Design, Synthesis and Anti-cancer Evaluation of Nitrogen-containing Derivatives of 30-Carboxyl of Gambogic Acid
- Authors: Li H.1, Lin H.1, Li J.1, Chen K.1, Chen Z.1, Zhang J.1, Huang Y.1, Zhao X.2, Ti H.3, Tao Y.1
-
Affiliations:
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
- , Guangdong Academy of Sciences (China National Analytical Center, Guangzhou),
- School of Chinese Medicinal Resource,, Guangdong Pharmaceutical University
- Issue: Vol 24, No 6 (2024)
- Pages: 454-463
- Section: Oncology
- URL: https://vietnamjournal.ru/1871-5206/article/view/644242
- DOI: https://doi.org/10.2174/0118715206279725231208065031
- ID: 644242
Cite item
Full Text
Abstract
Background:Gambogic acid (GA) is a natural product from the resin of the Garcinia species, which showed significant activity in the induction of apoptosis. It can be one promising lead compound for the design and synthesis of new anticancer drugs.
Objective:The objective of the current study is to design novel nitrogen-contained GA derivatives with better anti-cancer activities and study the effect of the introduction of different nitrogen-contained groups on the activity of GA.
Methods:The designed 15 derivatives were synthesized via esterification or amidation of 30-carboxylate. The synthetic compounds were characterized via different spectroscopic techniques, including X-ray single crystal diffraction, MS and NMR. The cytotoxic activity of the designed derivatives was evaluated in vitro against A549, HepG-2, and MCF-7 cell lines using methyl thiazolyl tetrazolium (MTT) test.
Results:15 nitrogen-contained GA derivatives were successfully synthesized and established. Based on the IC50 values, compounds 9, 10, 11 and 13 showed stronger inhibitory effects on A549, HepG-2, MCF-7 cell lines than GA, while 9 is the most active compound with IC50 value of 0.64-1.49 µM. Most derivatives of GA with esterification of C-30 including cyano-benzene ring were generally weaker than those of pyrimidinyl-substituted derivatives. In addition, length of alkyl linkers between C-30 of GA and nitrogen-contained group produced different effects on A549, HepG-2 and MCF-7 cell lines.
Conclusion:The structure-activity relationship results show that aromatic substituent and linker length play important roles to improve the anticancer activities, while compound 9 with pyrimidine substituent and C-C-C linkers is the most active derivative against tested cell lines, and is a promising anti-cancer agent for further development.
About the authors
Hong Li
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Huiping Lin
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Jiajun Li
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Kaixin Chen
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Zanhong Chen
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Jianye Zhang
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Yan Huang
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Email: info@benthamscience.net
Xin Zhao
, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou),
Email: info@benthamscience.net
Huihui Ti
School of Chinese Medicinal Resource,, Guangdong Pharmaceutical University
Author for correspondence.
Email: info@benthamscience.net
Yiwen Tao
Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317. doi: 10.1016/j.bmc.2003.11.013 PMID: 14723951
- Banik, K.; Harsha, C.; Bordoloi, D.; Lalduhsaki Sailo, B.; Sethi, G.; Leong, H.C.; Arfuso, F.; Mishra, S.; Wang, L.; Kumar, A.P.; Kunnumakkara, A.B. Therapeutic potential of gambogic acid, a caged xanthone, to target cancer. Cancer Lett., 2018, 416, 75-86. doi: 10.1016/j.canlet.2017.12.014 PMID: 29246645
- Liang, L.; Zhang, Z.; Qin, X.; Gao, Y.; Zhao, P.; Liu, J.; Zeng, W. Gambogic acid inhibits melanoma through regulation of miR-199a-3p/ZEB1 signalling. Basic Clin. Pharmacol. Toxicol., 2018, 123(6), 692-703. doi: 10.1111/bcpt.13090 PMID: 29959879
- Lyu, L.; Huang, L.; Huang, T.; Xiang, W.; Yuan, J.D.; Zhang, C. Cell-penetrating peptide conjugates of gambogic acid enhance the antitumor effect on human bladder cancer EJ cells through ROS-mediated apoptosis. Drug Des. Devel. Ther., 2018, 12, 743-756. doi: 10.2147/DDDT.S161821 PMID: 29670331
- Xia, G.; Wang, H.; Song, Z.; Meng, Q.; Huang, X.; Huang, X. Gambogic acid sensitizes gemcitabine efficacy in pancreatic cancer by reducing the expression of ribonucleotide reductase subunit-M2 (RRM2). J. Exp. Clin. Cancer Res., 2017, 36(1), 107. doi: 10.1186/s13046-017-0579-0 PMID: 28797284
- Wen, C.; Huang, L.; Chen, J.; Lin, M.; Li, W.; Lu, B.; Rutnam, Z.J.; Iwamoto, A.; Wang, Z.; Yang, X.; Liu, H. Gambogic acid inhibits growth, induces apoptosis, and overcomes drug resistance in human colorectal cancer cells. Int. J. Oncol., 2015, 47(5), 1663-1671. doi: 10.3892/ijo.2015.3166 PMID: 26397804
- Li, C.; Qi, Q.; Lu, N.; Dai, Q.; Li, F.; Wang, X.; You, Q.; Guo, Q. Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochem. Cell Biol., 2012, 90(6), 718-730.
- Geng, J.; Xiao, S.; Zheng, Z.; Song, S.; Zhang, L. Gambogic acid protects from endotoxin shock by suppressing pro-inflammatory factors in vivo and in vitro. J. Inflamm. Res., 2013, 62(2), 165-172.
- Yu, Z.; Jv, Y.; Cai, L.; Tian, X.; Huo, X.; Wang, C.; Zhang, B.; Sun, C.; Ning, J.; Feng, L.; Zhang, H.; Ma, X. Gambogic acid attenuates liver fibrosis by inhibiting the PI3K/AKT and MAPK signaling pathways via inhibiting HSP90. Toxicol. Appl. Pharmacol., 2019, 371, 63-73. doi: 10.1016/j.taap.2019.03.028 PMID: 30953615
- Na, D.; Aijie, H.; Bo, L.; Zhilin, M.; Long, Y. Gambogic acid exerts cardioprotective effects in a rat model of acute myocardial infarction through inhibition of inflammation, iNOS and NF-κB/p38 pathway. Exp. Ther. Med., 2018, 15(2), 1742-1748. PMID: 29434760
- Zhang, W.; Zhou, H.; Yu, Y.; Li, J.; Li, H.; Jiang, D.; Chen, Z.; Yang, D.; Xu, Z.; Yu, Z. Combination of gambogic acid with cisplatin enhances the antitumor effects on cisplatin-resistant lung cancer cells by downregulating MRP2 and LRP expression. OncoTargets Ther., 2016, 9, 3359-3368. doi: 10.2147/OTT.S100936 PMID: 27330316
- Li, D.; Yang, H.; Li, R.; Wang, Y.; Wang, W.; Li, D.; Ma, S.; Zhang, X. Antitumor activity of gambogic acid on NCI-H1993 xenografts via MET signaling pathway downregulation. Oncol. Lett., 2015, 10(5), 2802-2806. doi: 10.3892/ol.2015.3719 PMID: 26722245
- Liu, W.Y.; Wu, X.; Liao, C.Q.; Shen, J.; Li, J. Apoptotic effect of gambogic acid in esophageal squamous cell carcinoma cells via suppression of the NF-κB pathway. Oncol. Lett., 2016, 11(6), 3681-3685. doi: 10.3892/ol.2016.4437 PMID: 27284372
- Jang, J.H.; Kim, J.Y.; Sung, E.G.; Kim, E.A.; Lee, T.J. Gambogic acid induces apoptosis and sensitizes TRAIL-mediated apoptosis through downregulation of cFLIPL in renal carcinoma Caki cells. Int. J. Oncol., 2016, 48(1), 376-384. doi: 10.3892/ijo.2015.3249 PMID: 26648023
- Wang, L-H.; Li, Y.; Yang, S-N.; Wang, F-Y.; Hou, Y.; Cui, W.; Chen, K.; Cao, Q.; Wang, S.; Zhang, T-Y.; Wang, Z-Z.; Xiao, W.; Yang, J-Y.; Wu, C-F. Gambogic acid synergistically potentiates cisplatin-induced apoptosis in non-small-cell lung cancer through suppressing NF-κB and MAPK/HO-1 signalling. Br. J. Cancer, 2014, 110(2), 341-352. doi: 10.1038/bjc.2013.752 PMID: 24300974
- Chen, Y.; Hui, H.; Li, Z.; Wang, H.M.; You, Q.D.; Lu, N. Gambogic acid induces growth inhibition and differentiation via upregulation of p21waf1/cip1 expression in acute myeloid leukemia cells. J. Asian Nat. Prod. Res., 2014, 16(10), 1000-1008. doi: 10.1080/10286020.2014.918108 PMID: 24835506
- Liang, L.; Zhang, Z. Gambogic acid inhibits malignant melanoma cell proliferation through mitochondrial p66shc/ROS-p53/Baxmediated apoptosis. Cell. Physiol. Biochem., 2016, 38(4), 1618-1630.
- Sun, H.; Chen, F.; Wang, X.; Liu, Z.; Yang, Q.; Zhang, X.; Zhu, J.; Qiang, L.; Guo, Q.; You, Q. Studies on gambogic acid (IV): Exploring structureactivity relationship with IκB kinase-beta (IKKβ). Eur. J. Med. Chem., 2012, 51, 110-123. doi: 10.1016/j.ejmech.2012.02.029 PMID: 22472167
- Wang, X.; Lu, N.; Yang, Q.; Gong, D.; Lin, C.; Zhang, S.; Xi, M.; Gao, Y.; Wei, L.; Guo, Q.; You, Q. Studies on chemical modification and biology of a natural product, gambogic acid (III): Determination of the essential pharmacophore for biological activity. Eur. J. Med. Chem., 2011, 46(4), 1280-1290. doi: 10.1016/j.ejmech.2011.01.051 PMID: 21334116
- Wang, J.; Ma, J.; You, Q.; Zhao, L.; Wang, F.; Li, C.; Guo, Q. Studies on chemical modification and biology of a natural product, gambogic acid (II): Synthesis and bioevaluation of gambogellic acid and its derivatives from gambogic acid as antitumor agents. Eur. J. Med. Chem., 2010, 45(9), 4343-4353. doi: 10.1016/j.ejmech.2010.04.037 PMID: 20605273
- Wang, J.; Zhao, L.; Hu, Y.; Guo, Q.; Zhang, L.; Wang, X.; Li, N.; You, Q. Studies on chemical structure modification and biology of a natural product, Gambogic acid (I): Synthesis and biological evaluation of oxidized analogues of gambogic acid. Eur. J. Med. Chem., 2009, 44(6), 2611-2620. doi: 10.1016/j.ejmech.2008.09.034 PMID: 18996626
- Chantarasriwong, O.; Cho, W.C.; Batova, A.; Chavasiri, W.; Moore, C.; Rheingold, A.L.; Theodorakis, E.A. Evaluation of the pharmacophoric motif of the caged Garcinia xanthones. Org. Biomol. Chem., 2009, 7(23), 4886-4894. doi: 10.1039/b913496d PMID: 19907779
- Li, N.G.; You, Q.D.; Huang, X.F.; Wang, J.X.; Guo, Q.L.; Chen, X.G.; Li, Y.; Li, H.Y. Synthesis and antitumor activities of structure-related small molecular compounds of gambogic acid. Chin. Chem. Lett., 2007, 18(6), 659-662. doi: 10.1016/j.cclet.2007.04.010
- Palempalli, U.D.; Gandhi, U.; Kalantari, P.; Vunta, H.; Arner, R.J.; Narayan, V.; Ravindran, A.; Prabhu, K.S. Gambogic acid covalently modifies IκB kinase-β subunit to mediate suppression of lipopolysaccharide-induced activation of NF-κB in macrophages. Biochem. J., 2009, 419(2), 401-409. doi: 10.1042/BJ20081482 PMID: 19140805
- He, L.; Ling, Y.; Fu, L.; Yin, D.; Wang, X.; Zhang, Y. Synthesis and biological evaluation of novel derivatives of gambogic acid as anti-hepatocellular carcinoma agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 289-292. doi: 10.1016/j.bmcl.2011.11.016 PMID: 22153338
- Batova, A.; Lam, T.; Wascholowski, V.; Yu, A.L.; Giannis, A.; Theodorakis, E.A. Synthesis and evaluation of caged Garcinia xanthones. Org. Biomol. Chem., 2007, 5(3), 494-500. doi: 10.1039/B612903J PMID: 17252132
- Chen, M.J.; Li, J.H.; Zhang, Z.J.; Liao, S.Y.; Huang, Y.; Tan, Y. Synthesis and antitumor activity of cyanamide glycosyl derivatives chinese. J. Appl. Chem., 2016, 33(8), 905-912.
- Zhang, Z.J.; Li, J.H.; Chen, M.J.; Huang, Y.; Zhao, L.N. Preparation and antitumor activity of novel aromatic modified glutamic acid derivatives. Chinese J. Synthetic Chem., 2015, 12, 1085-1094.
- Li, J.H.; Huang, Y.; Tan, Y.; Zhang, Z.J.; Tao, Y.W.; Liao, S.Y. Synthesis and antitumor activity of novel gambogic acid derivatives. Chinese J. Synthetic Chem., 2014, 22(6), 753-758.
- Hitge, R.; Smit, S.; Petzer, A.; Petzer, J.P. Evaluation of nitrocatechol chalcone and pyrazoline derivatives as inhibitors of catechol-O-methyltransferase and monoamine oxidase. Bioorg. Med. Chem. Lett., 2020, 30(12), 127188. doi: 10.1016/j.bmcl.2020.127188 PMID: 32299731
- Zhang, X.; Li, X.; Sun, H.; Wang, X.; Zhao, L.; Gao, Y.; Liu, X.; Zhang, S.; Wang, Y.; Yang, Y.; Zeng, S.; Guo, Q.; You, Q. Garcinia xanthones as orally active antitumor agents. J. Med. Chem., 2013, 56(1), 276-292. doi: 10.1021/jm301593r PMID: 23167526
- Ling, H.; Li, H.; Chen, M.; Lai, B.; Zhou, H.; Gao, H.; Zhang, J.; Huang, Y.; Tao, Y. Discovery of a highly potent and novel gambogic acid derivative as an anticancer drug candidate. Anticancer. Agents Med. Chem., 2021, 21(9), 1110-1119. doi: 10.2174/1871520620666200408080040 PMID: 32268871
Supplementary files
