Targeting Breast Cancer with N-Acetyl-D-Glucosamine: Integrating Machine Learning and Cellular Assays for Promising Results
- Authors: Baysal Ö.1, Genç D.2, Silme R.S.3, Kırboğa K.K.4, Çoban D.5, Ghafoor N.A.6, Tekin L.7, Bulut O.8
-
Affiliations:
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman Üniversitesi
- Faculty of Health Sciences,, Muğla Sıtkı Koçman University,
- Center for Research and Practice in Biotechnology and Genetic Engineering,, Istanbul University
- Department of Bioengineering,, Bilecik Seyh Edebali University
- Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit,, Muğla Sıtkı Koçman University,
- Department of Molecular Biology and Genetics, Faculty of Science,, Muğla Sıtkı Koçman University
- Department of Pathology, Faculty of Medicine,, Muğla Sıtkı Koçman University,
- Milas Faculty of Veterinary Medicine,, Muğla Sıtkı Koçman Üniversitesi
- Issue: Vol 24, No 5 (2024)
- Pages: 334-347
- Section: Oncology
- URL: https://vietnamjournal.ru/1871-5206/article/view/644174
- DOI: https://doi.org/10.2174/0118715206270568231129054853
- ID: 644174
Cite item
Full Text
Abstract
Background:Breast cancer is a common cancer with high mortality rates. Early diagnosis is crucial for reducing the prognosis and mortality rates. Therefore, the development of alternative treatment options is necessary.
Objective:This study aimed to investigate the inhibitory effect of N-acetyl-D-glucosamine (D-GlcNAc) on breast cancer using a machine learning method. The findings were further confirmed through assays on breast cancer cell lines.
Methods:MCF-7 and 4T1 cell lines (ATCC) were cultured in the presence and absence of varying concentrations of D-GlcNAc (0.5 mM, 1 mM, 2 mM, and 4 mM) for 72 hours. A xenograft mouse model for breast cancer was established by injecting 4T1 cells into mammary glands. D-GlcNAc (2 mM) was administered intraperitoneally to mice daily for 28 days, and histopathological effects were evaluated at pre-tumoral and post-tumoral stages.
Results:Treatment with 2 mM and 4 mM D-GlcNAc significantly decreased cell proliferation rates in MCF-7 and 4T1 cell lines and increased Fas expression. The number of apoptotic cells was significantly higher than untreated cell cultures (p < 0.01 - p < 0.0001). D-GlcNAc administration also considerably reduced tumour size, mitosis, and angiogenesis in the post-treatment group compared to the control breast cancer group (p < 0.01 - p < 0.0001). Additionally, molecular docking/dynamic analysis revealed a high binding affinity of D-GlcNAc to the marker protein HER2, which is involved in tumour progression and cell signalling.
Conclusion:Our study demonstrated the positive effect of D-GlcNAc administration on breast cancer cells, leading to increased apoptosis and Fas expression in the malignant phenotype. The binding affinity of D-GlcNAc to HER2 suggests a potential mechanism of action. These findings contribute to understanding D-GlcNAc as a potential anti-tumour agent for breast cancer treatment.
About the authors
Ömür Baysal
Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit, Muğla Sıtkı Koçman Üniversitesi
Author for correspondence.
Email: info@benthamscience.net
Deniz Genç
Faculty of Health Sciences,, Muğla Sıtkı Koçman University,
Email: info@benthamscience.net
Ragıp Soner Silme
Center for Research and Practice in Biotechnology and Genetic Engineering,, Istanbul University
Email: info@benthamscience.net
Kevser Kübra Kırboğa
Department of Bioengineering,, Bilecik Seyh Edebali University
Email: info@benthamscience.net
Dilek Çoban
Department of Molecular Biology and Genetics, Faculty of Science, Molecular Microbiology Unit,, Muğla Sıtkı Koçman University,
Email: info@benthamscience.net
Naeem Abdul Ghafoor
Department of Molecular Biology and Genetics, Faculty of Science,, Muğla Sıtkı Koçman University
Email: info@benthamscience.net
Leyla Tekin
Department of Pathology, Faculty of Medicine,, Muğla Sıtkı Koçman University,
Email: info@benthamscience.net
Osman Bulut
Milas Faculty of Veterinary Medicine,, Muğla Sıtkı Koçman Üniversitesi
Email: info@benthamscience.net
References
- Lovrics, O.; Butt, J.; Lee, Y.; Lovrics, P.; Boudreau, V.; Anvari, M.; Hong, D.; Doumouras, A.G. The effect of bariatric surgery on breast cancer incidence and characteristics: A meta-analysis and systematic review. Am. J. Surg., 2021, 222(4), 715-722. doi: 10.1016/j.amjsurg.2021.03.016 PMID: 33771341
- Maughan, K.L.; Lutterbie, M.A.; Ham, P.S. Treatment of breast cancer. Am. Fam. Physician, 2010, 81(11), 1339-1346. PMID: 20521754
- Bhushan, A.; Gonsalves, A.; Menon, J.U. Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics, 2021, 13(5), 723. doi: 10.3390/pharmaceutics13050723 PMID: 34069059
- Liang, Y.; Xu, W.; Liu, S.; Chi, J.; Zhang, J.; Sui, A.; Wang, L.; Liang, Z.; Li, D.; Chen, Y.; Niu, H. N-acetyl-glucosamine sensitizes non-small cell lung cancer cells to trail-induced apoptosis by activating death receptor 5. Cell. Physiol. Biochem., 2018, 45(5), 2054-2070. doi: 10.1159/000488042 PMID: 29533936
- Mattaveewong, T.; Wongkrasant, P.; Chanchai, S.; Pichyangkura, R.; Chatsudthipong, V.; Muanprasat, C. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr. Polym., 2016, 145, 30-36. doi: 10.1016/j.carbpol.2016.02.077 PMID: 27106148
- Medina, S.H.; Tekumalla, V.; Chevliakov, M.V.; Shewach, D.S.; Ensminger, W.D.; El-Sayed, M.E.H. N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials, 2011, 32(17), 4118-4129. doi: 10.1016/j.biomaterials.2010.11.068 PMID: 21429574
- Stowell, S.R.; Ju, T.; Cummings, R.D. Protein glycosylation in cancer. Annu. Rev. Pathol., 2015, 10(1), 473-510. doi: 10.1146/annurev-pathol-012414-040438 PMID: 25621663
- Varki, A.; Kannagi, R.; Toole, B.; Stanley, P. Glycosylation changes in cancer. In: Essentials of Glycobiology, 3rd ed.; Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor (NY), 2015; pp. 597-609.
- Chou, T.Y.; Hart, G.W. O-linked N-acetylglucosamine and cancer: Messages from the glycosylation of c-Myc. Adv. Exp. Med. Biol., 2001, 491, 413-418. doi: 10.1007/978-1-4615-1267-7_26 PMID: 14533811
- Baysal, Ö.; Silme, R.; Karaaslan, C. Genetic uniformity of a specific region in SARS-CoV-2 genome and in-silico target-oriented repurposing of N-Acetyl-D-Glucosamine Preprints, 2020, 2020050397. doi: 10.20944/preprints202005.0397.v1
- Baysal, Ö.; Silme, R.; Karaaslan, C.; Ignatov, A. Genetic uniformity of a specific region in SARS-CoV-2 genome and repurposing of N-acetyl-D-glucosamine. Fresenius Environ. Bull., 2021, 30, 2848-2857.
- Baysal, Ö.; Abdul Ghafoor, N.; Silme, R.S.; Ignatov, A.N.; Kniazeva, V. Molecular dynamics analysis of N-acetyl-D-glucosamine against specific SARS-CoV-2s pathogenicity factors. PLoS One, 2021, 16(5), e0252571. doi: 10.1371/journal.pone.0252571 PMID: 34043733
- Schultz, M.J.; Swindall, A.F.; Bellis, S.L. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev., 2012, 31(3-4), 501-518. doi: 10.1007/s10555-012-9359-7 PMID: 22699311
- Buehring, G.C.; Shen, H.M.; Jensen, H.M.; Jin, D.L.; Hudes, M.; Block, G. Exposure to bovine leukemia virus is associated with breast cancer: A case-control study. PLoS One, 2015, 10(9), e0134304. doi: 10.1371/journal.pone.0134304 PMID: 26332838
- Melana, S.M.; Nepomnaschy, I.; Hasa, J.; Djougarian, A.; Djougarian, A.; Holland, J.F.; Pogo, B.G.T. Detection of human mammary tumor virus proteins in human breast cancer cells. J. Virol. Methods, 2010, 163(1), 157-161. doi: 10.1016/j.jviromet.2009.09.015 PMID: 19781575
- Tsai, J.H.; Hsu, C.S.; Tsai, C.H.; Su, J.M.; Liu, Y.T.; Cheng, M.H.; Wei, J.C.C.; Chen, F.L.; Yang, C.C. Relationship between viral factors, axillary lymph node status and survival in breast cancer. J. Cancer Res. Clin. Oncol., 2006, 133(1), 13-21. doi: 10.1007/s00432-006-0141-5 PMID: 16865407
- Joshi, D.; Quadri, M.; Gangane, N.; Joshi, R.; Gangane, N. Association of Epstein Barr virus infection (EBV) with breast cancer in rural Indian women. PLoS One, 2009, 4(12), e8180. doi: 10.1371/journal.pone.0008180 PMID: 19997605
- Fawzy, S.; Sallam, M.; Mohammad, A. N. Detection of EpsteinBarr virus in breast carcinoma in Egyptian women. Clin. Biochem., 2008, 41(7-8), 486-492. doi: 10.1016/j.clinbiochem.2007.12.017 PMID: 18258188
- Hachana, M.; Amara, K.; Ziadi, S.; Romdhane, E.; Gacem, R.B.; Trimeche, M. Investigation of EpsteinBarr virus in breast carcinomas in Tunisia. Pathol. Res. Pract., 2011, 207(11), 695-700. doi: 10.1016/j.prp.2011.09.007 PMID: 22024152
- Harkins, L.E.; Matlaf, L.A.; Soroceanu, L.; Klemm, K.; Britt, W.J.; Wang, W.; Bland, K.I.; Cobbs, C.S. Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae, 2010, 1(1), 8. doi: 10.1186/2042-4280-1-8 PMID: 21429243
- Taher, C.; de Boniface, J.; Mohammad, A.A.; Religa, P.; Hartman, J.; Yaiw, K.C.; Frisell, J.; Rahbar, A.; Söderberg-Naucler, C. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS One, 2013, 8(2), e56795. doi: 10.1371/journal.pone.0056795 PMID: 23451089
- Costa, H.; Touma, J.; Davoudi, B.; Benard, M.; Sauer, T.; Geisler, J.; Vetvik, K.; Rahbar, A.; Söderberg-Naucler, C. Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J. Cancer Res. Clin. Oncol., 2019, 145(8), 2083-2095. doi: 10.1007/s00432-019-02946-8 PMID: 31203442
- Yang, Z.; Tang, X.; Meng, G.; Benesch, M.; Mackova, M.; Belon, A.; Serrano-Lomelin, J.; Goping, I.; Brindley, D.; Hemmings, D. Latent cytomegalovirus infection in female mice increases breast cancer metastasis. Cancers, 2019, 11(4), 447. doi: 10.3390/cancers11040447 PMID: 30934926
- Alibek, K.; Kakpenova, A.; Mussabekova, A.; Sypabekova, M.; Karatayeva, N. Role of viruses in the development of breast cancer. Infect. Agent. Cancer, 2013, 8(1), 32. doi: 10.1186/1750-9378-8-32 PMID: 24138789
- Richardson, A. Is breast cancer caused by late exposure to a common virus? Med. Hypotheses, 1997, 48(6), 491-497. doi: 10.1016/S0306-9877(97)90118-3 PMID: 9247892
- Shamshirian, A.; Aref, A.R.; Yip, G.W.; Ebrahimi, W.M.; Heydari, K.; Razavi, B.S.; Hamzehgardeshi, Z.; Shamshirian, D.; Moosazadeh, M.; Alizadeh-Navaei, R. Diagnostic value of serum HER2 levels in breast cancer: A systematic review and meta-analysis. BMC Cancer, 2020, 20(1), 1049. doi: 10.1186/s12885-020-07545-2 PMID: 33129287
- Pro, O. HER2 in Breast Cancer: ESMO biomarker factsheet. 2015. Available from: https://oncologypro.esmo.org/education-library/factsheets-on-biomarkers/her2-in-breast-cancer (Accessed on: 2023).
- Borgquist, S.; Zhou, W.; Jirström, K.; Amini, R.M.; Sollie, T.; Sørlie, T.; Blomqvist, C.; Butt, S.; Wärnberg, F. The prognostic role of HER2 expression in ductal breast carcinoma in situ (DCIS); a population-based cohort study. BMC Cancer, 2015, 15(1), 468. doi: 10.1186/s12885-015-1479-3 PMID: 26062614
- Ignatov, T.; Eggemann, H.; Burger, E.; Fettke, F.; Costa, S.D.; Ignatov, A. Moderate level of HER2 expression and its prognostic significance in breast cancer with intermediate grade. Breast Cancer Res. Treat., 2015, 151(2), 357-364. doi: 10.1007/s10549-015-3407-2 PMID: 25926338
- Chiu, M.; Taurino, G.; Bianchi, M.G.; Kilberg, M.S.; Bussolati, O. Asparagine synthetase in cancer: Beyond acute lymphoblastic leukemia. Front. Oncol., 2020, 9, 1480. doi: 10.3389/fonc.2019.01480 PMID: 31998641
- Shen, X.; Jain, A.; Aladelokun, O.; Yan, H.; Gilbride, A.; Ferrucci, L.M.; Lu, L.; Khan, S.A.; Johnson, C.H. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Front. Mol. Biosci., 2022, 9, 958666. doi: 10.3389/fmolb.2022.958666 PMID: 36090030
- Davidsen, K.; Sullivan, L.B. Free asparagine or die: Cancer cells require proteasomal protein breakdown to survive asparagine depletion. Cancer Discov., 2020, 10(11), 1632-1634. doi: 10.1158/2159-8290.CD-20-1251
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954. doi: 10.1093/nar/gkw1074
- Jaeger, S.; Fulle, S.; Turk, S. Mol2vec: Unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model., 2018, 58(1), 27-35. doi: 10.1021/acs.jcim.7b00616 PMID: 29268609
- Huang, K.; Fu, T.; Glass, L.M.; Zitnik, M.; Xiao, C.; Sun, J. DeepPurpose: A deep learning library for drugtarget interaction prediction. Bioinformatics, 2021, 36(22-23), 5545-5547. doi: 10.1093/bioinformatics/btaa1005 PMID: 33275143
- RDKit: Open-source cheminformatics 2022. Available from: https://www.rdkit.org/
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
- Pedregosa, F.; Varoquaux, G.e.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M. Scikit-learn: Machine Learning in Python; Dataquest, 2018.
- Cucina, A.; Proietti, S.; DAnselmi, F.; Coluccia, P.; Dinicola, S.; Frati, L.; Bizzarri, M. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J. Pineal Res., 2009, 46(2), 172-180. doi: 10.1111/j.1600-079X.2008.00645.x PMID: 19175854
- Matera, G.; Lupi, M.; Ubezio, P. Heterogeneous cell response to topotecan in a CFSE-based proliferation test. Cytometry A, 2004, 62A(2), 118-128. doi: 10.1002/cyto.a.20097 PMID: 15536634
- Pulaski, B. A.; Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protocols Immunol., 2000, 39(1), 20.22.21-20.22.16. doi: 10.1002/0471142735.im2002s39
- Zheng, L.; Zhou, B.; Meng, X.; Zhu, W.; Zuo, A.; Wang, X.; Jiang, R.; Yu, S. A model of spontaneous mouse mammary tumor for human estrogen receptor- and progesterone receptor-negative breast cancer. Int. J. Oncol., 2014, 45(6), 2241-2249. doi: 10.3892/ijo.2014.2657 PMID: 25230850
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. doi: 10.1002/jcc.21334 PMID: 19499576
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a proteinsmall molecule docking web service based on EADock DSS. Nucleic Acids Res, 2011, 39(Web Server issue), W270-277. doi: 10.1093/nar/gkr366
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M.C.R.; Radak, B.K.; Skeel, R.D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L.V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 2020, 153(4), 044130. doi: 10.1063/5.0014475 PMID: 32752662
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73. doi: 10.1038/nmeth.4067 PMID: 27819658
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B. Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413. doi: 10.1021/acs.jctc.5b00935 PMID: 26631602
- Comşa, Ş.; Cîmpean, A.M.; Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res., 2015, 35(6), 3147-3154. PMID: 26026074
- Lee, A. V.; Oesterreich, S.; Davidson, N. E. MCF-7 cellschanging the course of breast cancer research and care for 45 years. JNCI: J. Nation. Cancer Institute, 2015, 107(7), djv073. doi: 10.1093/jnci/djv073
- Ma, J.; Hart, G.W. O-GlcNAc profiling: From proteins to proteomes. Clin. Proteomics, 2014, 11(1), 8. doi: 10.1186/1559-0275-11-8 PMID: 24593906
- Elola, M.; Fernandez, M.; Ferragut, F.; Vm, C.; Bracalente, C.; Bravo, I.; Cagnoni, A.; Nuñez, M.; Morosi, L.; Quintá, H. Glycosylation-dependent binding of galectin-8 to activated leukocyte cell adhesion molecule (ALCAM/CD166) promotes its surface segregation on breast cancer cells. Biochim. Biophys. Acta, 2016, 1860(10), 2255-2268. doi: 10.1016/j.bbagen.2016.04.019
- Peixoto, A.; Relvas-Santos, M.; Azevedo, R.; Santos, L.L.; Ferreira, J.A. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front. Oncol., 2019, 9, 380. doi: 10.3389/fonc.2019.00380 PMID: 31157165
- Kumar, P.; Tambe, P.; Paknikar, K.M.; Gajbhiye, V. Folate/N -acetyl glucosamine conjugated mesoporous silica nanoparticles for targeting breast cancer cells: A comparative study. Colloids Surf. B Biointerfaces, 2017, 156, 203-212. doi: 10.1016/j.colsurfb.2017.05.032 PMID: 28531877
- Cheng, L.; Cao, L.; Wu, Y.; Xie, W.; Li, J.; Guan, F.; Tan, Z. Bisecting N-Acetylglucosamine on EGFR inhibits malignant phenotype of breast cancer via down-regulation of EGFR/Erk signaling. Front. Oncol., 2020, 10, 929. doi: 10.3389/fonc.2020.00929
- Mereiter, S.; Balmaña, M.; Campos, D.; Gomes, J.; Reis, C.A. Glycosylation in the era of cancer-targeted therapy: Where are we heading? Cancer Cell, 2019, 36(1), 6-16. doi: 10.1016/j.ccell.2019.06.006 PMID: 31287993
- Xu, W.; Jiang, C.; Kong, X.; Liang, Y.; Rong, M.; Liu, W. Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol. Med. Rep., 2012, 6(2), 385-390. doi: 10.3892/mmr.2012.918 PMID: 22614871
- Quastel, J.H.; Cantero, A. Inhibition of tumour growth by D-glucosamine. Nature, 1953, 171(4345), 252-254. doi: 10.1038/171252a0 PMID: 13036842
- Brasky, T.M.; Lampe, J.W.; Slatore, C.G.; White, E. Use of glucosamine and chondroitin and lung cancer risk in the VITamins And Lifestyle (VITAL) cohort. Cancer Causes Control, 2011, 22(9), 1333-1342. doi: 10.1007/s10552-011-9806-8 PMID: 21706174
- Kantor, E.D.; Lampe, J.W.; Peters, U.; Shen, D.D.; Vaughan, T.L.; White, E. Use of glucosamine and chondroitin supplements and risk of colorectal cancer. Cancer Causes Control, 2013, 24(6), 1137-1146. doi: 10.1007/s10552-013-0192-2 PMID: 23529472
- Kim, M.J.; Choi, M.Y.; Lee, D.H.; Roh, G.S.; Kim, H.J.; Kang, S.S.; Cho, G.J.; Kim, Y.S.; Choi, W.S. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer. Oncotarget, 2018, 9(4), 4625-4636. doi: 10.18632/oncotarget.23588 PMID: 29435130
- Taniguchi, N.; Kizuka, Y. Glycans and cancer. Adv. Cancer Res., 2015, 126, 11-51. doi: 10.1016/bs.acr.2014.11.001 PMID: 25727145
- Rivlin, M.; Navon, G. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci. Rep., 2016, 6(1), 32648. doi: 10.1038/srep32648 PMID: 27600054
- Ghosh, S. Sialic acids and sialoglycans in endocrinal disorders. In: Sialic Acids and Sialoglycoconjugates in the Biology of Life, Health and Disease; Ghosh, S., Ed.; Academic Press, 2020; pp. 247-268. doi: 10.1016/B978-0-12-816126-5.00009-3
- Wu, S.; Zhang, Q.; Zhang, F.; Meng, F.; Liu, S.; Zhou, R.; Wu, Q.; Li, X.; Shen, L.; Huang, J.; Qin, J.; Ouyang, S.; Xia, Z.; Song, H.; Feng, X.H.; Zou, J.; Xu, P. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nat. Cell Biol., 2019, 21(8), 1027-1040. doi: 10.1038/s41556-019-0352-z PMID: 31332347
- Läubli, H.; Varki, A. Sialic acidbinding immunoglobulin-like lectins (Siglecs) detect self-associated molecular patterns to regulate immune responses. Cell. Mol. Life Sci., 2020, 77(4), 593-605. doi: 10.1007/s00018-019-03288-x PMID: 31485715
- Crocker, P.R.; Paulson, J.C.; Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol., 2007, 7(4), 255-266. doi: 10.1038/nri2056 PMID: 17380156
- Macauley, M.S.; Crocker, P.R.; Paulson, J.C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol., 2014, 14(10), 653-666. doi: 10.1038/nri3737 PMID: 25234143
- van de Wall, S.; Santegoets, K.C.M.; van Houtum, E.J.H.; Büll, C.; Adema, G.J. Sialoglycans and siglecs can shape the tumor immune microenvironment. Trends Immunol., 2020, 41(4), 274-285. doi: 10.1016/j.it.2020.02.001 PMID: 32139317
- Hudak, J.E.; Canham, S.M.; Bertozzi, C.R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol., 2014, 10(1), 69-75. doi: 10.1038/nchembio.1388 PMID: 24292068
- Daly, J.; Carlsten, M.; ODwyer, M. Sugar Free: Novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front. Immunol., 2019, 10, 1047. doi: 10.3389/fimmu.2019.01047 PMID: 31143186
- Bärenwaldt, A.; Läubli, H. The sialoglycan-Siglec glyco-immune checkpoint-a target for improving innate and adaptive anti-cancer immunity. Expert Opin. Ther. Targets, 2019, 23(10), 839-853. doi: 10.1080/14728222.2019.1667977 PMID: 31524529
- Beatson, R.; Tajadura-Ortega, V.; Achkova, D.; Picco, G.; Tsourouktsoglou, T.D.; Klausing, S.; Hillier, M.; Maher, J.; Noll, T.; Crocker, P.R.; Taylor-Papadimitriou, J.; Burchell, J.M. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat. Immunol., 2016, 17(11), 1273-1281. doi: 10.1038/ni.3552 PMID: 27595232
- Rillahan, C.D.; Antonopoulos, A.; Lefort, C.T.; Sonon, R.; Azadi, P.; Ley, K.; Dell, A.; Haslam, S.M.; Paulson, J.C. Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat. Chem. Biol., 2012, 8(7), 661-668. doi: 10.1038/nchembio.999 PMID: 22683610
- Horstkorte, R.; Fuss, B. Cell adhesion molecules. In: Basic Neurochemistry, 8th ed; Brady, S.T.; Siegel, G.J.; Albers, R.W.; Price, D.L., Eds.; Academic Press, 2012; pp. 165-179. doi: 10.1016/B978-0-12-374947-5.00009-2
- Hart, G.W. Nutrient regulation of signaling and transcription. J. Biol. Chem., 2019, 294(7), 2211-2231. doi: 10.1074/jbc.AW119.003226 PMID: 30626734
- Chugh, S.; Gnanapragassam, V.S.; Jain, M.; Rachagani, S.; Ponnusamy, M.P.; Batra, S.K. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets. Biochim. Biophys. Acta Rev. Cancer, 2015, 1856(2), 211-225. doi: 10.1016/j.bbcan.2015.08.003 PMID: 26318196
- Pietrobono, S.; Stecca, B. Aberrant sialylation in cancer: Biomarker and potential target for therapeutic intervention? Cancers, 2021, 13(9), 2014. doi: 10.3390/cancers13092014 PMID: 33921986
- Akella, N.M.; Le Minh, G.; Ciraku, L.; Mukherjee, A.; Bacigalupa, Z.A.; Mukhopadhyay, D.; Sodi, V.L.; Reginato, M.J. O-GlcNAc transferase regulates cancer stemlike potential of breast cancer cells. Mol. Cancer Res., 2020, 18(4), 585-598. doi: 10.1158/1541-7786.MCR-19-0732 PMID: 31974291
- Ma, Z.; Vosseller, K. Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J. Biol. Chem., 2014, 289(50), 34457-34465. doi: 10.1074/jbc.R114.577718 PMID: 25336642
- Lam, C.; Low, J.Y.; Tran, P.T.; Wang, H. The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett., 2021, 503, 11-18. doi: 10.1016/j.canlet.2021.01.010 PMID: 33484754
- DeVito, S.R.; Ortiz-Riaño, E.; Martínez-Sobrido, L.; Munger, J. Cytomegalovirus-mediated activation of pyrimidine biosynthesis drives UDPsugar synthesis to support viral protein glycosylation. Proc. Natl. Acad. Sci. USA, 2014, 111(50), 18019-18024. doi: 10.1073/pnas.1415864111 PMID: 25472841
- Hulikova, K.; Benson, V.; Svoboda, J.; Sima, P.; Fiserova, A. N-Acetyl-D-glucosamine-coated polyamidoamine dendrimer modulates antibody formation via natural killer cell activation. Int. Immunopharmacol., 2009, 9(6), 792-799. doi: 10.1016/j.intimp.2009.03.007 PMID: 19303462
- Han, T.; Kang, D.; Ji, D.; Wang, X.; Zhan, W.; Fu, M.; Xin, H.B.; Wang, J.B. How does cancer cell metabolism affect tumor migration and invasion? Cell Adhes. Migr., 2013, 7(5), 395-403. doi: 10.4161/cam.26345 PMID: 24131935
- Denning, T.L.; Takaishi, H.; Crowe, S.E.; Boldogh, I.; Jevnikar, A.; Ernst, P.B. Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic. Biol. Med., 2002, 33(12), 1641-1650. doi: 10.1016/S0891-5849(02)01141-3 PMID: 12488132
- Brunk, U.T.; Svensson, I. Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Rep., 1999, 4(1-2), 3-11. doi: 10.1179/135100099101534675 PMID: 10714269
Supplementary files
