Advancements in Nanotechnology for Enhanced Antifungal Drug Delivery: A Comprehensive Review


Cite item

Full Text

Abstract

:Infections caused by fungi can be mildly bothersome or fatal, causing life-threatening conditions or even death. Antifungal drugs have used synthetic chemicals, organic compounds, and phytoconstituents in their formulations to treat fungal infections. Research into novel antifungal drugs has progressed more rapidly than into antibacterial treatments. This can be attributed to the low resistance of fungal infections to antifungal bioactivities and the relatively low incidence of these diseases. Carrier systems based on nanotechnology have generated much interest recently because of the incredible potential of these systems. By using nanoarchitecture as a better carrier and drug delivery system (DDS), we can have greater antifungal effectiveness, bioavailability, targeted action, and less cytotoxicity, a development made possible using nanotechnology. This review discusses various nanocarrier-based technologies in addition to other nanotechnological methods. These include liposomes, transfersomes, ethosomes, niosomes, dendrimers, polymeric nanoparticles, polymer nanocomposites, metallic nanoparticles, carbon nanomaterials, etc.

:This review focused on general information regarding fungi infections, different antifungal agent types and mechanisms of action, and an overview of formulation strategies such as nanotechnology systems, which are frequently researched for antifungal therapies.

:We concluded that new drug delivery systems are crucial to delivering antifungal medicines to their target site with the optimum concentration. The researchers also concentrated on these innovative drug delivery systems, which primarily focus on regulating and maintaining the release of antifungal drugs.

About the authors

Rajat Srivastava

School of Pharmaceutical Sciences, Maharishi University of Information Technology

Author for correspondence.
Email: info@benthamscience.net

Ajay Rawat

School of Pharmaceutical Sciences, Maharishi University of Information Technology

Email: info@benthamscience.net

Manoj Mishra

, Shambhunath Institute of Pharmacy

Email: info@benthamscience.net

Amit Kumar Patel

School of Pharmaceutical Sciences, Maharishi University of Information Technology

Email: info@benthamscience.net

References

  1. Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2019; 109: 333-44. doi: 10.1016/j.biopha.2018.10.075 PMID: 30399567
  2. Janbon G, Quintin J, Lanternier F, d’Enfert C. Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20(5): 403-14. doi: 10.1038/s41435-019-0071-2 PMID: 31019254
  3. Sharma B, Nonzom S. Superficial mycoses, a matter of concern: Global and Indian scenario‐an updated analysis. Mycoses 2021; 64(8): 890-908. doi: 10.1111/myc.13264 PMID: 33665915
  4. Souza ACO, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: Improving efficacy, biodistribution and toxicity. Front Microbiol 2017; 8: 336. doi: 10.3389/fmicb.2017.00336 PMID: 28326065
  5. Verma S, Utreja P. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy. Asi J Pharmac Sci 2019; 14(2): 117-29. doi: 10.1016/j.ajps.2018.05.007 PMID: 32104444
  6. Vallabhaneni S, Mody RK, Walker T, Chiller T. The global burden of fungal diseases. Infect Dis Clin North Am 2016; 30(1): 1-11. doi: 10.1016/j.idc.2015.10.004 PMID: 26739604
  7. Sousa F, Ferreira D, Reis S, Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals 2020; 13(9): 248. doi: 10.3390/ph13090248 PMID: 32942693
  8. Grover S, Roy P. Clinico-mycological profile of superficial mycosis in a hospital in North-East India. Med J Armed Forces India 2003; 59(2): 114-6. doi: 10.1016/S0377-1237(03)80053-9 PMID: 27407482
  9. Brown AJP, Gow NAR, Warris A, Brown GD. Memory in fungal pathogens promotes immune evasion, colonisation, and infection. Trends Microbiol 2019; 27(3): 219-30. doi: 10.1016/j.tim.2018.11.001 PMID: 30509563
  10. Hay R. Therapy of skin, hair and nail fungal infections. J Fungi 2018; 4(3): 99. doi: 10.3390/jof4030099
  11. Rai M, Ingle AP, Pandit R, et al. Nanotechnology for the treatment of fungal infections on human skin. The Microbiology of Skin, Soft Tissue, Bone and Joint Infections. Elsevier 2017; pp. 169-84. doi: 10.1016/B978-0-12-811079-9.00019-7
  12. Shields BE, Rosenbach M, Brown-Joel Z, Berger AP, Ford BA, Wanat KA. Angioinvasive fungal infections impacting the skin. J Am Acad Dermatol 2019; 80(4): 869-880.e5. doi: 10.1016/j.jaad.2018.04.059 PMID: 30102951
  13. Li Y, Wei W, An S, et al. Identification and analysis of lncRNA, microRNA and mRNA expression profiles and construction of ceRNA network in Talaromyces marneffei -infected THP-1 macrophage. PeerJ 2021; 9: e10529. doi: 10.7717/peerj.10529 PMID: 33520437
  14. Noé W, Murhekar S, White A, Davis C, Cock IE. Inhibition of the growth of human dermatophytic pathogens by selected australian and asian plants traditionally used to treat fungal infections. J Mycol Med 2019; 29(4): 331-44. doi: 10.1016/j.mycmed.2019.05.003 PMID: 31248775
  15. Mishra V, Singh M, Mishra Y, et al. Nanoarchitectures in management of fungal diseases: An overview. Appl Sci 2021; 11(15): 7119. doi: 10.3390/app11157119
  16. Cohen L, Seminario-Vidal L, Lockey RF. Dermatologic problems commonly seen by the allergist/immunologist. J Allergy Clin Immunol Pract 2020; 8(1): 102-12. doi: 10.1016/j.jaip.2019.07.019 PMID: 31351991
  17. Khurana A, Sardana K, Chowdhary A. Antifungal resistance in dermatophytes: Recent trends and therapeutic implications. Fungal Genet Biol 2019; 132: 103255. doi: 10.1016/j.fgb.2019.103255 PMID: 31330295
  18. Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence 2017; 8(2): 222-36. doi: 10.1080/21505594.2016.1257457 PMID: 27820668
  19. Nivoix Y, Ledoux MP, Herbrecht R. Antifungal therapy: New and evolving therapies. Semin Respir Crit Care Med 2020; 41(1): 158-74. doi: 10.1055/s-0039-3400291 PMID: 32000291
  20. Carmona EM, Limper AH. Overview of treatment approaches for fungal infections. Clin Chest Med 2017; 38(3): 393-402. doi: 10.1016/j.ccm.2017.04.003 PMID: 28797484
  21. Kumar Nigam P. Antifungal drugs and resistance: Current concepts. Nasza Dermatol Online 2015; 6(2): 212-21. doi: 10.7241/ourd.20152.58
  22. Alghuthaymi M A, Hassan A A, Kalia A, et al. Antifungal nano-therapy in veterinary medicine: Current status and future prospects. J Fungi 2021; 7(7): 494. doi: 10.3390/jof7070494
  23. Patil A, Mishra V, Thakur S, et al. Nanotechnology derived nanotools in biomedical perspectives: An update. Curr Nanosci 2018; 15(2): 137-46. doi: 10.2174/1573413714666180426112851
  24. Zhang Y, Huang L. Liposomal delivery system. Nanoparticles Biomed Appl Fundam Concepts, Biol Interact Clin Appl 2020; 145-52. doi: 10.1016/B978-0-12-816662-8.00010-2
  25. Eloy JO, Claro de Souza M, Petrilli R, Barcellos JPA, Lee RJ, Marchetti JM. Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123: 345-63. doi: 10.1016/j.colsurfb.2014.09.029 PMID: 25280609
  26. Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99. doi: 10.2147/IJN.S68861 PMID: 25678787
  27. Ambati S, Ellis EC, Lin J, Lin X, Lewis ZA, Meagher RB. Dectin-2-targeted antifungal liposomes exhibit enhanced efficacy. MSphere 2019; 4(5): e00715-9. doi: 10.1128/mSphere.00715-19 PMID: 31666315
  28. Liu KR, Peyman GA, Khoobehi B. Efficacy of liposome-bound amphotericin B for the treatment of experimental fungal endophthalmitis in rabbits. Invest Ophthalmol Vis Sci 1989; 30(7): 1527-34. PMID: 2787300
  29. Veloso DFMC, Benedetti NIGM, Ávila RI, et al. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv 2018; 25(1): 1585-94. doi: 10.1080/10717544.2018.1492046 PMID: 30044149
  30. Giordani B, Basnet P, Mishchenko E, Luppi B, Škalko-Basnet N. Utilizing liposomal quercetin and gallic acid in localized treatment of vaginal Candida infections. Pharmaceutics 2019; 12(1): 9. doi: 10.3390/pharmaceutics12010009 PMID: 31861805
  31. Ravi K, Singh M, Rajini B, Nimratha S, Rana AC. Transferosomes: A novel approach for transdermal drug delivery. Int Res J Pharm 2012; 3: 20-4.
  32. Wu PS, Li YS, Kuo YC, Tsai SJ, Lin CC. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019; 24(3): 600. doi: 10.3390/molecules24030600 PMID: 30743989
  33. Steinberg G. Cytoplasmic fungal lipases release fungicides from ultra-deformable vesicular drug carriers. PLoS One 2012; 7(5): e38181. doi: 10.1371/journal.pone.0038181 PMID: 22666476
  34. Ghannoum M, Isham N, Herbert J, Henry W, Yurdakul S. Activity of TDT 067 (terbinafine in Transfersome) against agents of onychomycosis, as determined by minimum inhibitory and fungicidal concentrations. J Clin Microbiol 2011; 49(5): 1716-20. doi: 10.1128/JCM.00083-11 PMID: 21411586
  35. Alaa Z. Comparative study of terbinafine hydrochloride transfersome, menthosome and ethosome nanovesicle formulations via skin permeation and antifungal efficacy. Al-Azhar. Al-Azhar J Pharmac Sci 2018; 54(2): 18-36. doi: 10.21608/ajps.2018.6631
  36. Romero E, Morilla M. Highly deformable and highly fluid vesicles as potential drug delivery systems: Theoretical and practical considerations. Int J Nanomedicine 2013; 8: 3171-86. doi: 10.2147/IJN.S33048 PMID: 23986634
  37. Bhalaria MK, Naik S, Misra AN. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J Exp Biol 2009; 47(5): 368-75. PMID: 19579803
  38. Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res 2018; 28(1): 14-21. doi: 10.1080/08982104.2016.1239636 PMID: 27667097
  39. Akhtar N, Pathak K. Cavamax W7 composite ethosomal gel of clotrimazole for improved topical delivery: Development and comparison with ethosomal gel. AAPS PharmSciTech 2012; 13(1): 344-55. doi: 10.1208/s12249-012-9754-y PMID: 22282041
  40. Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2012; 92: 299-304. doi: 10.1016/j.colsurfb.2011.12.004 PMID: 22205066
  41. Verma S, Utreja P. Transethosomes of econazole nitrate for transdermal delivery: Development, In-vitro characterization, and Ex-vivo assessment. Pharm Nanotechnol 2018; 6(3): 171-9. doi: 10.2174/2211738506666180813122102 PMID: 30101725
  42. El Maghraby GM, Williams AC. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv 2009; 6(2): 149-63. doi: 10.1517/17425240802691059 PMID: 19239387
  43. Goyal MK, Qureshi J. Formulation and evaluation of itraconazole niosomal gel for topical application. J Drug Deliv Ther 2019; 9: 961-6.
  44. Kumar A, Dua JS. Formulation and evaluation of itraconazole niosomal gel. Asian J Pharmac Res Develop 2018; 6(5): 76-80. doi: 10.22270/ajprd.v6i5.425
  45. Shirsand SB, Kanani KM, Keerthy D, Nagendrakumar D, Para MS. Formulation and evaluation of Ketoconazole niosomal gel drug delivery system. Int J Pharm Investig 2012; 2(4): 201-7. doi: 10.4103/2230-973X.107002 PMID: 23580936
  46. Khalifa MKA, Abu El-Enin ASM, Dawaba A, Dawaba H. Proniosomal gel-mediated topical delivery of fluconazole: Development, in vitro characterization, and microbiological evaluation. J Adv Pharm Technol Res 2019; 10(1): 20-6. doi: 10.4103/japtr.JAPTR_332_18 PMID: 30815384
  47. El-Ridy MS, Abdelbary A, Essam T, Abd EL-Salam RM Aly Kassem AA. Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. Drug Dev Ind Pharm 2011; 37(12): 1491-508. doi: 10.3109/03639045.2011.587431 PMID: 21707323
  48. Ing LY, Zin NM, Sarwar A, Katas H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012; 2012: 1-9. doi: 10.1155/2012/632698 PMID: 22829829
  49. Divya K, Smitha V, Jisha MS. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int J Biol Macromol 2018; 114: 572-7. doi: 10.1016/j.ijbiomac.2018.03.130 PMID: 29578005
  50. Ling X, Huang Z, Wang J, et al. Development of an itraconazole encapsulated polymeric nanoparticle platform for effective antifungal therapy. J Mater Chem B Mater Biol Med 2016; 4(10): 1787-96. doi: 10.1039/C5TB02453F PMID: 32263056
  51. Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci 2017; 7(5): 225-41. doi: 10.1007/s13204-017-0561-3
  52. Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 2004; 96(4): 803-9. doi: 10.1111/j.1365-2672.2004.02234.x PMID: 15012819
  53. Gutiérrez JA, Caballero S, Díaz LA, Guerrero MA, Ruiz J, Ortiz CC. High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater Sci Eng 2018; 4(2): 647-53. doi: 10.1021/acsbiomaterials.7b00511 PMID: 33418753
  54. Pereira L, Dias N, Carvalho J, Fernandes S, Santos C, Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J Appl Microbiol 2014; 117(6): 1601-13. doi: 10.1111/jam.12652 PMID: 25234047
  55. Bocate KP, Reis GF, de Souza PC, et al. Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. Int J Food Microbiol 2019; 291: 79-86. doi: 10.1016/j.ijfoodmicro.2018.11.012 PMID: 30476736
  56. Nasrollahi A, Pourshamsian KH, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. Int J Nanodimens 2011; 1: 233-9.
  57. Mallmann EJJ, Cunha FA, Castro BNMF, Maciel AM, Menezes EA, Fechine PBA. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev Inst Med Trop 2015; 57(2): 165-7. doi: 10.1590/S0036-46652015000200011 PMID: 25923897
  58. Alananbeh KM, Refaee WJA, Qodah ZA. Antifungal effect of silver nanoparticles on selected fungi isolated from raw and waste water. Indian J Pharm Sci 2017; 79(4) doi: 10.4172/pharmaceutical-sciences.1000263
  59. Zhang Y, Chen Y, Huang L, Chai Z, Shen L, Xiao Y. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin. Sci Rep 2017; 7(1): 1547. doi: 10.1038/s41598-017-01686-4 PMID: 28484255
  60. Oliveira DRB, Furtado GF, Cunha RL. Solid lipid nanoparticles stabilized by sodium caseinate and lactoferrin. Food Hydrocoll 2019; 90: 321-9. doi: 10.1016/j.foodhyd.2018.12.025
  61. Mishra V, Bansal K, Verma A, et al. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191. doi: 10.3390/pharmaceutics10040191 PMID: 30340327
  62. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8. doi: 10.1016/S0378-5173(02)00180-1 PMID: 12176234
  63. El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv 2018; 25(1): 78-90. doi: 10.1080/10717544.2017.1413444 PMID: 29239242
  64. Jansook P, Pichayakorn W, Ritthidej GC. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): Effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm 2018; 44(10): 1693-700. doi: 10.1080/03639045.2018.1492606 PMID: 29936874
  65. Gratieri T, Krawczyk-Santos AP, da Rocha PBR, et al. SLN- and NLC-encapsulating antifungal agents: Skin drug delivery and their unexplored potential for treating onychomycosis. Curr Pharm Des 2017. doi: 10.2174/1381612823666171115112745 PMID: 29141535
  66. Souto EB, Müller RH. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie 2006; 61(5): 431-7. PMID: 16724541
  67. Jaiswal M, Dudhe R, Sharma P K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7. doi: 10.1007/s13205-014-0214-0
  68. Yang Q, Liu S, Gu Y, et al. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Int J Nanomedicine 2019; 14: 3955-66. doi: 10.2147/IJN.S206657 PMID: 31239665
  69. Garcia A, Fan YY, Vellanki S, et al. Nanoemulsion as an effective treatment against human-pathogenic fungi. MSphere 2019; 4(6): e00729-19. doi: 10.1128/mSphere.00729-19 PMID: 31852807
  70. Wu W, Wieckowski S, Pastorin G, et al. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed 2005; 44(39): 6358-62. doi: 10.1002/anie.200501613 PMID: 16138384
  71. Benincasa M, Pacor S, Wu W, Prato M, Bianco A, Gennaro R. Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 2011; 5(1): 199-208. doi: 10.1021/nn1023522 PMID: 21141979
  72. Habibizadeh M, Rostamizadeh K, Dalali N, Ramazani A. Preparation and characterization of PEGylated multiwall carbon nanotubes as covalently conjugated and non-covalent drug carrier: A comparative study. Mater Sci Eng C 2017; 74: 1-9. doi: 10.1016/j.msec.2016.12.023 PMID: 28254271
  73. Vikelouda M, Simitsopoulou M, Kechagioglou P, et al. Antifungal activity of functionalized carbon nanotubes conjugated to amphotericin- b against candida albicans and candida parapsilosis biofilms. Mycoses 2017; 60: 85.
  74. Wang X, Zhou Z, Chen F. Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen. Materials 2017; 10(12): 1375. doi: 10.3390/ma10121375 PMID: 29189733
  75. Saluja V, Mishra Y, Mishra V, Giri N, Nayak P. Dendrimers based cancer nanotheranostics: An overview. Int J Pharm 2021; 600: 120485. doi: 10.1016/j.ijpharm.2021.120485 PMID: 33744447
  76. Saluja V, Mankoo A, Saraogi GK, Tambuwala MM, Mishra V. Smart dendrimers: Synergizing the targeting of anticancer bioactives. J Drug Deliv Sci Technol 2019; 52: 15-26. doi: 10.1016/j.jddst.2019.04.014
  77. Mishra V, Yadav N, Saraogi GK, Tambuwala MM, Giri N. Dendrimer based nanoarchitectures in diabetes management: An overview. Curr Pharm Des 2019; 25(23): 2569-83. doi: 10.2174/1381612825666190716125332 PMID: 31333099
  78. Mishra V, Gupta U, Jain NK. Surface-engineered dendrimers: A solution for toxicity issues. J Biomater Sci Polym Ed 2009; 20(2): 141-66. doi: 10.1163/156856208X386246 PMID: 19154667
  79. Svenson S, Tomalia DA. Dendrimers in biomedical applications: Reflections on the field. Adv Drug Deliv Rev 2012; 64 (Suppl.): 102-15. doi: 10.1016/j.addr.2012.09.030 PMID: 16305813
  80. Lazniewska J, Milowska K, Gabryelak T. Dendrimers—revolutionary drugs for infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(5): 469-91. doi: 10.1002/wnan.1181 PMID: 22761054
  81. Winnicka K, Sosnowska K, Wieczorek P, Sacha PT, Tryniszewska E. Poly(amidoamine) dendrimers increase antifungal activity of clotrimazole. Biol Pharm Bull 2011; 34(7): 1129-33. doi: 10.1248/bpb.34.1129 PMID: 21720026
  82. Winnicka K, Wroblewska M, Wieczorek P, Sacha PT, Tryniszewska E. Hydrogel of ketoconazole and PAMAM dendrimers: Formulation and antifungal activity. Molecules 2012; 17(4): 4612-24. doi: 10.3390/molecules17044612 PMID: 22513487
  83. Khairnar GA, Chavan-Patil AB, Palve PR, Bhise SB, Mourya VK, Kulkarni CG. Dendrimers: Potential tool for enhancement of antifungal activity. Int J Pharm Tech Res 2010; 736-9.
  84. Hegazy M. PVCL-grafted mesoporous silica nanocontainers for thermo-responsive controlled release and their antifungal activity study. Mater Today Commun 2023; 35: 105585. doi: 10.1016/j.mtcomm.2023.105585
  85. Hegazy M, Zhou P, Wu G, et al. Facile synthesis of poly(DMAEMA-co-MPS)-coated porous silica nanocarriers as dual-targeting drug delivery platform: Experimental and biological investigations. Acta Chim Slov 2020; 67(2): 462-8. doi: 10.17344/acsi.2019.5390 PMID: 33855553

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers