Recent Approaches to Enhance Osteogenesis of Dental Pulp Stem Cells on Electrospun Scaffolds


Cite item

Full Text

Abstract

Critical-sized bone defects are a challenging issue during bone regeneration. Bone tissue engineering is aimed to repair such defects using biomimicking scaffolds and stem cells. Electrospinning allows the fabrication of biocompatible, biodegradable, and strengthened scaffolds for bone regeneration. Natural and synthetic polymers, alone or in combination, have been employed to fabricate scaffolds with appropriate properties for the osteogenic differentiation of stem cells. Dental pulps are rich in stem cells, and dental pulp stem cells (DPSCs) have a high capacity for proliferation, differentiation, immunomodulation, and trophic factor expression. Researchers have tried to enhance osteogenesis through scaffold modification approaches, including incorporation or coating with mineral, inorganic materials, and herbal extract components. Among them, the incorporation of nanofibers with hyaluronic acid (HA) has been widely used to promote osteogenesis. In this review, the electrospun scaffolds and their modifications used in combination with DPSCs for bone regeneration are discussed.

About the authors

Zahra Safari

Faculty of Dentistry, Tehran University of Medical Sciences

Email: info@benthamscience.net

Seyedeh Sara Aghili

School of Dentistry, Shiraz University of Medical Sciences

Email: info@benthamscience.net

Sahar Hassantash

Faculty of Dentistry, Tehran University of Medical Sciences

Email: info@benthamscience.net

Ehsan Iranmanesh

Neuroscience Research Center, Kerman University of Medical Sciences

Email: info@benthamscience.net

Mehdi Abouali

Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences

Email: info@benthamscience.net

Mobina Bagherianlemraski

Student Research Committee, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran, Mazandaran University of Medical Sciences

Email: info@benthamscience.net

Shabnam Ghasemzadeh

Faculty of Dentistry, Qazvin University of Medical Sciences

Email: info@benthamscience.net

Esmaeel Dadgar

Faculty of Dentistry, Tabriz University of Medical Sciences

Email: info@benthamscience.net

Ghasem Barati

, Stem Cell Technology Research Center

Author for correspondence.
Email: info@benthamscience.net

Ehsan Saburi

Medical Genetics Research Center, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res 1999; 360(360): 71-86. doi: 10.1097/00003086-199903000-00010 PMID: 10101312
  2. Wani TU, Khan RS, Rather AH, Abdal-hay A, Amna T, Sheikh FA. Nanofiber-mediated stem cell osteogenesis: Prospects in bone tissue regeneration. In: Sheikh FA, Ed. Engineering Materials for Stem Cell Regeneration. Springer Singapore, Singapore 2021; pp. 47-67. doi: 10.1007/978-981-16-4420-7_3
  3. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003; 63(15): 2223-53. doi: 10.1016/S0266-3538(03)00178-7
  4. Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13(9): 1738-55. doi: 10.1002/term.2914 PMID: 31216380
  5. Bar JK, Kowalczyk T, Grelewski PG, et al. Characterization of biological properties of dental pulp stem cells grown on an electrospun poly(l-lactide-co-caprolactone) scaffold. Materials (Basel) 2022; 15(5): 1900. doi: 10.3390/ma15051900 PMID: 35269131
  6. Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential. Int J Mol Sci 2021; 22(21): 12018. doi: 10.3390/ijms222112018 PMID: 34769446
  7. Vazin T, Freed WJ. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor Neurol Neurosci 2010; 28(4): 589-603. doi: 10.3233/RNN-2010-0543 PMID: 20714081
  8. Leeb C, Jurga M, McGuckin C, et al. New perspectives in stem cell research: Beyond embryonic stem cells. Cell Prolif 2011; 44(S1): 9-14. doi: 10.1111/j.1365-2184.2010.00725.x PMID: 21481037
  9. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell 2006; 126(4): 663-76.
  10. Fibbe WE, Nauta AJ, Roelofs H. Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci 2007; 1106(1): 272-8. doi: 10.1196/annals.1392.025 PMID: 17442776
  11. Anitua E, Troya M, Zalduendo M. Progress in the use of dental pulp stem cells in regenerative medicine. Cytotherapy 2018; 20(4): 479-98. doi: 10.1016/j.jcyt.2017.12.011 PMID: 29449086
  12. Galipeau J, Krampera M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016; 18(2): 151-9. doi: 10.1016/j.jcyt.2015.11.008 PMID: 26724220
  13. Gugliandolo A, Fonticoli L, Trubiani O, et al. Oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci 2021; 22(10): 5236. doi: 10.3390/ijms22105236 PMID: 34063438
  14. L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 2019; 46: 1-9. doi: 10.1016/j.cytogfr.2019.04.002 PMID: 30954374
  15. Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther 2018; 18(2): 187-96. doi: 10.1080/14712598.2018.1402004 PMID: 29110535
  16. Morad G, Kheiri L, Khojasteh A. Dental pulp stem cells for in vivo bone regeneration: A systematic review of literature. Arch Oral Biol 2013; 58(12): 1818-27. doi: 10.1016/j.archoralbio.2013.08.011 PMID: 24095289
  17. Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Prog Mater Sci 2021; 117: 100721. doi: 10.1016/j.pmatsci.2020.100721
  18. Azari Matin A, Fattah K, Saeidpour MS, et al. Synthetic electrospun nanofibers as a supportive matrix in osteogenic differentiation of induced pluripotent stem cells. J Biomater Sci Polym Ed 2022; 33(11): 1469-93. doi: 10.1080/09205063.2022.2056941 PMID: 35321624
  19. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007; 59(14): 1413-33. doi: 10.1016/j.addr.2007.04.022 PMID: 17916396
  20. Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 2009; 30(25): 4094-103. doi: 10.1016/j.biomaterials.2009.04.024 PMID: 19481080
  21. Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Mater Today Proc 2017; 4(2): 898-907. doi: 10.1016/j.matpr.2017.01.101
  22. Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. J Biomater Sci Polym Ed 2019; 30(14): 1308-55. doi: 10.1080/09205063.2019.1630699 PMID: 31181982
  23. Asghari F, Samiei M, Adibkia K, Akbarzadeh A, Davaran S. Biodegradable and biocompatible polymers for tissue engineering application: A review. Artif Cells Nanomed Biotechnol 2017; 45(2): 185-92. doi: 10.3109/21691401.2016.1146731 PMID: 26923861
  24. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020; 5(8): 584-603. doi: 10.1038/s41578-020-0204-2
  25. Hashemi J, Barati G, Enderami SE, Safdari M. Osteogenic differentiation of induced pluripotent stem cells on electrospun nanofibers: A review of literature. Mater Commun 2020; 25: 101561.
  26. Su WT, Wu PS, Huang TY. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Mater Sci Eng C 2015; 46: 427-34. doi: 10.1016/j.msec.2014.10.076 PMID: 25492007
  27. Samanipour R, Farzaneh S, Ranjbari J, Hashemi S, Khojasteh A, Hosseinzadeh S. Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold. Polym Bull 2022; 80: 1795-816.
  28. Aghazadeh M, Samiei M, Alizadeh E, Porkar P, Bakhtiyari M, Salehi R. Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold. Fibers Polym 2017; 18(8): 1468-77. doi: 10.1007/s12221-017-7120-0
  29. Oliveira NK, Salles THC, Pedroni AC, et al. Osteogenic potential of human dental pulp stem cells cultured onto poly-ε-caprolactone/poly (rotaxane) scaffolds. Dent Mater 2019; 35(12): 1740-9. doi: 10.1016/j.dental.2019.08.109 PMID: 31543375
  30. Ma L, Yu Y, Liu H, et al. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep 2021; 11(1): 1027. doi: 10.1038/s41598-020-79734-9 PMID: 33441759
  31. Alipour M, Aghazadeh M, Akbarzadeh A, Vafajoo Z, Aghazadeh Z, Raeisdasteh HV. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Artif Cells Nanomed Biotechnol 2019; 47(1): 3431-7. doi: 10.1080/21691401.2019.1652627 PMID: 31411067
  32. Hosseini FS, Enderami SE, Hadian A, et al. Efficient osteogenic differentiation of the dental pulp stem cells on β‐glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. J Cell Physiol 2019; 234(8): 13951-8. doi: 10.1002/jcp.28078 PMID: 30633333
  33. Akkouch A, Zhang Z, Rouabhia M. Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (l -lactide-co-ɛ-caprolactone) scaffold. J Biomater Appl 2014; 28(6): 922-36. doi: 10.1177/0885328213486705 PMID: 23640860
  34. Ko EK, Jeong SI, Rim NG, Lee YM, Shin H, Lee BK. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes. Tissue Eng Part A 2008; 14(12): 2105-19. doi: 10.1089/ten.tea.2008.0057 PMID: 18788980
  35. Sanaei-rad P, Jamshidi D, Adel M, Seyedjafari E. Electrospun poly(l ‐lactide) nanofibers coated with mineral trioxide aggregate enhance odontogenic differentiation of dental pulp stem cells. Polym Adv Technol 2021; 32(1): 402-10. doi: 10.1002/pat.5095
  36. Gonçalves F, Bentini R, Burrows M, et al. Hybrid membranes of PLLA/Collagen for bone tissue engineering: A comparative study of scaffold production techniques for optimal mechanical properties and osteoinduction ability. Materials 2015; 8(2): 408-23. doi: 10.3390/ma8020408 PMID: 28787946
  37. Asghari F, Salehi R, Agazadeh M, et al. The odontogenic differentiation of human dental pulp stem cells on hydroxyapatite-coated biodegradable nanofibrous scaffolds. Int J Polym Mater 2016; 65(14): 720-8. doi: 10.1080/00914037.2016.1163564
  38. Sohrabi A, Hosseini M, Abazari MF, et al. Wnt pathway activator delivery by poly (lactide-co-glycolide)/silk fibroin composite nanofibers promotes dental pulp stem cell osteogenesis. J Drug Deliv Sci Technol 2021; 61: 102223. doi: 10.1016/j.jddst.2020.102223
  39. Zhang L, Feng KC, Yu Y, et al. Effect of graphene on differentiation and mineralization of dental pulp stem cells in poly(4-vinylpyridine) matrix in vitro. ACS Appl Bio Mater 2019; 2(6): 2435-43. doi: 10.1021/acsabm.9b00127 PMID: 35030700
  40. Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J Oral Biol Craniofac Res 2020; 10(1): 381-8. doi: 10.1016/j.jobcr.2019.10.003 PMID: 31754598
  41. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991; 12(3): 292-304. doi: 10.1016/0142-9612(91)90037-B PMID: 1649646
  42. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012; 64: 72-82. doi: 10.1016/j.addr.2012.09.004
  43. Kang R, Luo Y, Zou L, et al. Osteogenesis of human induced pluripotent stem cells derived mesenchymal stem cells on hydroxyapatite contained nanofibers. RSC Advances 2014; 4(11): 5734-9. doi: 10.1039/c3ra44181d
  44. Ardeshirylajimi A, Khojasteh A. Synergism of electrospun nanofibers and pulsed electromagnetic field on osteogenic differentiation of induced pluripotent stem cells. ASAIO J 2018; 64(2): 253-60. doi: 10.1097/MAT.0000000000000631 PMID: 28746081
  45. Soleimanifar F, Hosseini FS, Atabati H, et al. Adipose‐derived stem cells‐conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers. J Cell Physiol 2019; 234(7): 10315-23. doi: 10.1002/jcp.27697 PMID: 30378123
  46. Deitzel J, Kleinmeyer JD, Hirvonen JK, Beck Tan NC. Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 2001; 42(19): 8163-70. doi: 10.1016/S0032-3861(01)00336-6
  47. Gaaz T, Sulong A, Akhtar M, Kadhum A, Mohamad A, Al-Amiery A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015; 20(12): 22833-47. doi: 10.3390/molecules201219884 PMID: 26703542
  48. Azadian E, Arjmand B, Ardeshirylajimi A, Hosseinzadeh S, Omidi M, Khojasteh A. Polyvinyl alcohol modified polyvinylidene fluoride‐graphene oxide scaffold promotes osteogenic differentiation potential of human induced pluripotent stem cells. J Cell Biochem 2020; 121(5-6): 3185-96. doi: 10.1002/jcb.29585 PMID: 31886565
  49. Kashef-Saberi MS, Hayati Roodbari N, Parivar K, Vakilian S, Hanaee-Ahvaz H. Enhanced osteogenic differentiation of mesenchymal stem cells on electrospun polyethersulfone/Poly(Vinyl) alcohol/platelet rich plasma nanofibrous scaffolds. ASAIO J 2018; 64(5): e115-22. doi: 10.1097/MAT.0000000000000781 PMID: 30142100
  50. Aslam M, Kalyar MA, Raza ZA. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci 2018; 58(12): 2119-32. doi: 10.1002/pen.24855
  51. Feldman D. Poly(Vinyl Alcohol) recent contributions to engineering and medicine. Journal of Composites Science 2020; 4(4): 175. doi: 10.3390/jcs4040175
  52. Jundziłł A, Pokrywczyńska M, Adamowicz J, et al. Vascularization potential of electrospun poly(L-Lactide-co-Caprolactone) Scaffold: The impact for tissue engineering. Med Sci Monit 2017; 23: 1540-51. doi: 10.12659/MSM.899659 PMID: 28360409
  53. Kloskowski T. Jundziłł A, Kowalczyk T, et al. Ureter regeneration-the proper scaffold has to be defined. PLoS One 2014; 9(8): e106023. doi: 10.1371/journal.pone.0106023 PMID: 25162415
  54. Simamora P, Chern W. Poly-L-lactic acid: An overview. J Drugs Dermatol 2006; 5(5): 436-40. PMID: 16703779
  55. Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer 1982; 23(11): 1587-93. doi: 10.1016/0032-3861(82)90176-8
  56. Walton M, Cotton NJ. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J Biomater Appl 2007; 21(4): 395-411. doi: 10.1177/0885328206065125 PMID: 16684797
  57. D’Angelo F, Armentano I, Cacciotti I, et al. Tuning multi/pluri-potent stem cell fate by electrospun poly(L-lactic acid)-calcium-deficient hydroxyapatite nanocomposite mats. Biomacromolecules 2012; 13(5): 1350-60. doi: 10.1021/bm3000716 PMID: 22449037
  58. Izadpanahi M, Seyedjafari E, Arefian E, et al. Nanotopographical cues of electrospun PLLA efficiently modulate non-coding RNA network to osteogenic differentiation of mesenchymal stem cells during BMP signaling pathway. Mater Sci Eng C 2018; 93: 686-703. doi: 10.1016/j.msec.2018.08.023 PMID: 30274102
  59. Karimi Z, Seyedjafari E, Mahdavi FS, et al. Baghdadite nanoparticle‐coated poly l ‐lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue‐derived mesenchymal stem cells. J Biomed Mater Res A 2019; 107(6): 1284-93. doi: 10.1002/jbm.a.36638 PMID: 30706628
  60. Hu M, Deng C, Gu X, Fu Q, Zhang J. Manipulating the strength–toughness balance of poly(l -lactide) (PLLA) via introducing ductile poly(ε-caprolactone) (PCL) and strong shear flow. Ind Eng Chem Res 2020; 59(2): 1000-9. doi: 10.1021/acs.iecr.9b05380
  61. Lin CC, Fu SJ. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats. Mater Sci Eng C 2016; 58: 254-63. doi: 10.1016/j.msec.2015.08.009 PMID: 26478309
  62. Helal MH, Hendawy HD, Gaber RA, Helal NR, Aboushelib MN. Osteogenesis ability of CAD-CAM biodegradable polylactic acid scaffolds for reconstruction of jaw defects. J Prosthet Dent 2019; 121(1): 118-23. doi: 10.1016/j.prosdent.2018.03.033 PMID: 29961633
  63. Jin S, Xia X, Huang J, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater 2021; 127: 56-79. doi: 10.1016/j.actbio.2021.03.067 PMID: 33831569
  64. Gentile P, Chiono V, Carmagnola I, Hatton P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 2014; 15(3): 3640-59. doi: 10.3390/ijms15033640 PMID: 24590126
  65. Zhang L, Yu Y, Feng K, et al. Templated dentin formation by dental pulp stem cells on banded collagen bundles nucleated on electrospun poly (4-vinyl pyridine) fibers in vitro. Acta Biomater 2018; 76: 80-8. doi: 10.1016/j.actbio.2018.06.028 PMID: 29940368
  66. Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering--a review. J Biomed Nanotechnol 2014; 10(10): 3124-40. doi: 10.1166/jbn.2014.1893 PMID: 25992432
  67. Qin J, Yang D, Maher S, et al. Micro- and nano-structured 3D printed titanium implants with a hydroxyapatite coating for improved osseointegration. J Mater Chem B Mater Biol Med 2018; 6(19): 3136-44. doi: 10.1039/C7TB03251J PMID: 32254348
  68. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: A review of literature. Ann Stomatol 2014; 5(3): 108-14. doi: 10.11138/ads/2014.5.3.108 PMID: 25506416
  69. Xu R, Zhang Z, Toftdal MS, et al. Synchronous delivery of hydroxyapatite and connective tissue growth factor derived osteoinductive peptide enhanced osteogenesis. J Control Release 2019; 301: 129-39. doi: 10.1016/j.jconrel.2019.02.037 PMID: 30880079
  70. Fang R, Zhang E, Xu L, Wei S. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J Nanosci Nanotechnol 2010; 10(11): 7747-51. doi: 10.1166/jnn.2010.2831 PMID: 21138024
  71. Coelho MJ, Fernandes MH. Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 2000; 21(11): 1095-102. doi: 10.1016/S0142-9612(99)00192-1 PMID: 10817261
  72. Erisken C, Kalyon DM, Wang H, Örnek-Ballanco C, Xu J. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations. Tissue Eng Part A 2011; 17(9-10): 1239-52. doi: 10.1089/ten.tea.2009.0693 PMID: 21189068
  73. Krawetz RJ, Taiani JT, Wu YE, et al. Collagen I scaffolds cross-linked with beta-glycerol phosphate induce osteogenic differentiation of embryonic stem cells in vitro and regulate their tumorigenic potential in vivo. Tissue Eng Part A 2012; 18(9-10): 1014-24. doi: 10.1089/ten.tea.2011.0174 PMID: 22166057
  74. Hassanian SM, Ardeshirylajimi A, Dinarvand P, Rezaie AR. Inorganic polyphosphate promotes cyclin D1 synthesis through activation of mTOR/Wnt/β‐catenin signaling in endothelial cells. J Thromb Haemost 2016; 14(11): 2261-73. doi: 10.1111/jth.13477 PMID: 27546592
  75. Yan M, Wu J, Yu Y, et al. Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway. J Endod 2014; 40(5): 640-7. doi: 10.1016/j.joen.2014.01.042 PMID: 24767557
  76. Wang Y, Li J, Song W, Yu J. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways. Cell Prolif 2014; 47(3): 241-8. doi: 10.1111/cpr.12099 PMID: 24635197
  77. Holt BD, Wright ZM, Arnold AM, Sydlik SA. Graphene oxide as a scaffold for bone regeneration. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(3): e1437. doi: 10.1002/wnan.1437 PMID: 27781398
  78. Xie Y, Li H, Ding C, Zheng X, Li K. Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating. Int J Nanomedicine 2015; 10: 3855-63. doi: 10.2147/IJN.S77919 PMID: 26089662
  79. Yan Y, Zhang X, Mao H, Huang Y, Ding Q, Pang X. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications. Appl Surf Sci 2015; 329: 76-82. doi: 10.1016/j.apsusc.2014.12.115
  80. Duan S, Yang X, Mei F, et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(l -lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res A 2015; 103(4): 1424-35. doi: 10.1002/jbm.a.35283 PMID: 25046153
  81. Santos C, Piedade C, Uggowitzer PJ, Montemor MF, Carmezim MJ. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants. Appl Surf Sci 2015; 345: 387-93. doi: 10.1016/j.apsusc.2015.03.182
  82. Zeng Y, Pei X, Yang S, et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf Coat Tech 2016; 286: 72-9. doi: 10.1016/j.surfcoat.2015.12.013
  83. Wang JK, Xiong GM, Zhu M, et al. Polymer-enriched 3D graphene foams for biomedical applications. ACS Appl Mater Interfaces 2015; 7(15): 8275-83. doi: 10.1021/acsami.5b01440 PMID: 25822669
  84. Saburi E, Islami M, Hosseinzadeh S, et al. In vitro osteogenic differentiation potential of the human induced pluripotent stem cells augments when grown on Graphene oxide-modified nanofibers. Gene 2019; 696: 72-9. doi: 10.1016/j.gene.2019.02.028 PMID: 30772518
  85. Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: Potential for bone tissue engineering. J Appl Toxicol 2015; 35(4): 367-74. doi: 10.1002/jat.3024 PMID: 25220951
  86. Kumar S, Raj S, Sarkar K, Chatterjee K. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale 2016; 8(12): 6820-36. doi: 10.1039/C5NR06906H PMID: 26955801
  87. Luo Y, Shen H, Fang Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 2015; 7(11): 6331-9. doi: 10.1021/acsami.5b00862 PMID: 25741576
  88. Hoseinpour V, Shariatinia Z. Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: A review. Tissue Cell 2021; 72: 101588. doi: 10.1016/j.tice.2021.101588 PMID: 34237482
  89. Zarrintaj P, Mahmodi G, Manouchehri S, et al. Zeolite in tissue engineering: Opportunities and challenges. MedComm 2020; 1(1): 5-34. doi: 10.1002/mco2.5 PMID: 34766107
  90. Zhu R, Chen YX, Ke QF, Gao YS, Guo YP. SC79-loaded ZSM-5/chitosan porous scaffolds with enhanced stem cell osteogenic differentiation and bone regeneration. J Mater Chem B Mater Biol Med 2017; 5(25): 5009-18. doi: 10.1039/C7TB00897J PMID: 32264018
  91. Gao X, Xue Y, Zhu Z, et al. Nanoscale Zeolitic Imidazolate Framework-8 Activator of Canonical MAPK Signaling for Bone Repair. ACS Appl Mater Interfaces 2021; 13(1): 97-111. doi: 10.1021/acsami.0c15945 PMID: 33354968
  92. Wang X, Qiu X, Pei J, Zhao D, Yan Y. Fabrication of magnesium phosphate bone cement with enhanced osteogenic properties by employing zeolitic imidazolate framework-8. J Mater Res 2022; 37(17): 2761-74. doi: 10.1557/s43578-022-00663-6
  93. Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C. Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: Involvement of prostaglandins. J Bone Miner Res 2007; 22(7): 1002-10. doi: 10.1359/jbmr.070321 PMID: 17371157
  94. Peng S, Liu XS, Wang T, et al. In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res 2010; 28(9): 1208-14. doi: 10.1002/jor.21127 PMID: 20196084
  95. Marie PJ. Strontium ranelate: A physiological approach for optimizing bone formation and resorption. Bone 2006; 38(2 (Supp1)): 10-4. doi: 10.1016/j.bone.2005.07.029 PMID: 16439191
  96. Ammann P. Strontium ranelate: A physiological approach for an improved bone quality. Bone 2006; 38(S2): 15-8. doi: 10.1016/j.bone.2005.09.023 PMID: 16455318
  97. Kalalinia F, Ghasim H, Amel Farzad S, Pishavar E, Ramezani M, Hashemi M. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci 2018; 208: 262-7. doi: 10.1016/j.lfs.2018.07.043 PMID: 30048694
  98. Saah S, Siriwan D, Trisonthi P. Biological activities of Boesenbergia rotunda parts and extracting solvents in promoting osteogenic differentiation of pre-osteoblasts. Food Biosci 2021; 41: 101011. doi: 10.1016/j.fbio.2021.101011
  99. Natural Herb Mixture Extract Accelerates Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells by Activating the SMAD Pathway J Med Food 2021; 24(11): 1145-52. PMID: 34792394
  100. Li H, Miyahara T, Tezuka Y, Tran QL, Seto H, Kadota S. Effect of berberine on bone mineral density in SAMP6 as a senile osteoporosis model. Biol Pharm Bull 2003; 26(1): 110-1. doi: 10.1248/bpb.26.110 PMID: 12520186
  101. Zhang R, Yang J, Wu J, et al. Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration. Eur J Pharmacol 2019; 851: 144-50. doi: 10.1016/j.ejphar.2019.02.026 PMID: 30776366
  102. Liu J, Zhao X, Pei D, et al. The promotion function of Berberine for osteogenic differentiation of human periodontal ligament stem cells via ERK-FOS pathway mediated by EGFR. Sci Rep 2018; 8(1): 2848. doi: 10.1038/s41598-018-21116-3 PMID: 29434321
  103. Xin BC, Wu QS, Jin S, Luo AH, Sun DG, Wang F. Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol Oncol Res 2020; 26(3): 1677-85. doi: 10.1007/s12253-019-00746-6 PMID: 31598896
  104. Yao Q, Cosme JGL, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017; 115: 115-27. doi: 10.1016/j.biomaterials.2016.11.018 PMID: 27886552
  105. Abazari MF, Nejati F, Nasiri N, et al. Platelet-rich plasma incorporated electrospun PVA-chitosan-HA nanofibers accelerates osteogenic differentiation and bone reconstruction. Gene 2019; 720: 144096. doi: 10.1016/j.gene.2019.144096 PMID: 31476405
  106. Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int 2020; 2020: 6234167.
  107. De Mori A, Peña Fernández M, Blunn G, Tozzi G, Roldo M. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers 2018; 10(3): 285. doi: 10.3390/polym10030285 PMID: 30966320
  108. Hong N, Yang GH, Lee J, Kim G. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater 2018; 106(1): 444-59. doi: 10.1002/jbm.b.33826 PMID: 28106947
  109. Adepu S, Dhiman N, Laha A, Sharma CS, Ramakrishna S, Khandelwal M. Three-dimensional bioprinting for bone tissue regeneration. Curr Opin Biomed Eng 2017; 2: 22-8. doi: 10.1016/j.cobme.2017.03.005
  110. Griffin KS, Davis KM, McKinley TO, et al. Evolution of bone grafting: Bone grafts and tissue engineering strategies for vascularized bone regeneration. Clin Rev Bone Miner Metab 2015; 13(4): 232-44. doi: 10.1007/s12018-015-9194-9
  111. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 2010; 18(5): 1026-34. doi: 10.1038/mt.2009.315 PMID: 20068549

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers