School of Medical and Allied Sciences,, Galgotias University
Email: info@benthamscience.net
Shikha Yadav
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Author for correspondence.
Email: info@benthamscience.net
Md. Alam
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Email: info@benthamscience.net
References
- Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimers disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216. doi: 10.1016/j.biotechadv.2016.12.005 PMID: 28043897
- Noetzli, M.; Eap, C.B. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimers disease. Clin. Pharmacokinet., 2013, 52(4), 225-241. doi: 10.1007/s40262-013-0038-9 PMID: 23408070
- Armstrong, R.A. What causes alzheimers disease? Folia Neuropathol., 2013, 51(3), 169-188. doi: 10.5114/fn.2013.37702 PMID: 24114635
- Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimers disease. Lancet, 2016, 388(10043), 505-517. doi: 10.1016/S0140-6736(15)01124-1 PMID: 26921134
- Gaugler, J.; Bryan James, T.J.; Reimer, J.; Weuve, J. 2021 Alzheimers Disease Facts and Figures; Alzheimers Dementia: Chicago, IL, USA, 2021, p. 17.
- Iqubal, A.; Rahman, S.O.; Ahmed, M.; Bansal, P.; Haider, M.R.; Iqubal, M.K.; Najmi, A.K.; Pottoo, F.H.; Haque, S.E. current quest in natural bioactive compounds for Alzheimers disease: Multi-targeted-designed-ligand based approach with preclinical and clinical based evidence. Curr. Drug Targets, 2021, 22(6), 685-720. doi: 10.2174/18735592MTEysMjQe4 PMID: 33302832
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimers disease.. Lancet, 2021, 397(10284), 1577-1590. doi: 10.1016/S0140-6736(20)32205-4 PMID: 33667416
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimers disease. Neuropharmacology, 2021, 190, 108352. doi: 10.1016/j.neuropharm.2020.108352 PMID: 33035532
- Andrade, S.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Natural compounds for Alzheimers disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci., 2019, 20(9), 2313. doi: 10.3390/ijms20092313 PMID: 31083327
- Kaur, D.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Bungau, S. Multifaceted alzheimers disease: Building a roadmap for advancement of novel therapies. Neurochem. Res., 2021, 46(11), 2832-2851. doi: 10.1007/s11064-021-03415-w PMID: 34357520
- Trottier, G.; Boström, P.J.; Lawrentschuk, N.; Fleshner, N.E. Nutraceuticals and prostate cancer prevention: A current review. Nat. Rev. Urol., 2010, 7(1), 21-30. doi: 10.1038/nrurol.2009.234 PMID: 19997071
- Zeisel, S.H. Regulation of "Nutraceuticals". Science, 1999, 285(5435), 1853-1855. doi: 10.1126/science.285.5435.1853 PMID: 10515789
- Sadhukhan, P.; Saha, S.; Dutta, S.; Mahalanobish, S.; Sil, P.C. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimers disease. Pharmacol. Res., 2018, 129, 100-114. doi: 10.1016/j.phrs.2017.11.028 PMID: 29183770
- Ahmad, S.S.; Khalid, M.; Kamal, M.A.; Younis, K. Study of nutraceuticals and phytochemicals for the management of alzheimers disease: A review. Curr. Neuropharmacol., 2021, 19(11), 1884-1895. doi: 10.2174/1570159X19666210215122333 PMID: 33588732
- Kumar Thakur, A.; Kamboj, P.; Goswami, K.; Ahuja, K. Pathophysiology and management of alzheimers disease: An overview. J. Anal. Pharm. Res., 2018, 7(2) doi: 10.15406/japlr.2018.07.00230
- Akhondzadeh, S.; Abbasi, S.H. Herbal medicine in the treatment of Alzheimers disease. Am. J. Alzheimers Dis. Other Demen., 2006, 21(2), 113-118. doi: 10.1177/153331750602100211 PMID: 16634467
- Kumar, A.; Singh, A.; Ekavali A review on Alzheimers disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203. doi: 10.1016/j.pharep.2014.09.004 PMID: 25712639
- Terry, A.V., Jr; Buccafusco, J.J. The cholinergic hypothesis of age and Alzheimers disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 2003, 306(3), 821-827. doi: 10.1124/jpet.102.041616 PMID: 12805474
- Colović, M.B.; Krstić, D.Z.; Lazarević-Pati, T.D.; Bondić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335. doi: 10.2174/1570159X11311030006 PMID: 24179466
- Liu, Z.; Zhang, A.; Sun, H.; Han, Y.; Kong, L.; Wang, X. Two decades of new drug discovery and development for Alzheimers disease. RSC Advances, 2017, 7(10), 6046-6058. doi: 10.1039/C6RA26737H
- Farina, M.; Avila, D.S.; da Rocha, J.B.T.; Aschner, M. Metals, oxidative stress and neurodegeneration: A focus on iron, manganese and mercury. Neurochem. Int., 2013, 62(5), 575-594. doi: 10.1016/j.neuint.2012.12.006 PMID: 23266600
- Bolognin, S.; Messori, L.; Zatta, P. Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med., 2009, 11(4), 223-238. doi: 10.1007/s12017-009-8102-1 PMID: 19946766
- Savelieff, M.G.; Lee, S.; Liu, Y.; Lim, M.H. Untangling amyloid-β, Tau, and metals in Alzheimers disease. ACS Chem. Biol., 2013, 8(5), 856-865. doi: 10.1021/cb400080f PMID: 23506614
- Popescu, B.F.; Frischer, J.M.; Webb, S.M.; Tham, M.; Adiele, R.C.; Robinson, C.A.; Fitz-Gibbon, P.D.; Weigand, S.D.; Metz, I.; Nehzati, S.; George, G.N.; Pickering, I.J.; Brück, W.; Hametner, S.; Lassmann, H.; Parisi, J.E.; Yong, G.; Lucchinetti, C.F. Pathogenic implications of distinct patterns of iron and zinc in chronic MS lesions. Acta Neuropathol., 2017, 134(1), 45-64. doi: 10.1007/s00401-017-1696-8 PMID: 28332093
- Zheng, W.; Monnot, A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther., 2012, 133(2), 177-188. doi: 10.1016/j.pharmthera.2011.10.006 PMID: 22115751
- Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem., 2010, 345(1-2), 91-104. doi: 10.1007/s11010-010-0563-x PMID: 20730621
- Muhoberac, B.B.; Vidal, R. Abnormal iron homeostasis and neurodegeneration. Front. Aging Neurosci., 2013, 5, 32. doi: 10.3389/fnagi.2013.00032 PMID: 23908629
- Kawahara, M. Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J. Alzheimers Dis., 2005, 8(2), 171-182. doi: 10.3233/JAD-2005-8210 PMID: 16308486
- Walton, J.R. Aluminum involvement in the progression of Alzheimers disease. J. Alzheimers Dis., 2013, 35(1), 7-43. doi: 10.3233/JAD-121909 PMID: 23380995
- Campbell, A. The role of aluminum and copper on neuroinflammation and Alzheimers disease. J. Alzheimers Dis., 2006, 10(2-3), 165-172. doi: 10.3233/JAD-2006-102-304 PMID: 17119285
- House, E.; Esiri, M.; Forster, G.; Ince, P.G.; Exley, C. Aluminium, iron and copper in human brain tissues donated to the medical research councils cognitive function and ageing study. Metallomics, 2012, 4(1), 56-65. doi: 10.1039/C1MT00139F PMID: 22045115
- Prakash, A.; Dhaliwal, G.K.; Kumar, P.; Majeed, A.B.A. Brain biometals and Alzheimers disease - boon or bane? Int. J. Neurosci., 2017, 127(2), 99-108. doi: 10.3109/00207454.2016.1174118 PMID: 27044501
- Menghani, Y.R.; Bhattad, D.M.; Chandak, K.K.; Taksande, J.R.; Umekar, M.J. Review: Pharmacological and herbal remedies in The Management of Neurodegenerative disorder (Alzheimers). Int. J. Pharmacog. Life Sci., 2021, 2(1), 18-27. doi: 10.33545/27072827.2021.v2.i1a.23
- Sun, X.; Jin, L.; Ling, P. Review of drugs for Alzheimers disease. Drug Discov. Ther., 2012, 6(6), 285-290. PMID: 23337815
- Nazareth, A.M. Type 2 diabetes mellitus in the pathophysiology of Alzheimers disease. Dement. Neuropsychol., 2017, 11(2), 105-113. doi: 10.1590/1980-57642016dn11-020002 PMID: 29213501
- Ghezzi, L.; Scarpini, E.; Galimberti, D. Disease-modifying drugs in Alzheimers disease. Drug Des. Devel. Ther., 2013, 7, 1471-1478. PMID: 24353405
- Aranda-Abreu, G.E.; Hernandez, M.E.; Manzo, J.; Garcia, L.I.; Herrera Rivero, M. Rehabilitating a brain with Alzheimers: A proposal. Clin. Interv. Aging, 2011, 6, 53-59. doi: 10.2147/CIA.S14008 PMID: 21472092
- Benjamin, B.; Burns, A. Donepezil for Alzheimers disease. Expert Rev. Neurother., 2007, 7(10), 1243-1249. doi: 10.1586/14737175.7.10.1243 PMID: 17939763
- Sivaraman, D.; Anbu, N.; Kabilan, N.; Kumar, M.P.; Shanmugapriya, P.; Christian, G.J. Review on current treatment strategy in Alzheimers disease and role of herbs in treating neurological disorders. Int J Trans Res Ind Med., 2019, 1(1), 33-43.
- Ago, Y.; Koda, K.; Takuma, K.; Matsuda, T. Pharmacological aspects of the acetylcholinesterase inhibitor galantamine. J. Pharmacol. Sci., 2011, 116(1), 6-17. doi: 10.1254/jphs.11R01CR PMID: 21498956
- Seltzer, B. Galantamine-ER for the treatment of mild-to-moderate Alzheimers disease. Clin. Interv. Aging, 2010, 5, 1-6. PMID: 20169037
- Xing, SH; Zhu, CX; Zhang, R; An, L Huperzine a in the treatment of Alzheimer's disease and vascular dementia: A meta-analysis. Evid Based Complement. Alternat. Med, 2014, 2014, 363985. doi: 10.1155/2014/363985
- Fu, L.M.; Li, J.T. A systematic review of single chinese herbs for Alzheimers disease treatment. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-8. doi: 10.1093/ecam/nep136 PMID: 19737808
- Bar-On, P.; Millard, C.B.; Harel, M.; Dvir, H.; Enz, A.; Sussman, J.L.; Silman, I. Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer drug rivastigmine. Biochemistry, 2002, 41(11), 3555-3564. doi: 10.1021/bi020016x PMID: 11888271
- Kurz, A.; Farlow, M.; Lefèvre, G. Pharmacokinetics of a novel transdermal rivastigmine patch for the treatment of Alzheimers disease: A review. Int. J. Clin. Pract., 2009, 63(5), 799-805. doi: 10.1111/j.1742-1241.2009.02052.x PMID: 19392927
- Venneri, A.; Lane, R. Effects of cholinesterase inhibition on brain white matter volume in Alzheimers disease. Neuroreport, 2009, 20(3), 285-288. doi: 10.1097/WNR.0b013e3283207d21 PMID: 19444953
- Muthuraju, S.; Maiti, P.; Solanki, P.; Sharma, A.K.; Amitabh; Singh, S.B.; Prasad, D.; Ilavazhagan, G. Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav. Brain Res., 2009, 203(1), 1-14. doi: 10.1016/j.bbr.2009.03.026 PMID: 19446892
- Giacobini, E. Cholinesterases: New roles in brain function and in Alzheimers disease. Neurochem. Res., 2003, 28(3/4), 515-522. doi: 10.1023/A:1022869222652 PMID: 12675140
- Kumar, A.; Nisha, C.M.; Silakari, C.; Sharma, I.; Anusha, K.; Gupta, N.; Nair, P.; Tripathi, T.; Kumar, A. Current and novel therapeutic molecules and targets in alzheimers disease. J. Formos. Med. Assoc., 2016, 115(1), 3-10. doi: 10.1016/j.jfma.2015.04.001 PMID: 26220908
- Danysz, W.; Parsons, C.G. The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimers disease: Preclinical evidence. Int. J. Geriatr. Psychiatry, 2003, 18(S1), S23-S32. doi: 10.1002/gps.938 PMID: 12973747
- Birrenbach, G.; Speiser, P.P. Polymerized micelles and their use as adjuvants in immunology. J. Pharm. Sci., 1976, 65(12), 1763-1766. doi: 10.1002/jps.2600651217 PMID: 1036442
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931. doi: 10.1016/j.arabjc.2017.05.011
- Loureiro, J.; Andrade, S.; Duarte, A.; Neves, A.; Queiroz, J.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.; Pereira, M. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimers disease. Molecules, 2017, 22(2), 277. doi: 10.3390/molecules22020277 PMID: 28208831
- Leszek, J.; Md Ashraf, G.; Tse, W.H.; Zhang, J.; Gasiorowski, K.; Avila-Rodriguez, M.F.; Tarasov, V.V.; Barreto, G.E.; Klochkov, S.G.; Bachurin, S.O.; Aliev, G. Nanotechnology for alzheimer disease. Curr. Alzheimer Res., 2017, 14(11), 1182-1189. PMID: 28164767
- Jain, A.; Cheng, K. The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. J. Control. Release, 2017, 245, 27-40. doi: 10.1016/j.jconrel.2016.11.016 PMID: 27865853
- Hadavi, D.; Poot, A.A. Biomaterials for the Treatment of Alzheimers Disease. Front. Bioeng. Biotechnol., 2016, 4, 49. doi: 10.3389/fbioe.2016.00049 PMID: 27379232
- Kaur, I.P.; Garg, A.; Singla, A.K.; Aggarwal, D. Vesicular systems in ocular drug delivery: An overview. Int. J. Pharm., 2004, 269(1), 1-14. doi: 10.1016/j.ijpharm.2003.09.016 PMID: 14698571
- Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm., 1998, 165(2), 129-168. doi: 10.1016/S0378-5173(98)00006-4
- Fonseca-Santos, B.; Chorilli, M.; Palmira Daflon Gremião, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimers disease. Int. J. Nanomedicine, 2015, 10, 4981-5003. doi: 10.2147/IJN.S87148 PMID: 26345528
- Gastaldi, L.; Battaglia, L.; Peira, E.; Chirio, D.; Muntoni, E.; Solazzi, I.; Gallarate, M.; Dosio, F. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm., 2014, 87(3), 433-444. doi: 10.1016/j.ejpb.2014.05.004 PMID: 24833004
- Mishra, B; Patel, BB; Tiwari, S Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomed.: Nanotechnol., Biol. Med., 2009, 6(1), 9-24.
- Md, S.; Bhattmisra, S.K.; Zeeshan, F.; Shahzad, N.; Mujtaba, M.A.; Srikanth Meka, V.; Radhakrishnan, A.; Kesharwani, P.; Baboota, S.; Ali, J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol., 2018, 43, 295-310. doi: 10.1016/j.jddst.2017.09.022
- Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109. doi: 10.1016/j.jconrel.2007.12.018 PMID: 18313785
- Neves, A.R.; Queiroz, J.F.; Weksler, B.; Romero, I.A.; Couraud, P.O.; Reis, S. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: Two new strategies of functionalization with apolipoprotein E. Nanotechnology, 2015, 26(49), 495103. doi: 10.1088/0957-4484/26/49/495103 PMID: 26574295
- Robinson, M.; Lee, B.Y.; Leonenko, Z. Drugs and drug delivery systems targeting amyloid-b {eta} in Alzheimers disease. arXiv, 2017, 2017, 08313.
- Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55. doi: 10.2174/187221013804484827 PMID: 22946628
- Haimov, E; Harel, Y; Polani, S; Weitman, H; Zitoun, D; Lellouche, JP; Shefi, O Metal-based nanoparticles as carriers of mTHPC drug for effective photodynamic therapy. In: Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XVI; SPIE, 2019; 10891, pp. 125-134. doi: 10.1117/12.2508456
- Das, S.; Dowding, J.M.; Klump, K.E.; McGinnis, J.F.; Self, W.; Seal, S. Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 2013, 8(9), 1483-1508. doi: 10.2217/nnm.13.133 PMID: 23987111
- Ahmad, J.; Akhter, S.; Rizwanullah, M.; Khan, M.A.; Pigeon, L.; Addo, R.T.; Greig, N.H.; Midoux, P.; Pichon, C.; Kamal, M.A. Nanotechnology based theranostic approaches in Alzheimers disease management: Current status and future perspective. Curr. Alzheimer Res., 2017, 14(11), 1164-1181. PMID: 28482786
- Do, T.D.; Amin, F.U.; Noh, Y.; Kim, M.O.; Yoon, J. Guidance of magnetic nanocontainers for treating Alzheimers disease using an electromagnetic, targeted drug-delivery actuator. J. Biomed. Nanotechnol., 2016, 12(3), 569-574. doi: 10.1166/jbn.2016.2193 PMID: 27280254
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull., 2015, 5(3), 305-313. doi: 10.15171/apb.2015.043 PMID: 26504751
- Bernardi, A.; Frozza, R.L.; Meneghetti, A.; Hoppe, J.B.; Oliveira Battastini, A.M.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C.G. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimers disease models. Int. J. Nanomedicine, 2012, 7, 4927-4942. doi: 10.2147/IJN.S35333 PMID: 23028221
- Brambilla, D.; Verpillot, R.; Le Droumaguet, B.; Nicolas, J.; Taverna, M.; Kóňa, J.; Lettiero, B.; Hashemi, S.H.; De Kimpe, L.; Canovi, M.; Gobbi, M.; Nicolas, V.; Scheper, W.; Moghimi, S.M.; Tvaroka, I.; Couvreur, P.; Andrieux, K. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: Toward engineering of functional nanomedicines for Alzheimers disease. ACS Nano, 2012, 6(7), 5897-5908. doi: 10.1021/nn300489k PMID: 22686577
- Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y.; Maekawa, T.; Venugopal, K.; Kumar, D.S. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimers disease. PLoS One, 2012, 7(3), e32616. doi: 10.1371/journal.pone.0032616 PMID: 22403681
- Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Tonk, S.; Kuruva, C.S.; Bhatti, J.S.; Kandimalla, R.; Vijayan, M.; Kumar, S.; Wang, R.; Pradeepkiran, J.A.; Ogunmokun, G.; Thamarai, K.; Quesada, K.; Boles, A.; Reddy, A.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimers disease. J. Alzheimers Dis., 2018, 61(3), 843-866. doi: 10.3233/JAD-170512 PMID: 29332042
- den Haan, J.; Morrema, T.H.J.; Rozemuller, A.J.; Bouwman, F.H.; Hoozemans, J.J.M. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimers disease brains: Implications for in vivo diagnostics. Acta Neuropathol. Commun., 2018, 6(1), 75. doi: 10.1186/s40478-018-0577-2 PMID: 30092839
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimers? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750. doi: 10.1002/jnr.20025 PMID: 14994335
- Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377. doi: 10.1523/JNEUROSCI.21-21-08370.2001 PMID: 11606625
- Patil, R.; Gangalum, P.R.; Wagner, S.; Portilla-Arias, J.; Ding, H.; Rekechenetskiy, A.; Konda, B.; Inoue, S.; Black, K.L.; Ljubimova, J.Y.; Holler, E. Curcumin targeted, polymalic acid‐based MRI contrast agent for the detection of Aβ plaques in Alzheimers disease. Macromol. Biosci., 2015, 15(9), 1212-1217. doi: 10.1002/mabi.201500062 PMID: 26036700
- Zhang, C.; Zheng, X.; Wan, X.; Shao, X.; Liu, Q.; Zhang, Z.; Zhang, Q. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimers disease. J. Control. Release, 2014, 192, 317-324. doi: 10.1016/j.jconrel.2014.07.050 PMID: 25102404
- Cupaioli, F.A.; Zucca, F.A.; Boraschi, D.; Zecca, L. Engineered nanoparticles. How brain friendly is this new guest? Prog. Neurobiol., 2014, 119-120, 20-38. doi: 10.1016/j.pneurobio.2014.05.002 PMID: 24820405
- Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194. doi: 10.1016/j.jconrel.2012.12.013 PMID: 23262199
- Karatas, H.; Aktas, Y.; Gursoy-Ozdemir, Y.; Bodur, E.; Yemisci, M.; Caban, S.; Vural, A.; Pinarbasli, O.; Capan, Y.; Fernandez-Megia, E.; Novoa-Carballal, R.; Riguera, R.; Andrieux, K.; Couvreur, P.; Dalkara, T. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci., 2009, 29(44), 13761-13769. doi: 10.1523/JNEUROSCI.4246-09.2009 PMID: 19889988
- Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247. doi: 10.1038/nrd4503 PMID: 25598505
- Silva, A.C.; Santos, D.; Ferreira, D.; Lopes, C.M. Lipid-based nanocarriers as an alternative for oral delivery of poorly water- soluble drugs: Peroral and mucosal routes. Curr. Med. Chem., 2012, 19(26), 4495-4510. doi: 10.2174/092986712803251584 PMID: 22834821
- Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70(3), 353-363. doi: 10.1016/S0168-3659(00)00367-9 PMID: 11182205
- Pan, H.; Marsh, J.N.; Christenson, E.T.; Soman, N.R.; Ivashyna, O.; Lanza, G.M.; Schlesinger, P.H.; Wickline, S.A. Postformulation peptide drug loading of nanostructures. In: Methods in enzymology; Academic Press, 2012; 508, pp. 17-39.
- Fernandes, C.; Soni, U.; Patravale, V. Nano-interventions for neurodegenerative disorders. Pharmacol. Res., 2010, 62(2), 166-178. doi: 10.1016/j.phrs.2010.02.004 PMID: 20153429
- Silva, A.C.; González-Mira, E.; Lobo, J.M.; Amaral, M.H. Current progresses on nanodelivery systems for the treatment of neuropsychiatric diseases: Alzheimers and schizophrenia. Curr. Pharm. Des., 2013, 19(41), 7185-7195. doi: 10.2174/138161281941131219123329 PMID: 23489198
- Altinoglu, G.; Adali, T. Alzheimers disease targeted nano-based drug delivery systems. Curr. Drug Targets, 2020, 21(7), 628-646. doi: 10.2174/1389450120666191118123151 PMID: 31744447
- Sivasankarapillai, V.S.; Jose, J.; Shanavas, M.S.; Marathakam, A.; Uddin, M.S.; Mathew, B. Silicon quantum dots: Promising theranostic probes for the future. Curr. Drug Targets, 2019, 20(12), 1255-1263. doi: 10.2174/1389450120666190405152315 PMID: 30961492
- Kamigaito, O. What can be improved by nanometer composites? J. Japan Soci. Powder Powder Metall., 1991, 38(3), 315-321. doi: 10.2497/jjspm.38.315
- Thostenson, E.; Li, C.; Chou, T. Nanocomposites in context. Compos. Sci. Technol., 2005, 65(3-4), 491-516. doi: 10.1016/j.compscitech.2004.11.003
- Chen, Q.; Du, Y.; Zhang, K.; Liang, Z.; Li, J.; Yu, H.; Ren, R.; Feng, J.; Jin, Z.; Li, F.; Sun, J.; Zhou, M.; He, Q.; Sun, X.; Zhang, H.; Tian, M.; Ling, D. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimers disease. ACS Nano, 2018, 12(2), 1321-1338. doi: 10.1021/acsnano.7b07625 PMID: 29364648
- Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127. doi: 10.4103/2230-973X.177833 PMID: 27051632
- Patel, D.A.; Henry, J.E.; Good, T.A. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: Role of sialic acid attachment. Brain Res., 2007, 1161, 95-105. doi: 10.1016/j.brainres.2007.05.055 PMID: 17604005
- Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimers disease. Mol. Brain, 2011, 4(1), 3. doi: 10.1186/1756-6606-4-3 PMID: 21214928
- Lokesh Kumar, P. Design, synthesis, characterization and evaluation of newer potent apolipoprotein E4 inhibitors for the treatment of alzheimers disease. Int. J. Pharm. Sci. Res., 2021, 13, 1453-1464.
- Balaraman, Y.; Limaye, A.R.; Levey, A.I.; Srinivasan, S. Glycogen synthase kinase 3β and Alzheimers disease: Pathophysiological and therapeutic significance. Cell. Mol. Life Sci., 2006, 63(11), 1226-1235. doi: 10.1007/s00018-005-5597-y PMID: 16568235
- Martín-Rapun, R.; De Matteis, L.; Ambrosone, A.; Garcia-Embid, S.; Gutierrez, L.; de la Fuente, J.M. Targeted nanoparticles for the treatment of Alzheimers disease. Curr. Pharm. Des., 2017, 23(13), 1927-1952. doi: 10.2174/1381612822666161226151011 PMID: 28025949
- Rissman, R.A.; De Blas, A.L.; Armstrong, D.M. GABA A receptors in aging and Alzheimers disease. J. Neurochem., 2007, 103(4), 1285-1292. doi: 10.1111/j.1471-4159.2007.04832.x PMID: 17714455
- Rossor, M.N.; Garrett, N.J.; Johnson, A.L.; Mountjoy, C.Q.; Roth, M.; Iversen, L.L. A post-mortem study of the cholinergic and GABA systems in senile dementia. Brain, 1982, 105(2), 313-330. doi: 10.1093/brain/105.2.313 PMID: 7082992
- Mountjoy, C.Q.; Rossor, M.N.; Iversen, L.L.; Roth, M. Correlation of cortical cholinergic and GABA deficits with quantitative neuropathological findings in senile dementia. Brain, 1984, 107(2), 507-518. doi: 10.1093/brain/107.2.507 PMID: 6722514
- Lowe, S.L.; Francis, P.T.; Procter, A.W.; Palmer, A.M.; Davison, A.N.; Bowen, D.M. Gamma-aminobutyric acid concentration in brain tissue at two stages of Alzheimers disease. Brain, 1988, 111(4), 785-799. doi: 10.1093/brain/111.4.785 PMID: 3401683
- Ellison, D.W.; Beal, M.F.; Mazurek, M.F.; Bird, E.D.; Martin, J.B. A postmortem study of amino acid neurotransmitters in Alzheimers disease. Ann. Neurol., 1986, 20(5), 616-621. doi: 10.1002/ana.410200510 PMID: 2878639
- Chu, D.C.M.; Penney, J.B., Jr; Young, A.B. Cortical GABAB and GABAA receptors in Alzheimers disease: A quantitative autoradiographic study. Neurology, 1987, 37(9), 1454-1459. doi: 10.1212/WNL.37.9.1454 PMID: 2819782
- Froestl, W.; Gallagher, M.; Jenkins, H.; Madrid, A.; Melcher, T.; Teichman, S.; Mondadori, C.G.; Pearlman, R. SGS742: The first GABAB receptor antagonist in clinical trials. Biochem. Pharmacol., 2004, 68(8), 1479-1487. doi: 10.1016/j.bcp.2004.07.030 PMID: 15451390
- Sabbagh, M.N. Drug development for Alzheimers disease: Where are we now and where are we headed? Am. J. Geriatr. Pharmacother., 2009, 7(3), 167-185. doi: 10.1016/j.amjopharm.2009.06.003 PMID: 19616185
- Sternfeld, F.; Carling, R.W.; Jelley, R.A.; Ladduwahetty, T.; Merchant, K.J.; Moore, K.W.; Reeve, A.J.; Street, L.J.; OConnor, D.; Sohal, B.; Atack, J.R.; Cook, S.; Seabrook, G.; Wafford, K.; Tattersall, F.D.; Collinson, N.; Dawson, G.R.; Castro, J.L.; MacLeod, A.M. Selective, orally active γ-aminobutyric acidA α5 receptor inverse agonists as cognition enhancers. J. Med. Chem., 2004, 47(9), 2176-2179. doi: 10.1021/jm031076j PMID: 15084116
- Aisen, P.S.; Saumier, D.; Briand, R.; Laurin, J.; Gervais, F.; Tremblay, P.; Garceau, D. A Phase II study targeting amyloid- with 3APS in mild-to-moderate Alzheimer disease. Neurology, 2006, 67(10), 1757-1763. doi: 10.1212/01.wnl.0000244346.08950.64 PMID: 17082468
- Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol., 1999, 55(6), 1101-1107. doi: 10.1124/mol.55.6.1101 PMID: 10347254
- Esbenshade, T.A.; Browman, K.E.; Bitner, R.S.; Strakhova, M.; Cowart, M.D.; Brioni, J.D. The histamine H 3 receptor: An attractive target for the treatment of cognitive disorders. Br. J. Pharmacol., 2008, 154(6), 1166-1181. doi: 10.1038/bjp.2008.147 PMID: 18469850
- Medhurst, A.D.; Roberts, J.C.; Lee, J.; Chen, C.P.L-H.; Brown, S.H.; Roman, S.; Lai, M.K.P. Characterization of histamine H3 receptors in Alzheimers Disease brain and amyloid over-expressing TASTPM mice. Br. J. Pharmacol., 2009, 157(1), 130-138. doi: 10.1111/j.1476-5381.2008.00075.x PMID: 19222483
- Leurs, R.; Bakker, R.A.; Timmerman, H.; de Esch, I.J.P. The histamine H3 receptor: From gene cloning to H3 receptor drugs. Nat. Rev. Drug Discov., 2005, 4(2), 107-120. doi: 10.1038/nrd1631 PMID: 15665857
- Langbaum, J.B.S.; Chen, K.; Lee, W.; Reschke, C.; Bandy, D.; Fleisher, A.S.; Alexander, G.E.; Foster, N.L.; Weiner, M.W.; Koeppe, R.A.; Jagust, W.J.; Reiman, E.M. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimers disease neuroimaging initiative (ADNI). Neuroimage, 2009, 45(4), 1107-1116. doi: 10.1016/j.neuroimage.2008.12.072 PMID: 19349228
- Reiman, E.M.; Caselli, R.J.; Yun, L.S.; Chen, K.; Bandy, D.; Minoshima, S.; Thibodeau, S.N.; Osborne, D. Preclinical evidence of Alzheimers disease in persons homozygous for the ε 4 allele for apolipoprotein E. N. Engl. J. Med., 1996, 334(12), 752-758. doi: 10.1056/NEJM199603213341202 PMID: 8592548
- Manning, C.A.; Stone, W.S.; Korol, D.L.; Gold, P.E. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav. Brain Res., 1998, 93(1-2), 71-76. doi: 10.1016/S0166-4328(97)00136-8 PMID: 9659988
- Craft, S.; Asthana, S.; Newcomer, J.W.; Wilkinson, C.W.; Matos, I.T.; Baker, L.D.; Cherrier, M.; Lofgreen, C.; Latendresse, S.; Petrova, A.; Plymate, S.; Raskind, M.; Grimwood, K.; Veith, R.C. Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. Arch. Gen. Psychiatry, 1999, 56(12), 1135-1140. doi: 10.1001/archpsyc.56.12.1135 PMID: 10591291
- Costantini, L.C.; Barr, L.J.; Vogel, J.L.; Henderson, S.T. Hypometabolism as a therapeutic target in Alzheimers disease. BMC Neurosci., 2008, 9(S2), S16. doi: 10.1186/1471-2202-9-S2-S16 PMID: 19090989
- Henderson, S.T.; Vogel, J.L.; Barr, L.J.; Garvin, F.; Jones, J.J.; Costantini, L.C. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimers disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab., 2009, 6(1), 31. doi: 10.1186/1743-7075-6-31 PMID: 19664276
- Nordberg, A.; Winblad, B. Reduced number of 3Hnicotine and 3Hacetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett., 1986, 72(1), 115-120. doi: 10.1016/0304-3940(86)90629-4 PMID: 3808458
- Sabbagh, M.N.; Shah, F.; Reid, R.T.; Sue, L.; Connor, D.J.; Peterson, L.K.N.; Beach, T.G. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch. Neurol., 2006, 63(12), 1771-1776. doi: 10.1001/archneur.63.12.1771 PMID: 17172618
- Kadir, A.; Almkvist, O.; Wall, A.; Långström, B.; Nordberg, A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimers disease. Psychopharmacology, 2006, 188(4), 509-520. doi: 10.1007/s00213-006-0447-7 PMID: 16832659
- Haydar, S.N.; Ghiron, C.; Bettinetti, L.; Bothmann, H.; Comery, T.A.; Dunlop, J.; La Rosa, S.; Micco, I.; Pollastrini, M.; Quinn, J.; Roncarati, R.; Scali, C.; Valacchi, M.; Varrone, M.; Zanaletti, R. SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist. Bioorg. Med. Chem., 2009, 17(14), 5247-5258. doi: 10.1016/j.bmc.2009.05.040 PMID: 19515567
- Wong, K.; Riaz, M.; Xie, Y.; Zhang, X.; Liu, Q.; Chen, H.; Bian, Z.; Chen, X.; Lu, A.; Yang, Z. Review of current strategies for delivering Alzheimers disease drugs across the blood-brain barrier. Int. J. Mol. Sci., 2019, 20(2), 381. doi: 10.3390/ijms20020381 PMID: 30658419
- Dunbar, G.C.; Kuchibhatla, R. Cognitive enhancement in man with ispronicline, a nicotinic partial agonist. J. Mol. Neurosci., 2006, 30(1-2), 169-172. doi: 10.1385/JMN:30:1:169 PMID: 17192668
- Potter, A.; Corwin, J.; Lang, J.; Piasecki, M.; Lenox, R.; Newhouse, P.A. Acute effects of the selective cholinergic channel activator (nicotinic agonist) ABT-418 in Alzheimers disease. Psychopharmacology, 1999, 142(4), 334-342. doi: 10.1007/s002130050897 PMID: 10229057
- Marighetto, A.; Valerio, S.; Desmedt, A.; Philippin, J.N.; Trocmé-Thibierge, C.; Morain, P. Comparative effects of the α7 nicotinic partial agonist, S 24795, and the cholinesterase inhibitor, donepezil, against aging-related deficits in declarative and working memory in mice. Psychopharmacology, 2008, 197(3), 499-508. doi: 10.1007/s00213-007-1063-x PMID: 18265960
- Tully, T.; Bourtchouladze, R.; Scott, R.; Tallman, J. Targeting the CREB pathway for memory enhancers. Nat. Rev. Drug Discov., 2003, 2(4), 267-277. doi: 10.1038/nrd1061 PMID: 12669026
- Barco, A.; Pittenger, C.; Kandel, E.R. CREB, memory enhancement and the treatment of memory disorders: Promises, pitfalls and prospects. Expert Opin. Ther. Targets, 2003, 7(1), 101-114. doi: 10.1517/14728222.7.1.101 PMID: 12556206
- Vitolo, O.V.; SantAngelo, A.; Costanzo, V.; Battaglia, F.; Arancio, O.; Shelanski, M. Amyloid β-peptide inhibition of the PKA/CREB pathway and long-term potentiation: Reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci., 2002, 99(20), 13217-13221. doi: 10.1073/pnas.172504199 PMID: 12244210
- DallIgna, O.P.; Fett, P.; Gomes, M.W.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Caffeine and adenosine A2a receptor antagonists prevent β-amyloid (2535)-induced cognitive deficits in mice. Exp. Neurol., 2007, 203(1), 241-245. doi: 10.1016/j.expneurol.2006.08.008 PMID: 17007839
- Gong, B.; Vitolo, O.V.; Trinchese, F.; Liu, S.; Shelanski, M.; Arancio, O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J. Clin. Invest., 2004, 114(11), 1624-1634. doi: 10.1172/JCI22831 PMID: 15578094
- Puzzo, D.; Staniszewski, A.; Deng, S.X.; Privitera, L.; Leznik, E.; Liu, S.; Zhang, H.; Feng, Y.; Palmeri, A.; Landry, D.W.; Arancio, O. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimers disease mouse model. J. Neurosci., 2009, 29(25), 8075-8086. doi: 10.1523/JNEUROSCI.0864-09.2009 PMID: 19553447
- Xia, M.; Huang, R.; Guo, V.; Southall, N.; Cho, M.H.; Inglese, J.; Austin, C.P.; Nirenberg, M. Identification of compounds that potentiate CREB signaling as possible enhancers of long-term memory. Proc. Natl. Acad. Sci., 2009, 106(7), 2412-2417. doi: 10.1073/pnas.0813020106 PMID: 19196967
- Schultheiss, D.; Müller, S.V.; Nager, W.; Stief, C.G.; Schlote, N.; Jonas, U.; Asvestis, C.; Johannes, S.; Münte, T.F. Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: A study with event-related brain potentials. World J. Urol., 2001, 19(1), 46-50. doi: 10.1007/PL00007092 PMID: 11289570
- Gopakumar, K.M. The Need to Curb Patents on Known Substances. Econ. Polit. Wkly., 2013, 55-57.
Supplementary files
