Agrimonolide Inhibits the Malignant Progression of Non-small Cell Lung Cancer and Induces Ferroptosis through the mTOR Signaling Pathway


Cite item

Full Text

Abstract

Background:Non-Small Cell Lung Cancer (NSCLC), a prevalent type of lung cancer, has a poor prognosis and contributes to a high mortality rate. Agrimonolide, which belongs to the Rosaceae family, possesses various biomedical activities. This study aimed to explore the efficacy and mechanism of agrimonolide in NSCLC.

Methods:The viability, proliferation, and tumor-forming ability of A549 cells were detected using the Cell Counting Kit-8 assay (CCK-8) assay, EdU staining, and colony formation assay. The cell cycle was detected using flow cytometry. Cell migration and invasion were detected using wound healing and transwell assays. Western blot was used to detect Epithelial-Mesenchymal Transition (EMT)-, ferroptosis-, and mechanistic targets of rapamycin (mTOR) signaling pathway-related proteins. Lipid peroxidation was detected using the thiobarbituric acid reactive substances (TBARS) assay kit, while lipid Reactive Oxygen Species (ROS) was detected using a BODIPY 581/591 C11 kit. The level of Fe2+ was detected using corresponding assay kits.

Results:In this study, agrimonolide with varying concentrations (10, 20, and 40 µM) could inhibit the proliferation, induce cycle arrest, suppress metastasis, induce ferroptosis, and block the mTOR signaling pathway in NSCLC cells. To further reveal the mechanism of agrimonolide associated with the mTOR signaling pathway in NSCLC, mTOR agonist MHY1485 (10 µM) was used to pre-treat A549 cells, and functional experiments were conducted again. It was found that the protective effects of AM on NSCLC cells were all partially abolished by MHY1485 pre-treatment.

Conclusion:Agrimonolide inhibited the malignant progression of NSCLC and induced ferroptosis by blocking the mTOR signaling pathway, thus indicating the potential of agrimonolide as a prospective candidate for treating NSCLC.

About the authors

Xiaoling Zhang

Department of Pathology, Gansu Provincial Hospital

Email: info@benthamscience.net

Wei Cai

Department of Pathology, Gansu Provincial Hospital

Email: info@benthamscience.net

Yiguang Yan

Department of Cardiothoracic Surgery, Wuxi No.2 People’s Hospital (Jiangnan University Medical Center)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  2. Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer, 2014, 14(8), 535-546. doi: 10.1038/nrc3775 PMID: 25056707
  3. Zhao, H.; Wang, Y.; He, Y.; Zhang, P.; Zeng, C.; Du, T.; Shen, Q.; Zhao, S. ANKRD29, as a new prognostic and immunological biomarker of non–small cell lung cancer, inhibits cell growth and migration by regulating MAPK signaling pathway. Biol. Direct, 2023, 18(1), 28. doi: 10.1186/s13062-023-00385-7 PMID: 37277814
  4. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454. doi: 10.1038/nature25183 PMID: 29364287
  5. Santos, T.N.; Costa, G.; Ferreira, J.P.; Liberal, J.; Francisco, V.; Paranhos, A.; Cruz, M.T.; Castelo-Branco, M.; Figueiredo, I.V.; Batista, M.T. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. infusion. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-13. doi: 10.1155/2017/8309894 PMID: 28491113
  6. Jang, H.H.; Nam, S.Y.; Kim, M.J.; Kim, J.B.; Choi, J.S.; Kim, H.R.; Lee, Y.M. Agrimonia pilosa Ledeb. aqueous extract improves impaired glucose tolerance in high-fat diet-fed rats by decreasing the inflammatory response. BMC Complement. Altern. Med., 2017, 17(1), 442. doi: 10.1186/s12906-017-1949-z PMID: 28870184
  7. Liu, Y.; Liu, X.; Wang, H.; Ding, P.; Wang, C. Agrimonolide inhibits cancer progression and induces ferroptosis and apoptosis by targeting SCD1 in ovarian cancer cells. Phytomedicine, 2022, 101, 154102. doi: 10.1016/j.phymed.2022.154102 PMID: 35526323
  8. Huang, Q; Chen, L; Teng, H; Song, H; Wu, X Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK. J. Functional Foods, 2015, 19, 487-494. doi: 10.1016/j.jff.2015.09.020
  9. Yu, L.; Gai, Y. Elucidating the mechanism of agrimonolide in treating colon cancer based on network pharmacology. Drug Des. Devel. Ther., 2023, 17, 2209-2222. doi: 10.2147/DDDT.S409530 PMID: 37533972
  10. Teng, H.; Huang, Q.; Chen, L. Inhibition of cell proliferation and triggering of apoptosis by agrimonolide through MAP kinase (ERK and p38) pathways in human gastric cancer AGS cells. Food Funct., 2016, 7(11), 4605-4613. doi: 10.1039/C6FO00715E PMID: 27747355
  11. Berghe, T.V.; Linkermann, A.; Jouan-Lanhouet, S.; Walczak, H.; Vandenabeele, P. Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol., 2014, 15(2), 135-147. doi: 10.1038/nrm3737 PMID: 24452471
  12. Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; Monette, S.; Pauliah, M.; Gonen, M.; Zanzonico, P.; Quinn, T.; Wiesner, U.; Bradbury, M.S.; Overholtzer, M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol., 2016, 11(11), 977-985. doi: 10.1038/nnano.2016.164 PMID: 27668796
  13. Zou, J.; Wang, L.; Tang, H.; Liu, X.; Peng, F.; Peng, C. Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on it. Int. J. Mol. Sci., 2021, 22(24), 13335. doi: 10.3390/ijms222413335 PMID: 34948133
  14. Tan, A.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC). Thorac. Cancer, 2020, 11(3), 511-518. doi: 10.1111/1759-7714.13328 PMID: 31989769
  15. Chen, M.; Tan, A.; Li, J. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling. Nutr. Cancer, 2023, 75(2), 726-733. doi: 10.1080/01635581.2022.2139398 PMID: 36346025
  16. Hou, L.; Yuan, X.; Le, G.; Lin, Z.; Gan, F.; Li, H.; Huang, K. Fumonisin B1 induces nephrotoxicity via autophagy mediated by mTORC1 instead of mTORC2 in human renal tubule epithelial cells. Food Chem. Toxicol., 2021, 149, 112037. doi: 10.1016/j.fct.2021.112037 PMID: 33548371
  17. Cheng, G.; Wu, J.; Ji, M.; Hu, W.; Wu, C.; Jiang, J. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway. BMC Cancer, 2023, 23(1), 825. doi: 10.1186/s12885-023-11343-x PMID: 37667220
  18. Zheng, Q.; Zhang, J.; Zhang, T.; Liu, Y.; Du, X.; Dai, X.; Gu, D. Hsa_circ_0000520 overexpression increases CDK2 expression via miR-1296 to facilitate cervical cancer cell proliferation. J. Transl. Med., 2021, 19(1), 314. doi: 10.1186/s12967-021-02953-9 PMID: 34284793
  19. Iseki, H.; Takeda, A.; Andoh, T.; Kuwabara, K.; Takahashi, N.; Kurochkin, I.V.; Ishida, H.; Okazaki, Y.; Koyama, I. ALEX1 suppresses colony formation ability of human colorectal carcinoma cell lines. Cancer Sci., 2012, 103(7), 1267-1271. doi: 10.1111/j.1349-7006.2012.02300.x PMID: 22494058
  20. Khan, A.; Aldebasy, Y.H.; Alsuhaibani, S.A.; Khan, M.A. Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells. Asian Pac. J. Cancer Prev., 2019, 20(4), 1153-1160. doi: 10.31557/APJCP.2019.20.4.1153 PMID: 31030489
  21. Jia, H.; Wu, D.; Zhang, Z.; Li, S. Regulatory effect of the MAFG AS1/miR 150 5p/MYB axis on the proliferation and migration of breast cancer cells. Int. J. Oncol., 2020, 58(1), 33-44. doi: 10.3892/ijo.2020.5150 PMID: 33367930
  22. Li, J.; Guo, Y.; Duan, L.; Hu, X.; Zhang, X.; Hu, J.; Huang, L.; He, R.; Hu, Z.; Luo, W.; Tan, T.; Huang, R.; Liao, D.; Zhu, Y.S.; Luo, D.X. AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget, 2017, 8(20), 33694-33703. doi: 10.18632/oncotarget.16624 PMID: 28402270
  23. Zhang, Y.H.; Pan, L.H.; Pang, Y.; Yang, J.X.; Lv, M.J.; Liu, F.; Qu, X.F.; Chen, X.X.; Gong, H.J.; Liu, D.; Wei, Y. GDF11/BMP11 as a novel tumor marker for liver cancer. Exp. Ther. Med., 2018, 15(4), 3495-3500. doi: 10.3892/etm.2018.5861 PMID: 29545874
  24. Sun, Q.; Zhen, P.; Li, D.; Liu, X.; Ding, X.; Liu, H. Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS)/5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells. Bioengineered, 2022, 13(5), 13269-13279. doi: 10.1080/21655979.2022.2079256 PMID: 35635082
  25. Carlsen, C.U.; Kurtmann, L.; Brüggemann, D.A.; Hoff, S.; Risbo, J.; Skibsted, L.H. Investigation of oxidation in freeze-dried membranes using the fluorescent probe C11-BODIPY581/591. Cryobiology, 2009, 58(3), 262-267. doi: 10.1016/j.cryobiol.2009.01.005 PMID: 19444971
  26. Li, T.; Tan, Y.; Ouyang, S.; He, J.; Liu, L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene, 2022, 808, 145968. doi: 10.1016/j.gene.2021.145968 PMID: 34530090
  27. Liu, J.; Yuan, S.; Yao, Y.; Wang, J.; Scalabrino, G.; Jiang, S.; Sheridan, H. Network pharmacology and molecular docking elucidate the underlying pharmacological mechanisms of the herb Houttuynia cordata in treating pneumonia caused by SARS-CoV-2. Viruses, 2022, 14(7), 1588. doi: 10.3390/v14071588 PMID: 35891565
  28. Zhu, W.; Li, Y.; Zhao, J.; Wang, Y.; Li, Y.; Wang, Y. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Ann. Med., 2022, 54(1), 541-552. doi: 10.1080/07853890.2022.2034931 PMID: 35132912
  29. Schiliro, C.; Firestein, B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells, 2021, 10(5), 1056. doi: 10.3390/cells10051056 PMID: 33946927
  30. Zangouei, A.S.; Zangoue, M.; Taghehchian, N.; Zangooie, A.; Rahimi, H.R.; Saburi, E.; Alavi, M.S.; Moghbeli, M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol. Res., 2023, 56(1), 1. doi: 10.1186/s40659-022-00411-4 PMID: 36597150
  31. Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol., 2019, 20(2), 69-84. doi: 10.1038/s41580-018-0080-4 PMID: 30459476
  32. Bhandari, A.; Zheng, C.; Sindan, N.; Sindan, N.; Quan, R.; Xia, E.; Thapa, Y.; Tamang, D.; Wang, O.; Ye, X.; Huang, D. COPB2 is up‐regulated in breast cancer and plays a vital role in the metastasis via N‐cadherin and Vimentin. J. Cell. Mol. Med., 2019, 23(8), 5235-5245. doi: 10.1111/jcmm.14398 PMID: 31119859
  33. Zhang, C.; Liu, X.; Jin, S.; Chen, Y.; Guo, R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer, 2022, 21(1), 47. doi: 10.1186/s12943-022-01530-y PMID: 35151318
  34. Gao, M.; Lai, K.; Deng, Y.; Lu, Z.; Song, C.; Wang, W.; Xu, C.; Li, N.; Geng, Q. Eriocitrin inhibits epithelial-mesenchymal transformation (EMT) in lung adenocarcinoma cells via triggering ferroptosis. Aging (Albany NY), 2023, 15(19), 10089-10104. doi: 10.18632/aging.205049 PMID: 37787987
  35. Wang, C.; Qi, C.; Liu, M.; Wang, L.; Cheng, G.; Li, L.; Xing, Y.; Zhao, X.; Liu, J. Protective effects of agrimonolide on hypoxia‐induced H9c2 cell injury by maintaining mitochondrial homeostasis. J. Cell. Biochem., 2022, 123(2), 306-321. doi: 10.1002/jcb.30169 PMID: 34724244
  36. Xiang, M.; Li, R.; Zhang, Z.; Song, X. Advances in the research of the regulation of chinese traditional medicine monomer and its derivatives on autophagy in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi, 2017, 20(3), 205-212. PMID: 28302224
  37. Çelik, F; Şimşek, S Parasite and cancer relationship. Turkiye parazitolojii dergisi, 2022, 46(2), 150-162. doi: 10.4274/tpd.galenos.2022.30974 PMID: 35604195
  38. Duff, D.; Long, A. Roles for RACK1 in cancer cell migration and invasion. Cell. Signal., 2017, 35, 250-255. doi: 10.1016/j.cellsig.2017.03.005 PMID: 28336233
  39. Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 2022, 22(7), 381-396. doi: 10.1038/s41568-022-00459-0 PMID: 35338310
  40. Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285. doi: 10.1016/j.cell.2017.09.021 PMID: 28985560
  41. Su, Y.; Zhao, B.; Zhou, L.; Zhang, Z.; Shen, Y.; Lv, H.; AlQudsy, L.H.H.; Shang, P. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett., 2020, 483, 127-136. doi: 10.1016/j.canlet.2020.02.015 PMID: 32067993
  42. Tang, X.; Ding, H.; Liang, M.; Chen, X.; Yan, Y.; Wan, N.; Chen, Q.; Zhang, J.; Cao, J. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thorac. Cancer, 2021, 12(8), 1219-1230. doi: 10.1111/1759-7714.13904 PMID: 33656766
  43. Jiaqi, L.; Siqing, H. qin, W.; di, Z.; bei, Z.; jialin, Y. Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction. Phytomedicine, 2023, 109, 154601. doi: 10.1016/j.phymed.2022.154601 PMID: 36610134
  44. Huang, H; Liu, J; Wu, H; Liu, F; Zhou, XJP Ferroptosis-associated gene SLC7A11 is upregulated in NSCLC and correlated with patient’s poor prognosis: An integrated bioinformatics analysis. Pteridines, 2021, 32(1), 106-116. doi: 10.1515/pteridines-2020-0034
  45. Liu, C.Y.; Liu, C.C.; Li, A.F.Y.; Hsu, T.W.; Lin, J.H.; Hung, S.C.; Hsu, H.S. Glutathione peroxidase 4 expression predicts poor overall survival in patients with resected lung adenocarcinoma. Sci. Rep., 2022, 12(1), 20462. doi: 10.1038/s41598-022-25019-2 PMID: 36443446
  46. Huang, S. mTOR signaling in metabolism and cancer. Cells, 2020, 9(10), 2278. doi: 10.3390/cells9102278 PMID: 33065976
  47. Li, H.; Lin, J.; Yang, F.; Deng, J.; Lai, J.; Zeng, J.; Zou, W.; Jiang, N.; Huang, Q.; Li, H.; Liu, J.; Li, M.; Zhong, Z.; Wu, J. Sanguisorba officinalis L. suppresses non-small cell lung cancer via downregulating the PI3K/AKT/mTOR signaling pathway based on network pharmacology and experimental investigation. Front. Pharmacol., 2022, 13, 1054803. doi: 10.3389/fphar.2022.1054803 PMID: 36506573
  48. Ni, J.; Chen, K.; Zhang, J.; Zhang, X. Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells. Biochem. Biophys. Res. Commun., 2021, 567, 154-160. doi: 10.1016/j.bbrc.2021.06.051 PMID: 34157442

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers