Anti-proliferative, Morphological and Molecular Docking Studies of New Thiophene Derivatives and their Strategy in Ionic Liquids Immobilized Reactions


Cite item

Full Text

Abstract

Background:A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors.

Objective:The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied.

Methods:The multicomponent reactions in this work were carried out not only under the reflux conditions using triethylamine as a catalyst but also in solvent-free ionic liquids immobilized magnetic nanoparticles (MNPs) catalysts.

Results:Through this work, thirty-one new compounds were synthesized and characterized and were evaluated toward the six cancer cell lines, namely A549, HT-29, MKN-45, U87MG, and SMMC-7721 and H460. The most active compounds were further screened toward seventeen cancer cell lines classified according to the disease. In addition, the effect of compound 11e on the A549 cell line was selected to make further morphological changes in the cell line. The Molecular docking studies of 11e and 11f were carried and promising results were obtained.

Conclusion:The synthesis of heterocyclic compounds derived from thiophene derivatives has been receiving significant attention. After a detailed optimizing study, it has been found that the solvent-free ionic liquids immobilized multi-component syntheses afforded a high yield of compounds, opening a greener procedure for this synthetically relevant transformation. Many of the synthesized compounds can be considered anticancer agents, enhancing further studies

About the authors

Rafat Mohareb

Department of Chemistry, Faculty of Science, Cairo University

Author for correspondence.
Email: info@benthamscience.net

Sayeed Mukhtar

Department of Chemistry, Faculty of Science, University of Tabuk

Email: info@benthamscience.net

Humaira Parveen

Department of Chemistry, Faculty of Science, University of Tabuk

Email: info@benthamscience.net

Mahmoud Abdelaziz

Department of Chemistry, Faculty of Science, University of Tabuk

Email: info@benthamscience.net

Ensaf Alwan

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences & Pharmaceutical Industries, Future University in Egypt

Email: info@benthamscience.net

References

  1. Ismail, L.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Elshaarawy, R.F.M.; Gad, E.M.; El-Sayed, W.N. Hybrid organoruthenium(II) complexes with thiophene-β-diketo-benzazole ligands: Synthesis, optical properties, CT-DNA interactions and anticancer activity. J. Organomet. Chem., 2021, 949, 121960. doi: 10.1016/j.jorganchem.2021.121960
  2. Romagnoli, R.; Preti, D.; Hamel, E.; Bortolozzi, R.; Viola, G.; Brancale, A.; Ferla, S.; Morciano, G.; Pinton, P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzobthiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem., 2021, 112, 104919. doi: 10.1016/j.bioorg.2021.104919 PMID: 33957538
  3. Hollick, J.J.; Golding, B.T.; Hardcastle, I.R.; Martin, N.; Richardson, C.; Rigoreau, L.J.M.; Smith, G.C.M.; Griffin, R.J. 2,6-Disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-Dependent protein kinase (DNA-PK). Bioorg. Med. Chem. Lett., 2003, 13(18), 3083-3086. doi: 10.1016/S0960-894X(03)00652-8 PMID: 12941339
  4. Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A.K.; Gupta, R.D.; Awasthi, S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem., 2018, 145, 735-745. doi: 10.1016/j.ejmech.2018.01.017 PMID: 29366931
  5. Ahagh, M.H.; Dehghan, G.; Mehdipour, M.; Teimuri-Mofrad, R.; Payami, E.; Sheibani, N.; Ghaffari, M.; Asadi, M. Synthesis, characterization, anti-proliferative properties and DNA binding of benzochromene derivatives: Increased Bax/Bcl-2 ratio and caspase-dependent apoptosis in colorectal cancer cell line. Bioorg. Chem., 2019, 93, 103329. doi: 10.1016/j.bioorg.2019.103329 PMID: 31590040
  6. Gopalsamy, A.; Aplasca, A.; Ciszewski, G.; Park, K.; Ellingboe, J.W.; Orlowski, M.; Feld, B.; Howe, A.Y.M. Design and synthesis of 3,4-dihydro-1H-1-benzothieno2,3-cpyran and 3,4-dihydro-1H-pyrano3,4-bbenzofuran derivatives as non-nucleoside inhibitors of HCV NS5B RNA dependent RNA polymerase. Bioorg. Med. Chem. Lett., 2006, 16(2), 457-460. doi: 10.1016/j.bmcl.2005.08.114 PMID: 16274990
  7. Chen, Y.L.; Tang, J.; Kesler, M.J.; Sham, Y.Y.; Vince, R.; Geraghty, R.J.; Wang, Z. The design, synthesis and biological evaluations of C-6 or C-7 substituted 2-hydroxyisoquinoline-1,3-diones as inhibitors of hepatitis C virus. Bioorg. Med. Chem., 2012, 20(1), 467-479. doi: 10.1016/j.bmc.2011.10.058 PMID: 22100256
  8. Dong, Y.; Shi, Q.; Nakagawa-Goto, K.; Wu, P.C.; Morris-Natschke, S.L.; Brossi, A.; Bastow, K.F.; Lang, J.Y.; Hung, M.C.; Lee, K.H. Antitumor agents 270. Novel substituted 6-phenyl-4H-furo3,2-cpyran-4-one derivatives as potent and highly selective anti-breast cancer agents. Bioorg. Med. Chem., 2010, 18(2), 803-808. doi: 10.1016/j.bmc.2009.11.049 PMID: 20034799
  9. Parthasarathy, K.; Praveen, C.; Balachandran, C.; Senthil, K, P.; Ignacimuthu, S.; Perumal, P.T. Cu(OTf)2 catalyzed three component reaction: Efficient synthesis of spiroindoline-3,4′-pyrano3,2-bpyran derivatives and their anticancer potency towards A549 human lung cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(9), 2708-2713. doi: 10.1016/j.bmcl.2013.02.086 PMID: 23522833
  10. Elyasi, Z.; Ghomi, J.S.; Najafi, G.R. Ultrasound-Engineered fabrication of immobilized molybdenum complex on Cross-Linked poly (Ionic Liquid) as a new acidic catalyst for the regioselective synthesis of pharmaceutical polysubstituted spiro compounds. Ultrason. Sonochem., 2021, 75, 105614. doi: 10.1016/j.ultsonch.2021.105614 PMID: 34111724
  11. Hernández, E.; Santiago, R.; Moya, C.; Navarro, P.; Palomar, J. Understanding the CO2 valorization to propylene carbonate catalyzed by 1-butyl-3-methylimidazolium amino acid ionic liquids. J. Mol. Liq., 2021, 324, 114782. doi: 10.1016/j.molliq.2020.114782
  12. Wang, L.; Li, C.; Wang, N.; Li, K.; Chen, X.; Yu, X-Q. Enzyme-mediated domino synthesis of 2-alkylbenzimidazoles in solvent-free system: A green route to heterocyclic compound. J. Mol. Catal., B Enzym., 2010, 67(1-2), 16-20. doi: 10.1016/j.molcatb.2010.06.013
  13. Kumar, D.; Prakasham, A.P.; Gangwar, M.K.; Ghosh, P. Solvent-free cyanosilylation of aromatic and heteroaryl aldehydes catalyzed by a cationic iron N-heterocyclic carbene complex at ambient temperature under UV irradiation. Inorg. Chim. Acta, 2019, 495, 119003. doi: 10.1016/j.ica.2019.119003
  14. Feroci, M.; Elinson, M.N.; Rossi, L.; Inesi, A. The double role of ionic liquids in organic electrosynthesis: Precursors of N-heterocyclic carbenes and green solvents. Henry reaction. Electrochem. Commun., 2009, 11(7), 1523-1526. doi: 10.1016/j.elecom.2009.05.045
  15. Elkhidr, H.E.; Ertekin, Z.; Udum, Y.A.; Pekmez, K. Electrosynthesis and characterizations of electrochromic and soluble polymer films based on N- substituted carbazole derivates. Synth. Met., 2020, 260, 116253. doi: 10.1016/j.synthmet.2019.116253
  16. Hu, K.; Niyazymbetov, M.E.; Evans, D.H. Nucleophilic aromatic substitution by paired electrosynthesis: Reactions of methoxy arenes with 1H-tetrazoles. Tetrahedron Lett., 1995, 36(39), 7027-7030. doi: 10.1016/0040-4039(95)01455-Q
  17. Ramesh, K.; Satyanarayana, G. Propargyl alcohols as alkyne sources: Synthesis of heterocyclic compounds under microwave irradiation. J. Organomet. Chem., 2020, 922, 121350. doi: 10.1016/j.jorganchem.2020.121350
  18. Khan, S.A.; Asiri, A.M.; Al-Ghamdi, N.S.M.; Asad, M.; Zayed, M.E.M.; Elroby, S.A.K.; Aqlan, F.M.; Wani, M.Y.; Sharma, K. Microwave assisted synthesis of chalcone and its polycyclic heterocyclic analogues as promising antibacterial agents: In vitro, in silico and DFT studies. J. Mol. Struct., 2019, 1190, 77-85. doi: 10.1016/j.molstruc.2019.04.046
  19. Kurva, M.; Pharande, S.G.; Quezada-Soto, A.; Gámez-Montaño, R. Ultrasound assisted green synthesis of bound type bis-heterocyclic carbazolyl imidazo1,2-apyridines via Groebke-Blackburn-Bienayme reaction. Tetrahedron Lett., 2018, 59(16), 1596-1599. doi: 10.1016/j.tetlet.2018.03.031
  20. Mosslemin, M.H.; Nateghi, M.R. Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason. Sonochem., 2010, 17(1), 162-167. doi: 10.1016/j.ultsonch.2009.07.002 PMID: 19679502
  21. Mojtahedi, M.M.; Abaee, M.S.; Samianifard, M.; Shamloo, A.; Padyab, M.; Mesbah, A.W.; Harms, K. Ultrasound mediation for efficient synthesis of monoarylidene derivatives of homo- and heterocyclic ketones. Ultrason. Sonochem., 2013, 20(3), 924-930. doi: 10.1016/j.ultsonch.2012.11.004 PMID: 23219616
  22. Talha, A.; Tachallait, H.; Benhida, R.; Bougrin, K. Green one-pot four-component synthesis of 3,5-disubstituted isoxazoles- sulfonates and sulfonamides using a combination of NaDCC as metal-free catalyst and ultrasonic activation in water. Tetrahedron Lett., 2021, 81, 153366. doi: 10.1016/j.tetlet.2021.153366
  23. Maddila, S.N.; Maddila, S.; Khumalo, M.; Bhaskaruni, S.V.H.S.; Jonnalagadda, S.B. An eco-friendly approach for synthesis of novel substituted 4H-chromenes in aqueous ethanol under ultra-sonication with 94% atom economy. J. Mol. Struct., 2019, 1185, 357-360. doi: 10.1016/j.molstruc.2019.03.006
  24. Achary, L.S.K.; Nayak, P.S.; Barik, B.; Kumar, A.; Dash, P. Ultrasonic-assisted green synthesis of β-amino carbonyl compounds by copper oxide nanoparticles decorated phosphate functionalized graphene oxide via Mannich reaction. Catal. Today, 2020, 348, 137-147. doi: 10.1016/j.cattod.2019.07.050
  25. Govindaraju, S.; Tabassum, S. Sulphuric acid supported silica gel (H2SO4-SiO2) as an efficient catalyst for one-pot multicomponent synthesis of pyrano2,3-cpyrazol-amines under ultrasonication. Mater. Today Proc., 2021, 45, 3762-3768. doi: 10.1016/j.matpr.2021.01.273
  26. Devi, L.; Robert, A.R.; Ganja, H.; Maddila, S.; Jonnalagadda, S.B. A rapid, sustainable and environmental friendly protocol for the catalyst-free synthesis of 2-methyl-5-oxo-hexahydroquinoline-3-carboxylate via ultrasonic irradiation. Chem. Data Collect., 2020, 28, 100432. doi: 10.1016/j.cdc.2020.100432
  27. Karimi-Maleh, H.; Darabi, R.; Shabani-Nooshabadi, M.; Baghayeri, M.; Karimi, F.; Rouhi, J.; Alizadeh, M.; Karaman, O.; Vasseghian, Y.; Karaman, C. Determination of D&C red 33 and patent blue V azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem. Toxicol., 2022, 162, 112907. doi: 10.1016/j.fct.2022.112907 PMID: 35271984
  28. Karimi-Maleh, H.; Ranjbari, S.; Tanhaei, B.; Ayati, A.; Orooji, Y.; Alizadeh, M.; Karimi, F.; Salmanpour, S.; Rouhi, J.; Sillanpää, M.; Sen, F. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ. Res., 2021, 195, 110809. doi: 10.1016/j.envres.2021.110809 PMID: 33515581
  29. Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movaghgharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310, 113185. doi: 10.1016/j.molliq.2020.113185
  30. Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320. doi: 10.1016/j.molliq.2017.04.123
  31. Capito, R.M.; Azevedo, H.S.; Velichko, Y.S.; Mata, A.; Stupp, S.I. Self-assembly of large and small molecules into hierarchically ordered sacs and membranes. Science, 2008, 319(5871), 1812-1816. doi: 10.1126/science.1154586 PMID: 18369143
  32. Willerich, I.; Gröhn, F. Photoswitchable nanoassemblies by electrostatic self-assembly. Angew. Chem. Int. Ed., 2010, 49(44), 8104-8108. doi: 10.1002/anie.201003271 PMID: 20799308
  33. Goel, A.; Ram, V.J. Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron, 2009, 65(38), 7865-7913. doi: 10.1016/j.tet.2009.06.031
  34. Dwivedi, G.R.; Rai, R.; Pratap, R.; Singh, K.; Pati, S.; Sahu, S.N.; Kant, R.; Darokar, M.P.; Yadav, D.K. Drug resistance reversal potential of multifunctional thieno3,2-cpyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed. Pharmacother., 2021, 142, 112084. doi: 10.1016/j.biopha.2021.112084 PMID: 34449308
  35. Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A green one-pot multicomponent synthesis of 4H-pyrans and polysubstituted aniline derivatives of biological, pharmacological, and optical applications using silica nanoparticles as reusable catalyst. Tetrahedron Lett., 2011, 52(16), 1878-1881. doi: 10.1016/j.tetlet.2011.02.031
  36. Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809. doi: 10.1016/j.ejmech.2009.04.017 PMID: 19419801
  37. El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel reaction of cyanoacetylhydrazine with pregnenolone: Synthesis of thiophene, thieno2,3-dpyrimidine, 1,2,4-triazole, pyran and pyridine derivatives with anti-inflammatory and anti-ulcer activities. Steroids, 2016, 107, 98-111. doi: 10.1016/j.steroids.2015.12.023 PMID: 26772772
  38. Wang, D.C.; Xie, Y.M.; Fan, C.; Yao, S.; Song, H. Efficient and mild cyclization procedures for the synthesis of novel 2-amino-4H-pyran derivatives with potential antitumor activity. Chin. Chem. Lett., 2014, 25(7), 1011-1013. doi: 10.1016/j.cclet.2014.04.026
  39. Dong, Y.; Nakagawa-Goto, K.; Lai, C.Y.; Morris-Natschke, S.L.; Bastow, K.F.; Lee, K.H. Antitumor agents 287. Substituted 4-amino-2H-pyran-2-one (APO) analogs reveal a new scaffold from neo-tanshinlactone with in vitro anticancer activity. Bioorg. Med. Chem. Lett., 2011, 21(8), 2341-2344. doi: 10.1016/j.bmcl.2011.02.084 PMID: 21420855
  40. Pandey, J.; Jha, A.K.; Hajela, K. Synthesis and biological activities of some new dibenzopyranones and dibenzopyrans: search for potential oestrogen receptor agonists and antagonists. Bioorg. Med. Chem., 2004, 12(9), 2239-2249. doi: 10.1016/j.bmc.2004.02.018 PMID: 15080923
  41. Ramkumar, K.; Tambov, K.V.; Gundla, R.; Manaev, A.V.; Yarovenko, V.; Traven, V.F.; Neamati, N. Discovery of 3-acetyl-4-hydroxy-2-pyranone derivatives and their difluoridoborate complexes as a novel class of HIV-1 integrase Inhibitors. Bioorg. Med. Chem., 2008, 16(19), 8988-8998. doi: 10.1016/j.bmc.2008.08.067 PMID: 18805696
  42. Hu, C.; Jiang, L.; Tang, L.; Zhang, M.; Sheng, R. Design, synthesis and biological evaluation of 2-styryl-5-hydroxy-4-pyrone derivatives and analogues as multiple functional agents with the potential for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2021, 44, 116306. doi: 10.1016/j.bmc.2021.116306 PMID: 34274550
  43. Bedair, A.H.; Emam, H.A.; El-Hady, N.A.; Ahmed, K.A.R.; El-Agrody, A.M. Synthesis and antimicrobial activities of novel naphtho2,1-bpyran, pyrano2,3-dpyrimidine and pyrano3,2-e1,2,4triazolo2,3-c-pyrimidine derivatives. Farmaco, 2001, 56(12), 965-973. doi: 10.1016/S0014-827X(01)01168-5 PMID: 11829118
  44. Goli-Jolodar, O.; Shirini, F.; Seddighi, M. An efficient and practical synthesis of specially 2-amino-4H-pyrans catalyzed by C4(DABCO-SO3H)2·4Cl. Dyes Pigments, 2016, 133, 292-303. doi: 10.1016/j.dyepig.2016.06.001
  45. Muraoka, K.; Nagao, H.; Hori, T.; Sakaya, S.; Hoshino, T.; Miyao, Y.; Murai, T.; Edanaga, M.; Nakanishi, M. Antihypertensive effect and its mechanism of action of a new benzopyran derivative, KP-403. Jpn. J. Pharmacol., 1991, 55, 341. doi: 10.1016/S0021-5198(19)39411-9
  46. Yang, Z.J.; Gong, Q.T.; Wang, Y.; Yu, Y.; Liu, Y.H.; Wang, N.; Yu, X.Q. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. Mol. Catalysis, 2020, 491, 110983. doi: 10.1016/j.mcat.2020.110983
  47. Milyutin, C.V.; Lichitsky, B.V.; Melekhina, V.G.; Komogortsev, A.N.; Fakhrutdinov, A.N.; Minyaev, M.E.; Krayushkin, M.M. Synthesis of 1H-pyrano4,3-bbenzofuran-1-one derivatives via photochemical cyclization of substituted 4H-furo3,2-cpyran-4-ones. Tetrahedron Lett., 2020, 61(44), 152469. doi: 10.1016/j.tetlet.2020.152469
  48. Mirgane, N.; Kotwal, S.; Karnik, A. Ionic liquid promoted diels-alder reaction between anthrone and maleimides. Open Chem., 2010, 8(2), 356-360. doi: 10.2478/s11532-009-0136-6
  49. Mirgane, N.A.; Akhtar, M.H.; Karnik, A.V. Chiral ionic liquid mediated Diels-Alder reaction between anthrone enolate and maleimides. Lett. Org. Chem., 2010, 7, 343-347. doi: 10.2174/157017810791130559
  50. Roy, P.T.; Mirgane, A.A. Ionic Liquid: A versatile green catalyst for the reaction of 9-hydroxymethylanthracenes with maleimides under solvent-free conditions. Indian J. Heterocycl. Chem., 2021, 31, 295-299.
  51. Liu, L.; Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.; Berry, L.; Huang, L.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S.F.; Lee, M.; Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M.H.; Harmange, J.C.; Dussault, I.; Kim, T.S. Discovery of a potent, selective, and orally bioavailable c-met inhibitor: 1-(2-Hydroxy-2-methylpropyl)- N -(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-methyl-3-oxo-2-phenyl-2,3-dihydro-1 H -pyrazole-4-carboxamide (AMG 458). J. Med. Chem., 2008, 51(13), 3688-3691. doi: 10.1021/jm800401t PMID: 18553959
  52. Mohareb, R.M.; Wardakhan, W.W.; Hamed, F.I. Synthesis and cytotoxicity of fused thiophene and pyrazole derivatives derived from 2-N-acetyl-3-cyano-4,5,6,7-tetrahydrobenzobthiophene. Med. Chem. Res., 2015, 24(5), 2043-2054. doi: 10.1007/s00044-014-1273-9
  53. Mohareb, R.M.; Zaki, M.Y.; Abbas, N.S. Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids, 2015, 98, 80-91. doi: 10.1016/j.steroids.2015.03.001 PMID: 25759119
  54. Peach, M.L.; Tan, N.; Choyke, S.J.; Giubellino, A.; Athauda, G.; Burke, T.R., Jr; Nicklaus, M.C.; Bottaro, D.P.; Bottaro, D.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening. J. Med. Chem., 2009, 52(4), 943-951. doi: 10.1021/jm800791f PMID: 19199650
  55. Bacco, F.D.; Luraghi, P.; Medico, E.; Reato, G.; Girolami, F.; Perera, T.; Gabriele, P.; Comoglio, P.M.; Boccaccio, C. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. J. Natl. Cancer Inst., 2011, 103, 645-661. doi: 10.1093/jnci/djr093 PMID: 21464397
  56. Knudsen, B.S.; Gmyrek, G.A.; Inra, J.; Scherr, D.S.; Vaughan, E.D.; Nanus, D.M.; Kattan, M.W.; Gerald, W.L.; Vande, W, G.F. High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60(6), 1113-1117. doi: 10.1016/S0090-4295(02)01954-4 PMID: 12475693
  57. Humphrey, P.A.; Zhu, X.; Zarnegar, R.; Swanson, P.E.; Ratliff, T.L.; Vollmer, R.T.; Day, M.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma. Am. J. Pathol., 1995, 147(2), 386-396. PMID: 7639332
  58. Rubin, J.; Bottaro, D.P.; Aaronson, S.A. Hepatocyte growth factor/scatter factor and its receptor, the c-met proto-oncogene product. Biochim. Biophys. Acta Rev. Cancer, 1993, 1155(3), 357-371. doi: 10.1016/0304-419X(93)90015-5 PMID: 8268192
  59. Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(S1), S7-S19. doi: 10.1177/1758834011422556 PMID: 22128289
  60. Jeffers, M.; Rong, S.; Vande Woude, G.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis. J. Mol. Med., 1996, 74(9), 505-513. doi: 10.1007/BF00204976 PMID: 8892055
  61. Verras, M.; Lee, J.; Xue, H.; Li, T.H.; Wang, Y.; Sun, Z. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression. Cancer Res., 2007, 67(3), 967-975. doi: 10.1158/0008-5472.CAN-06-3552 PMID: 17283128
  62. Li, S.; Zhao, Y.; Wang, K.; Gao, Y.; Han, J.; Cui, B.; Gong, P. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2843-2855. doi: 10.1016/j.bmc.2013.04.013 PMID: 23628470
  63. Zhu, W.; Wang, W.; Xu, S.; Wang, J.; Tang, Q.; Wu, C.; Zhao, Y.; Zheng, P. Synthesis, and docking studies of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo2,3-bpyridine moiety as c-Met inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1749-1756. doi: 10.1016/j.bmc.2016.02.046 PMID: 26964675
  64. Mohareb, R.M.; Abdallah, A.E.M.; Abdelaziz, M.A. New approaches for the synthesis of pyrazole, thiophene, thieno2,3-bpyridine, and thiazole derivatives together with their anti-tumor evaluations. Med. Chem. Res., 2014, 23(2), 564-579. doi: 10.1007/s00044-013-0664-7
  65. Sherif, S.M.; Abdel-Sayed, N.I.; El-Kousy, S.M.; Mohareb, R.M. The reaction of carbon disulfide with diethyl 3-amino-2-cyano-2-penten-1,5-dicarboxylate: A convenient synthesis of polyfunctionally substituted thiophenes and their fused derivatives. Monatsh. Chem., 1995, 126(5), 601-608. doi: 10.1007/BF00807435
  66. Zohdi, H.Z.; Mohareb, R.M.; Wardakhan, W.W. Heterocyclic synthesis with isothiocyanate and sulfur: A novel synthesis of pyrido2,3-dthiazole, thiazolo4′,5′:2,3Pyridino4,5-dpyridazine and thiazolo4,5-bisoquinoline derivatives. Phosphorous Sulfur& Silicon, 1995, 101, 179-187. doi: 10.1080/10426509508042515
  67. Mohareb, R.M.; Sherif, S.M.; Sami, A.M. Thiophenylhydrazonoacetates in heterocyclic synthesis. Phosphorous Sulfur & Silicon, 1995, 101, 57-65. doi: 10.1080/10426509508042499
  68. Azgomi, A.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. Mol. Catal., 398, 58-64. doi: 10.1016/j.molcata.2014.11.018
  69. Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109. doi: 10.1002/ddr.430340203
  70. Boyd, M.R. Cancer Drug Discovery and Development, 2; Teicher, B.A., Ed.; Humana Press, 1997, pp. 23-43.
  71. Han, X.; Alu, A.; Liu, H.; Shi, Y.; Wei, X.; Cai, L.; Wei, Y. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact. Mater., 2022, 17, 29-48. doi: 10.1016/j.bioactmat.2022.01.011 PMID: 35386442
  72. Mendieta, I.; Rodríguez-Nieto, M.; Nuñez-Anita, R.E.; Menchaca-Arredondo, J.L.; García-Alcocer, G.; Berumen, L.C.; Berumen, L.C. Ultrastructural changes associated to the neuroendocrine transdifferentiation of the lung adenocarcinoma cell line A549. Acta Histochem., 2021, 123(8), 151797. doi: 10.1016/j.acthis.2021.151797 PMID: 34688180
  73. Gao, J.; Zhao, Y.; Wang, C.; Ji, H.; Yu, J.; Liu, C.; Liu, A. A novel synthetic chitosan selenate (CS) induces apoptosis in A549 lung cancer cells via the Fas/FasL pathway. Int. J. Biol. Macromol., 2020, 158, 689-697. doi: 10.1016/j.ijbiomac.2020.05.016 PMID: 32387597
  74. Nunhart, P.; Konkoľová, E.; Janovec, L.; Jendželovský, R.; Vargová, J.; Ševc, J.; Matejová, M.; Miltáková, B.; Fedoročko, P.; Kozurkova, M. Fluorinated 3,6,9-trisubstituted acridine derivatives as DNA interacting agents and topoisomerase inhibitors with A549 antiproliferative activity. Bioorg. Chem., 2020, 94, 103393. doi: 10.1016/j.bioorg.2019.103393 PMID: 31679839
  75. Garofalo, S.; Rosa, R.; Bianco, R.; Tortora, G. EGFR-targeting agents in oncology. Expert Opin. Ther. Pat., 2008, 18(8), 889-901. doi: 10.1517/13543776.18.8.889
  76. Al-Suwaidan, I.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; El-Sayed, M.A.A.; Alanazi, A.M.; El-Ashmawy, M.B.; Abdel-Aziz, A.A.M. Antitumor evaluation and molecular docking study of substituted 2-benzylidenebutane-1,3-dione, 2-hydrazonobutane-1,3-dione and trifluoromethyl-1H-pyrazole analogues. J. Enzyme Inhib. Med. Chem., 2015, 30(4), 679-687. doi: 10.3109/14756366.2014.960863 PMID: 25472776

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers