Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs)
- Authors: Singh S.1, Chib S.2, Akhtar M.3, Kumar B.1, Chawla P.1, Bhatia R.1
-
Affiliations:
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga
- Department of Pharmacology, ISF College of Pharmacy Moga
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology
- Issue: Vol 22, No 6 (2024)
- Pages: 992-1015
- Section: Neurology
- URL: https://vietnamjournal.ru/1570-159X/article/view/644791
- DOI: https://doi.org/10.2174/1570159X21666230105110834
- ID: 644791
Cite item
Full Text
Abstract
Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimers disease (AD), Parkinsons disease (PD), Huntingtons disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.
About the authors
Sukhwinder Singh
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga
Email: info@benthamscience.net
Shivani Chib
Department of Pharmacology, ISF College of Pharmacy Moga
Email: info@benthamscience.net
Md. Akhtar
Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology
Email: info@benthamscience.net
Bhupinder Kumar
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga
Author for correspondence.
Email: info@benthamscience.net
Pooja Chawla
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga
Author for correspondence.
Email: info@benthamscience.net
Rohit Bhatia
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga
Author for correspondence.
Email: info@benthamscience.net
References
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules, 2020, 25(22), 5277. doi: 10.3390/molecules25225277 PMID: 33198233
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 2019, 40(8), 592-604. doi: 10.1016/j.tips.2019.06.004 PMID: 31320117
- Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783. doi: 10.3390/ijms20112783 PMID: 31174387
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085. doi: 10.1016/j.drudis.2019.06.014 PMID: 31238113
- Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851. doi: 10.1016/j.compbiomed.2021.104851 PMID: 34520990
- Rijo, P.; Mori, M. Natural products as an important source in drug discovery. Curr. Pharm. Des., 2020, 26(24), 2805-2806. doi: 10.2174/138161282624200625104355 PMID: 32586237
- Medline Plus. Degenerative nerve diseases. Health Topics, 2021, 2022
- Butterfield, D.A. Perspectives on oxidative stress in Alzheimers disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479. doi: 10.3233/JAD-179912 PMID: 29504538
- Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinsons disease and Alzheimers disease. Prog. Neurobiol., 2016, 147, 1-19. doi: 10.1016/j.pneurobio.2016.07.005 PMID: 27769868
- Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimers disease. Front. Aging Neurosci., 2014, 6, 206. doi: 10.3389/fnagi.2014.00206 PMID: 25221506
- Facts and figures. Alzheimer's and Dementia, , 2021, 2022(17(3)), 327-406.
- Kumar, R.; Kumar, V.; Kumar, B.; Thakur, A.; Dwivedi, A.R. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimers disease. Curr. Med. Chem., 2022, 29(10), 1757-1803. doi: 10.2174/0929867328666210512005508 PMID: 33982650
- Foundation, P.s. Understanding Parkinson's. Parkinson's foundation, 2022, 2022
- Yohrling, G.; Raimundo, K.; Crowell, V.; Lovecky, D.; Vetter, L.; Seeberger, L. Prevalence of huntingtons disease in the US (954); AAN Enterprises, 2020.
- Furby, H.; Siadimas, A.; Rutten-Jacobs, L.; Rodrigues, F.B.; Wild, E.J. Natural history and burden of Huntingtons disease in the UK: A population‐based cohort study. Eur. J. Neurol., 2022, 29(8), 2249-2257. doi: 10.1111/ene.15385 PMID: 35514071
- Riccò, M.; Vezzosi, L.; Balzarini, F.; Gualerzi, G.; Ranzieri, S. Prevalence of huntington disease in Italy: A systematic review and meta-analysis. Acta Biomed., 2020, 91(Suppl. 3), 119-127. PMID: 32275276
- Wedding, I.M.; Kroken, M.; Henriksen, S.P.; Selmer, K.K.; Fiskerstrand, T.; Knappskog, P.M.; Berge, T.; Tallaksen, C.M.E. Friedreich ataxia in Norway - an epidemiological, molecular and clinical study. Orphanet J. Rare Dis., 2015, 10(1), 108. doi: 10.1186/s13023-015-0328-4 PMID: 26338206
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurol., 2019, 32(5), 771-776. doi: 10.1097/WCO.0000000000000730 PMID: 31361627
- Ribeiro, A.; Abreu, R.M.V.; Dias, M.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Lett., 2018, 415, 86-105. doi: 10.1016/j.canlet.2017.12.006 PMID: 29222042
- Ballard, C.; Aarsland, D.; Cummings, J.; OBrien, J.; Mills, R.; Molinuevo, J.L.; Fladby, T.; Williams, G.; Doherty, P.; Corbett, A.; Sultana, J. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol., 2020, 16(12), 661-673. doi: 10.1038/s41582-020-0397-4 PMID: 32939050
- Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimers disease: Causes and treatment. Molecules, 2020, 25(24), 5789. doi: 10.3390/molecules25245789 PMID: 33302541
- Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease. JAMA, 2020, 323(6), 548-560. doi: 10.1001/jama.2019.22360 PMID: 32044947
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3(1), 17071. doi: 10.1038/nrdp.2017.71 PMID: 28980624
- Singh, K.; Kumar, P.; Bhatia, R.; Mehta, V.; Kumar, B.; Akhtar, M.J. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur. J. Med. Chem., 2022, 234, 114269. doi: 10.1016/j.ejmech.2022.114269 PMID: 35306287
- Sharma, H.; Chawla, P.A.; Bhatia, R. 1, 3, 5-Pyrazoline derivatives in cns disorders: synthesis, biological evaluation and structural insights through molecular docking. CNS & Neurological Disorders- Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2020, 19(6), 448-465.
- Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35(9), 4660-4702. doi: 10.1002/ptr.7099 PMID: 33847440
- Meier, B.P.; Lappas, C.M. The influence of safety, efficacy, and medical condition severity on natural versus synthetic drug preference. Med. Decis. Making, 2016, 36(8), 1011-1019. doi: 10.1177/0272989X15621877 PMID: 26683247
- Meier, B.P.; Dillard, A.J.; Osorio, E.; Lappas, C.M. A behavioral confirmation and reduction of the natural versus synthetic drug bias. Med. Decis. Making, 2019, 39(4), 360-370. doi: 10.1177/0272989X19838527 PMID: 30896330
- Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578. doi: 10.3390/ijms19061578 PMID: 29799486
- Motor Neuron Disease. Disorders, 2019, 2022
- Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035. doi: 10.1101/cshperspect.a028035 PMID: 28062563
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimers disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554. doi: 10.2147/IJN.S200490 PMID: 31410002
- Bhatia, R.; Chakrabarti, S.S.; Kaur, U.; Parashar, G.; Banerjee, A.; Rawal, R.K. Multi-Target Directed Ligands (MTDLs): Promising coumarin hybrids for Alzheimers disease. Curr. Alzheimer Res., 2021, 18(10), 802-830. doi: 10.2174/1567205018666211208140551 PMID: 34879800
- Shi, Y.; Zhang, W.; Yang, Y.; Murzin, A.G.; Falcon, B.; Kotecha, A.; van Beers, M.; Tarutani, A.; Kametani, F.; Garringer, H.J.; Vidal, R.; Hallinan, G.I.; Lashley, T.; Saito, Y.; Murayama, S.; Yoshida, M.; Tanaka, H.; Kakita, A.; Ikeuchi, T.; Robinson, A.C.; Mann, D.M.A.; Kovacs, G.G.; Revesz, T.; Ghetti, B.; Hasegawa, M.; Goedert, M.; Scheres, S.H.W. Structure-based classification of tauopathies. Nature, 2021, 598(7880), 359-363. doi: 10.1038/s41586-021-03911-7 PMID: 34588692
- Ratti, A.; Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem., 2016, 138(Suppl. 1), 95-111. doi: 10.1111/jnc.13625 PMID: 27015757
- Barkat, M.A.; Goyal, A.; Barkat, H.A.; Salauddin, M.; Pottoo, F.H.; Anwer, E.T. Herbal medicine: Clinical perspective and regulatory status. Comb. Chem. High Throughput Screen., 2021, 24(10), 1573-1582. doi: 10.2174/1386207323999201110192942 PMID: 33176638
- Farzaei, M.H.; Shahpiri, Z.; Mehri, M.R.; Bahramsoltani, R.; Rezaei, M.; Raeesdana, A.; Rahimi, R. Medicinal plants in neurodegenerative diseases: perspective of traditional persian medicine. Curr. Drug Metab., 2018, 19(5), 429-442. doi: 10.2174/1389200219666180305150256 PMID: 29512453
- Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. neuroprotective herbs for the management of Alzheimers disease. Biomolecules, 2021, 11(4), 543. doi: 10.3390/biom11040543 PMID: 33917843
- Singh, K.; Bhatia, R.; Kumar, B.; Singh, G.; Monga, V. Design strategies, chemistry and therapeutic insights of multi-target directed ligands as antidepressant agents. Curr. Neuropharmacol., 2022, 20(7), 1329-1358. PMID: 34727859
- Dey, A.; Gorai, P.; Mukherjee, A.; Dhan, R.; Modak, B.K. Ethnobiological treatments of neurological conditions in the Chota Nagpur Plateau, India. J. Ethnopharmacol., 2017, 198, 33-44. doi: 10.1016/j.jep.2016.12.040 PMID: 28017696
- Amoateng, P.; Quansah, E.; Karikari, T.K.; Asase, A.; Osei-Safo, D.; Kukuia, K.K.E.; Amponsah, I.K.; Nyarko, A.K. Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-14. doi: 10.1155/2018/8590381 PMID: 30671131
- Kumar, R.R.; Singh, L.; Thakur, A.; Singh, S.; Kumar, B. Role of vitamins in neurodegenerative diseases: A review. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 667-773. doi: 10.2174/1871527320666211119122150 PMID: 34802410
- Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol., 2021, 69, 200-211. doi: 10.1016/j.semcancer.2019.07.023 PMID: 31374244
- Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Disease-modifying treatment of Parkinsons disease by phytochemicals: targeting multiple pathogenic factors. J. Neural Transm. (Vienna), 2021. PMID: 34654977
- Mohi-ud-din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193. doi: 10.2174/1570159X19666210428120514 PMID: 33913406
- Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinsons disease: Efficacy and safety of current and new formulations. CNS Drugs, 2019, 33(9), 905-918. doi: 10.1007/s40263-019-00661-z PMID: 31473980
- Jenner, P.; Katzenschlager, R. Apomorphine - pharmacological properties and clinical trials in Parkinsons disease. Parkinsonism Relat. Disord., 2016, 33(Suppl. 1), S13-S21. doi: 10.1016/j.parkreldis.2016.12.003 PMID: 27979722
- Müller, T. An evaluation of subcutaneous apomorphine for the treatment of Parkinsons disease. Expert Opin. Pharmacother., 2020, 21(14), 1659-1665. doi: 10.1080/14656566.2020.1787379 PMID: 32640853
- Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimers Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670. doi: 10.1016/j.biopha.2019.109670 PMID: 31810131
- Fan, D.; Liu, L.; Wu, Z.; Cao, M. Combating neurodegenerative diseases with the plant alkaloid berberine: Molecular mechanisms and therapeutic potential. Curr. Neuropharmacol., 2019, 17(6), 563-579. doi: 10.2174/1570159X16666180419141613 PMID: 29676231
- Huang, M.; Jiang, X.; Liang, Y.; Liu, Q.; Chen, S.; Guo, Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimers disease. Exp. Gerontol., 2017, 91, 25-33. doi: 10.1016/j.exger.2017.02.004 PMID: 28223223
- Wu, Y.; Chen, Q.; Wen, B.; Wu, N.; He, B.; Chen, J. Berberine reduces Aβ42 deposition and tau hyperphosphorylation via ameliorating endoplasmic reticulum stress. Front. Pharmacol., 2021, 12, 640758. doi: 10.3389/fphar.2021.640758 PMID: 34349640
- Kumar, B.; Sheetal, S.; Mantha, A.K.; Kumar, V. Recent developments on the structureactivity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances, 2016, 6(48), 42660-42683. doi: 10.1039/C6RA00302H
- Kumar, B.; Gupta, V.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities. Curr. Drug Targets, 2016, 18(1), 87-97. doi: 10.2174/1389450117666151209123402 PMID: 26648064
- Ribaudo, G.; Zanforlin, E.; Canton, M.; Bova, S.; Zagotto, G. Preliminary studies of berberine and its semi-synthetic derivatives as a promising class of multi-target anti-parkinson agents. Nat. Prod. Res., 2018, 32(12), 1395-1401. doi: 10.1080/14786419.2017.1350669 PMID: 28691859
- Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinsons disease. Int. J. Mol. Med., 2014, 33(4), 870-878. doi: 10.3892/ijmm.2014.1656 PMID: 24535622
- Croce, K.R.; Yamamoto, A. A role for autophagy in Huntingtons disease. Neurobiol. Dis., 2019, 122, 16-22. doi: 10.1016/j.nbd.2018.08.010 PMID: 30149183
- Sahu, K.; Singh, S.; Devi, B.; Singh, C.; Singh, A. A review on the neuroprotective effect of berberine against chemotherapy- induced cognitive impairment. Curr. Drug Targets, 2022, 23(9), 913-923. doi: 10.2174/1389450123666220303094752 PMID: 35240956
- Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic effect of berberine on Huntingtons disease transgenic mouse model. PLoS One, 2015, 10(7), e0134142. doi: 10.1371/journal.pone.0134142 PMID: 26225560
- Dey, A.; Mukherjee, A. Plant-Derived Alkaloids: A promising window for neuroprotective drug discovery. Discovery and Development of Neuroprotective Agents from Natural Products; Brahmachari, G., Ed.; Elsevier, 2018, pp. 237-320. doi: 10.1016/B978-0-12-809593-5.00006-9
- Badshah, H.; Ikram, M.; Ali, W.; Ahmad, S.; Hahm, J.R.; Kim, M.O. Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains. Biomolecules, 2019, 9(11), 719. doi: 10.3390/biom9110719 PMID: 31717470
- Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimers and Parkinsons disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 902. doi: 10.3390/antiox9090902 PMID: 32971922
- Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290. doi: 10.1111/cns.12684 PMID: 28317317
- Plazas, E.; Hagenow, S.; Avila Murillo, M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722. doi: 10.1016/j.bioorg.2020.103722 PMID: 32155491
- Jiang, B.; Meng, L.; Zou, N.; Wang, H.; Li, S.; Huang, L.; Cheng, X.; Wang, Z.; Chen, W.; Wang, C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine, 2019, 62, 152967. doi: 10.1016/j.phymed.2019.152967 PMID: 31154274
- Li, S.P.; Wang, Y.W.; Qi, S.L.; Zhang, Y.P.; Deng, G.; Ding, W.Z.; Ma, C.; Lin, Q.Y.; Guan, H.D.; Liu, W.; Cheng, X.M.; Wang, C.H. Analogous β-carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front. Pharmacol., 2018, 9, 346. doi: 10.3389/fphar.2018.00346 PMID: 29755345
- Nurmaganbetov, Z.S.; Arystan, L.I.; Muldaeva, G.M.; Haydargalieva, L.S.; Adekenov, S.M. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound. Pharmacol. Rep., 2019, 71(6), 1050-1058. doi: 10.1016/j.pharep.2019.06.002 PMID: 31605892
- Cai, C.Z.; Zhou, H.F.; Yuan, N.N.; Wu, M.Y.; Lee, S.M.Y.; Ren, J.Y.; Su, H.X.; Lu, J.J.; Chen, X.P.; Li, M.; Tan, J.Q.; Lu, J.H. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine, 2019, 61, 152842. doi: 10.1016/j.phymed.2019.152842 PMID: 31048127
- Tsai, S.J. Huperzine-A, a versatile herb, for the treatment of Alzheimers disease. J. Chin. Med. Assoc., 2019, 82(10), 750-751. doi: 10.1097/JCMA.0000000000000151 PMID: 31305343
- Friedli, M.J.; Inestrosa, N.C. Huperzine a and its neuroprotective molecular signaling in Alzheimers disease. Molecules, 2021, 26(21), 6531. doi: 10.3390/molecules26216531 PMID: 34770940
- Callizot, N.; Campanari, M.L.; Rouvière, L.; Jacquemot, G.; Henriques, A.; Garayev, E.; Poindron, P. Huperzia serrata extract NSP01 with neuroprotective effects-potential synergies of huperzine a and polyphenols. Front. Pharmacol., 2021, 12, 681532-681532. doi: 10.3389/fphar.2021.681532 PMID: 34526893
- Wang, C.; Cai, Z.; Wang, W.; Wei, M.; Kou, D.; Li, T.; Yang, Z.; Guo, H.; Le, W.; Li, S. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimers disease. J. Nutr. Biochem., 2019, 70, 147-155. doi: 10.1016/j.jnutbio.2019.05.009 PMID: 31207354
- Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 16. doi: 10.1186/s43088-022-00196-1 PMID: 35127957
- Li, R.; Lu, Y.; Zhang, Q.; Liu, W.; Yang, R.; Jiao, J.; Liu, J.; Gao, G.; Yang, H. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy, 2022, 18(3), 559-575. PMID: 34092198
- Sharma, S.; Raj, K.; Singh, S. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplementinduced Parkinsons disease in experimental rats. Neurotox. Res., 2020, 37(1), 198-209. doi: 10.1007/s12640-019-00120-z PMID: 31654381
- Salman, M.; Tabassum, H.; Parvez, S. Piperine mitigates behavioral impairments and provides neuroprotection against 3-nitropropinoic acid-induced Huntington disease-like symptoms. Nutr. Neurosci., 2022, 25(1), 100-109. doi: 10.1080/1028415X.2020.1721645 PMID: 32093571
- Tyagi, S.; Shekhar, N.; Thakur, A.K. Protective role of capsaicin in neurological disorders: An overview. Neurochem. Res., 2022, 47(6), 1513-1531. doi: 10.1007/s11064-022-03549-5 PMID: 35150419
- Wang, J.; Sun, B.L.; Xiang, Y.; Tian, D.Y.; Zhu, C.; Li, W.W.; Liu, Y.H.; Bu, X.L.; Shen, L.L.; Jin, W.S.; Wang, Z.; Zeng, G.H.; Xu, W.; Chen, L.Y.; Chen, X.W.; Hu, Z.; Zhu, Z.M.; Song, W.; Zhou, H.D.; Yu, J.T.; Wang, Y.J. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimers disease-type pathology and cognitive deficits in APP/PS1 mice. Transl. Psychiatry, 2020, 10(1), 230. doi: 10.1038/s41398-020-00918-y PMID: 32661266
- Shalaby, M.A.; Nounou, H.A.; Deif, M.M. The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimers disease. Egypt. J. Neurol. Psychiat. Neurosurg., 2019, 55(1), 48. doi: 10.1186/s41983-019-0094-7
- Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinsons disease. Biosci. Rep., 2020, 40(6), BSR20191796. doi: 10.1042/BSR20191796 PMID: 32537633
- Siddique, Y.H.; Naz, F.; Jyoti, S. Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinsons disease. Acta Biol. Hung., 2018, 69(2), 115-124. doi: 10.1556/018.69.2018.2.1 PMID: 29888671
- Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids: Potential therapeutic agents by their antioxidant capacity. Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing, 2019, pp. 265-288. doi: 10.1016/B978-0-12-814774-0.00014-1
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377. doi: 10.3390/molecules26175377 PMID: 34500810
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243. doi: 10.3390/molecules25225243 PMID: 33187049
- Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimers disease and Parkinsons disease. Int. J. Mol. Sci., 2019, 20(14), 3380. doi: 10.3390/ijms20143380 PMID: 31295812
- Ludovici, V.; Barthelmes, J.; Nägele, M.P.; Enseleit, F.; Ferri, C.; Flammer, A.J.; Ruschitzka, F.; Sudano, I. Cocoa, blood pressure, and vascular function. Front. Nutr., 2017, 4, 36. doi: 10.3389/fnut.2017.00036 PMID: 28824916
- Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid. Naringenin. Life Sci., 2018, 208, 111-122. doi: 10.1016/j.lfs.2018.07.017 PMID: 30021118
- Singh, S.; Sharma, A.; Monga, V.; Bhatia, R. Compendium of naringenin: Potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Crit. Rev. Food Sci. Nutr., 2023, 63(27), 8868-8899. doi: 10.1080/10408398.2022.2056726 PMID: 35357240
- Md, S.; Gan, S.Y.; Haw, Y.H.; Ho, C.L.; Wong, S.; Choudhury, H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int. J. Biol. Macromol., 2018, 118(Pt A), 1211-1219. doi: 10.1016/j.ijbiomac.2018.06.190 PMID: 30001606
- Lawal, M.; Olotu, F.A.; Soliman, M.E.S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimers disease using bioinformatics and computational tools. Comput. Biol. Med., 2018, 98, 168-177. doi: 10.1016/j.compbiomed.2018.05.012 PMID: 29860210
- Wu, J.; Kou, X.; Ju, H.; Zhang, H.; Yang, A.; Shen, R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimers disease. Bioorg. Med. Chem. Lett., 2021, 49, 128316. doi: 10.1016/j.bmcl.2021.128316 PMID: 34391893
- Mi, J.; He, Y.; Yang, J.; Zhou, Y.; Zhu, G.; Wu, A.; Liu, W.; Sang, Z. Development of naringenin-O-carbamate derivatives as multi-target-directed liagnds for the treatment of Alzheimers disease. Bioorg. Med. Chem. Lett., 2022, 60, 128574. doi: 10.1016/j.bmcl.2022.128574 PMID: 35065231
- Ahmad, M.H.; Fatima, M.; Ali, M.; Rizvi, M.A.; Mondal, A.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinsons disease. Neuropharmacology, 2021, 201, 108831. doi: 10.1016/j.neuropharm.2021.108831 PMID: 34655599
- Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539. doi: 10.1080/00207454.2018.1545772 PMID: 30433834
- Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J.; Vitamin, E.; Vitamin, E. Loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinsons disease model. BioMed Res. Int., 2019, 2019, 1-20. doi: 10.1155/2019/2382563 PMID: 31111044
- Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front. Immunol., 2019, 10, 936. doi: 10.3389/fimmu.2019.00936 PMID: 31118933
- Govindasamy, H.; Magudeeswaran, S.; Kandasamy, S.; Poomani, K. Binding mechanism of naringenin with monoamine oxidase B enzyme: QM/MM and molecular dynamics perspective. Heliyon, 2021, 7(4), e06684. doi: 10.1016/j.heliyon.2021.e06684 PMID: 33898820
- Salman, M.; Sharma, P.; Alam, M.I.; Tabassum, H.; Parvez, S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntingtons disease like symptoms in rats. Nutr. Neurosci., 2022, 25(9), 1898-1908. PMID: 33856270
- Dourado, N.S.; Souza, C.S.; de Almeida, M.M.A.; Bispo da Silva, A.; dos Santos, B.L.; Silva, V.D.A.; De Assis, A.M.; da Silva, J.S.; Souza, D.O.; Costa, M.F.D.; Butt, A.M.; Costa, S.L. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated With Alzheimers Disease. Front. Aging Neurosci., 2020, 12, 119. doi: 10.3389/fnagi.2020.00119 PMID: 32499693
- Alsadat, A.M.; Nikbakht, F.; Hossein Nia, H.; Golab, F.; Khadem, Y.; Barati, M.; Vazifekhah, S. GSK-3β; as a target for apigenin-induced neuroprotection against Aβ 2535 in a rat model of Alzheimers disease. Neuropeptides, 2021, 90, 102200. doi: 10.1016/j.npep.2021.102200 PMID: 34597878
- Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2019, 75, 105697. doi: 10.1016/j.intimp.2019.105697 PMID: 31352326
- Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinsons disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact., 2017, 269, 67-79. doi: 10.1016/j.cbi.2017.03.016 PMID: 28389404
- Kim, Y.J.; Cho, E.J.; Lee, A.Y.; Seo, W.T. Apigenin ameliorates oxidative stress-induced neuronal apoptosis in SH-SY5Y Cells. Hanguk Misaengmul, Saengmyong Konghakhoe Chi., 2021, 49(2), 138-147. doi: 10.48022/mbl.2009.09006
- Ginwala, R.; Bhavsar, R.; Moore, P.; Bernui, M.; Singh, N.; Bearoff, F.; Nagarkatti, M.; Khan, Z.K.; Jain, P. Apigenin modulates dendritic cell activities and curbs inflammation via RelB inhibition in the context of neuroinflammatory diseases. J. Neuroimmune Pharmacol., 2021, 16(2), 403-424. doi: 10.1007/s11481-020-09933-8 PMID: 32607691
- Tana; Nakagawa, T. Luteolin ameliorates depression-like behaviors by suppressing ER stress in a mouse model of Alzheimers disease. Biochem. Biophys. Res. Commun., 2022, 588, 168-174. doi: 10.1016/j.bbrc.2021.12.074 PMID: 34959189
- Kou, J.J.; Shi, J.Z.; He, Y.Y.; Hao, J.J.; Zhang, H.Y.; Luo, D.M.; Song, J.K.; Yan, Y.; Xie, X.M.; Du, G.H.; Pang, X.B. Luteolin alleviates cognitive impairment in Alzheimers disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol. Sin., 2022, 43(4), 840-849. PMID: 34267346
- Ali, F. Rahul; Jyoti, S.; Naz, F.; Ashafaq, M.; Shahid, M.; Siddique, Y.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimers disease. Neurosci. Lett., 2019, 692, 90-99. doi: 10.1016/j.neulet.2018.10.053 PMID: 30420334
- Elmazoglu, Z.; Yar Saglam, A.S.; Sonmez, C.; Karasu, C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinsons disease and inflammatory pathways. Drug Chem. Toxicol., 2020, 43(1), 96-103. doi: 10.1080/01480545.2018.1504961 PMID: 30207190
- Qin, L.; Chen, Z.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Zhang, W.; Xu, Q.; Huang, F.; Wu, X. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology, 2019, 426, 152256. doi: 10.1016/j.tox.2019.152256 PMID: 31381935
- Brotini, S. Palmitoylethanolamide/luteolin as adjuvant therapy to improve an unusual case of camptocormia in a patient with Parkinsons disease: A case report. Innov. Clin. Neurosci., 2021, 18(10-12), 12-14. PMID: 35096476
- Hasan, S.Y. Rahul; Varshney, H.; Mantasha, I.; Shahid, M. Effect of luteolin on the transgenic Drosophila model of Huntingtons disease. Comput. Toxicol., 2021, 17, 100148. doi: 10.1016/j.comtox.2020.100148
- Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828. doi: 10.3892/or.2017.5766 PMID: 28677813
- Zu, G.; Sun, K.; Li, L.; Zu, X.; Han, T.; Huang, H. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci. Rep., 2021, 11(1), 22959. doi: 10.1038/s41598-021-02248-5 PMID: 34824300
- Zhang, X.W.; Chen, J.Y.; Ouyang, D.; Lu, J.H. Quercetin in animal models of Alzheimers disease: A systematic review of preclinical studies. Int. J. Mol. Sci., 2020, 21(2), 493. doi: 10.3390/ijms21020493 PMID: 31941000
- Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimers disease. Life Sci., 2019, 224, 109-119. doi: 10.1016/j.lfs.2019.03.055 PMID: 30914316
- Lema Abdullahi, A.; Lema, A.; Jibrin, K.; Nuraddeen, W.; Alexander, E. Ameliorative role of nutraceutical quercetin and its derivatives against cognitive impairment process induced by lead exposure in Drosophila melanogaster (Fruit Fly). Iraqi J. Pharm Sci., 2021, 30(2), 135-142.
- Xu, M.; Huang, H.; Mo, X.; Zhu, Y.; Chen, X.; Li, X.; Peng, X.; Xu, Z.; Chen, L.; Rong, S.; Yang, W.; Liu, S.; Liu, L. Quercetin‐3‐ O ‐Glucuronide Alleviates Cognitive Deficit and Toxicity in Aβ 1‐42 ‐Induced AD‐Like Mice and SH‐SY5Y Cells. Mol. Nutr. Food Res., 2021, 65(6), 2000660. doi: 10.1002/mnfr.202000660 PMID: 33141510
- Elfiky, A.M.; Mahmoud, A.A.; Elreedy, H.A.; Ibrahim, K.S.; Ghazy, M.A. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimers disease rat model. Life Sci., 2021, 285, 119964. doi: 10.1016/j.lfs.2021.119964 PMID: 34537230
- Madiha, S.; Batool, Z.; Tabassum, S.; Liaquat, L.; Sadir, S.; Shahzad, S.; Naqvi, F.; Saleem, S.; Yousuf, S.; Nawaz, A.; Ahmad, S.; Sajid, I.; Afzal, A.; Haider, S. Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS One, 2021, 16(11), e0258928. doi: 10.1371/journal.pone.0258928 PMID: 34767546
- Pantoja, L.V.P.S.; Trindade, S.S.A.; Carneiro, A.S.; Silva, J.P.B.; Paixão, T.P.; Romeiro, C.F.R.; Moraes, C.S.P.; Pinto, A.C.G.; Raposo, N.R.B.; Andrade, M.A. Computational study of the main flavonoids from Chrysobalanus icaco L. against NADPH-oxidase and in vitro antioxidant activity. Res. Soc Devel., 2022, 11(6), e5011628542-e5011628542. doi: 10.33448/rsd-v11i6.28542
- Wang, W.W.; Han, R.; He, H.J.; Li, J.; Chen, S.Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinsons disease models. Aging (Albany NY), 2021, 13(8), 11738-11751. doi: 10.18632/aging.202868 PMID: 33878030
- Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol., 2022, 13, 943321. doi: 10.3389/fimmu.2022.943321 PMID: 35935939
- Xiao, S.; Lu, Y.; Wu, Q.; Yang, J.; Chen, J.; Zhong, S.; Eliezer, D.; Tan, Q.; Wu, C. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int. J. Biol. Macromol., 2021, 178, 381-393. doi: 10.1016/j.ijbiomac.2021.02.210 PMID: 33662414
- Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin Improved Rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinsons disease. J. Diet. Suppl., 2021, 18(1), 57-71. doi: 10.1080/19390211.2019.1710646 PMID: 31992104
- Watanabe, R.; Kurose, T.; Morishige, Y.; Fujimori, K. Protective effects of fisetin against 6-OHDA-induced apoptosis by activation of PI3K-Akt signaling in human neuroblastoma SH-SY5Y cells. Neurochem. Res., 2018, 43(2), 488-499. doi: 10.1007/s11064-017-2445-z PMID: 29204750
- Maher, P. Protective effects of fisetin and other berry flavonoids in Parkinsons disease. Food Funct., 2017, 8(9), 3033-3042. doi: 10.1039/C7FO00809K PMID: 28714503
- Rane, A.R.; Paithankar, H.; Hosur, R.V.; Choudhary, S. Modulation of α-synuclein fibrillation by plant metabolites, daidzein, fisetin and scopoletin under physiological conditions. Int. J. Biol. Macromol., 2021, 182, 1278-1291. doi: 10.1016/j.ijbiomac.2021.05.071 PMID: 33991558
- Wang, T.H.; Wang, S.Y.; Wang, X.D.; Jiang, H.Q.; Yang, Y.Q.; Wang, Y.; Cheng, J.L.; Zhang, C.T.; Liang, W.W.; Feng, H.L. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hSOD1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience, 2018, 379, 152-166. doi: 10.1016/j.neuroscience.2018.03.008 PMID: 29559385
- Abou Baker, D.H.; Ibrahim, B.M.M.; Hassan, N.S.; Yousuf, A.F.; Gengaihi, S.E. Exploiting Citrus aurantium seeds and their secondary metabolites in the management of Alzheimer disease. Toxicol. Rep., 2020, 7, 723-729. doi: 10.1016/j.toxrep.2020.06.001 PMID: 32551234
- Justin-Thenmozhi, A.; Dhivya Bharathi, M.; Kiruthika, R.; Manivasagam, T.; Borah, A.; Essa, M.M. Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in wistar rats. Neurotox. Res., 2018, 34(3), 463-476. doi: 10.1007/s12640-018-9904-4 PMID: 29687202
- Mandour, D.A.; Bendary, M.A.; Alsemeh, A.E. Histological and imunohistochemical alterations of hippocampus and prefrontal cortex in a rat model of Alzheimer like-disease with a preferential role of the flavonoid "hesperidin". J. Mol. Histol., 2021, 52(5), 1043-1065. doi: 10.1007/s10735-021-09998-6 PMID: 34170456
- Elyasi, L.; Jahanshahi, M.; Jameie, S.B.; Hamid Abadi, H.G.; Nikmahzar, E.; Khalili, M.; Jameie, M.; Jameie, M. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J. Basic Clin. Physiol. Pharmacol., 2021, 32(2), 11-17. doi: 10.1515/jbcpp-2019-0270 PMID: 32918805
- Kesh, S.; Kannan, R.R.; Sivaji, K.; Balakrishnan, A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinsons disease model. Neurosci. Lett., 2021, 740, 135426. doi: 10.1016/j.neulet.2020.135426 PMID: 33075420
- Poetini, M.R.; Araujo, S.M.; Trindade de Paula, M.; Bortolotto, V.C.; Meichtry, L.B.; Polet de Almeida, F.; Jesse, C.R.; Kunz, S.N.; Prigol, M. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinsons disease. Chem. Biol. Interact., 2018, 279, 177-186. doi: 10.1016/j.cbi.2017.11.018 PMID: 29191452
- Subedi, L.; Gaire, B.P. Neuroprotective effects of curcumin in cerebral ischemia: cellular and molecular mechanisms. ACS Chem. Neurosci., 2021, 12(14), 2562-2572. doi: 10.1021/acschemneuro.1c00153 PMID: 34251185
- Xu, H.; Nie, B.; Liu, L.; Zhang, C.; Zhang, Z.; Xu, M.; Mei, Y. Curcumin prevents brain damage and cognitive dysfunction during ischemic-reperfusion through the regulation of miR-7-5p. Curr. Neurovasc. Res., 2020, 16(5), 441-454. doi: 10.2174/1567202616666191029113633 PMID: 31660818
- Çakmak, G.; Kaplan, D.S. Yıldırım, C.; Ulusal, H.; Tarakçıoğlu, M.; Öztürk, Z.A. Improvement of cognitive deficit of curcumin on scopolamine-induced Alzheimers disease models. Caspian J. Intern. Med., 2022, 13(1), 16-22. PMID: 35178203
- Pluta, R. Furmaga-Jabłońska, W.; Januszewski, S.; Czuczwar, S.J. Post-Ischemic brain neurodegeneration in the form of Alzheimers disease proteinopathy: Possible therapeutic role of curcumin. Nutrients, 2022, 14(2), 248. doi: 10.3390/nu14020248 PMID: 35057429
- Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimers disease. J. Investig. Med., 2016, 64(8), 1220-1234. doi: 10.1136/jim-2016-000240 PMID: 27521081
- ELBini-Dhouib, I.; Doghri, R.; Ellefi, A.; Degrach, I.; Srairi-Abid, N.; Gati, A. Curcumin attenuated neurotoxicity in sporadic animal model of Alzheimers disease. Molecules, 2021, 26(10), 3011. doi: 10.3390/molecules26103011 PMID: 34070220
- Noor, N.A.; Hosny, E.N.; Khadrawy, Y.A.; Mourad, I.M.; Othman, A.I.; Aboul Ezz, H.S.; Mohammed, H.S. Effect of curcumin nanoparticles on streptozotocin-induced male Wistar rat model of Alzheimers disease. Metab. Brain Dis., 2022, 37(2), 343-357. doi: 10.1007/s11011-021-00897-z PMID: 35048324
- da Costa, I.M.; de Moura Freire, M.A.; de Paiva Cavalcanti, J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira, R.I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimers disease: a systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421. doi: 10.2174/0929867325666180117112610 PMID: 29338678
- Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101. doi: 10.1080/10408398.2017.1358139 PMID: 28799796
- Nebrisi, E.E. Neuroprotective activities of curcumin in Parkinsons disease: A review of the literature. Int. J. Mol. Sci., 2021, 22(20), 11248. doi: 10.3390/ijms222011248 PMID: 34681908
- Abrahams, S.; Miller, H.C.; Lombard, C.; van der Westhuizen, F.H.; Bardien, S. Curcumin pre-treatment may protect against mitochondrial damage in LRRK2-mutant Parkinsons disease and healthy control fibroblasts. Biochem. Biophys. Rep., 2021, 27, 101035. doi: 10.1016/j.bbrep.2021.101035 PMID: 34189277
- Fikry, H.; Saleh, L.A.; Abdel Gawad, S. Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinsons Disease Model. CNS Neurosci. Ther., 2022, 28(5), 732-748. doi: 10.1111/cns.13805 PMID: 35068069
- He, H.J.; Xiong, X.; Zhou, S.; Zhang, X.R.; Zhao, X.; Chen, L.; Xie, C.L. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinsons models. Neurochem. Int., 2022, 155, 105297. doi: 10.1016/j.neuint.2022.105297 PMID: 35122926
- Ramires Júnior, O.V.; Alves, B.S.; Barros, P.A.B.; Rodrigues, J.L.; Ferreira, S.P.; Monteiro, L.K.S.; Araújo, G.M.S.; Fernandes, S.S.; Vaz, G.R.; Dora, C.L.; Hort, M.A. Nanoemulsion improves the neuroprotective effects of curcumin in an experimental model of Parkinsons disease. Neurotox. Res., 2021, 39(3), 787-799. doi: 10.1007/s12640-021-00362-w PMID: 33860897
- Chetty, D.; Abrahams, S.; Coller, R.; Carr, J.; Kenyon, C.; Bardien, S. Movement of prion-like α‐synuclein along the gutbrain axis in Parkinsons disease: A potential target of curcumin treatment. Eur. J. Neurosci., 2021, 54(2), 4695-4711. doi: 10.1111/ejn.15324 PMID: 34043864
- Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglione, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntingtons disease. Hum. Mol. Genet., 2019, 28(23), ddz247. doi: 10.1093/hmg/ddz247 PMID: 31630202
- Aditi, K.; Singh, A.; Shakarad, M.N.; Agrawal, N. Management of altered metabolic activity in Drosophila model of Huntingtons disease by curcumin. Exp. Biol. Med. (Maywood), 2022, 247(2), 152-164. doi: 10.1177/15353702211046927 PMID: 34743577
- Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779. doi: 10.2174/1871527317666180720162029 PMID: 30033879
- Patel, K.; Patel, D.K. The Beneficial Role of Rutin, A naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed; Academic Press, 2019; pp. 457-479.
- Sun, X.; Li, L.; Dong, Q.X.; Zhu, J.; Huang, Y.; Hou, S.; Yu, X.; Liu, R. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimers disease. J. Neuroinflammation, 2021, 18(1), 131. doi: 10.1186/s12974-021-02182-3 PMID: 34116706
- Ouyang, Q.; Liu, K.; Zhu, Q.; Deng, H.; Le, Y.; Ouyang, W.; Yan, X.; Zhou, W.; Tong, J. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and rutin for synergistic THerapy of Alzheimers disease. Small, 2022, 18(14), 2107534. doi: 10.1002/smll.202107534 PMID: 35182016
- Cordeiro, L.M.; Soares, M.V.; da Silva, A.F.; Machado, M.L.; Bicca, O.B.F.; da Silveira, T.L.; Arantes, L.P.; Soares, F.A.A. Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntingtons disease. Nutr. Neurosci., 2021, 1-14. doi: 10.1080/1028415X.2021.1956254 PMID: 34311678
- Cordeiro, L.M.; Machado, M.L.; da Silva, A.F.; Obetine, B.F.B.; da Silveira, T.L.; Soares, F.A.A.; Arantes, L.P. Rutin protects Huntingtons disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: Study in Caenorhabditis elegans model. Food Chem. Toxicol., 2020, 141, 111323. doi: 10.1016/j.fct.2020.111323 PMID: 32278002
- Suganya, S.N.; Sumathi, T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntingtons disease model in rats. Metab. Brain Dis., 2017, 32(2), 471-481. doi: 10.1007/s11011-016-9929-4 PMID: 27928694
- Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E.; Kassab, R.B. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntingtons disease. Neurotox. Res., 2020, 37(1), 77-92. doi: 10.1007/s12640-019-00086-y PMID: 31332714
- Neta, F.; Da Costa, I.; Lima, F.; Fernandes, L.; Cavalcanti, J.; Freire, M.; Lucena, E.D.S.; Do Rêgo, A.M.; De Azevedo, E.; Guzen, F. Effects of Mucuna pruriens (L.) supplementation on experimental models of Parkinsons disease: A systematic review. Pharmacogn. Rev., 2018, 12(23), 78-84.
- Nayak, V.S.; Kumar, N.; DSouza, A.S.; Nayak, S.S.; Cheruku, S.P.; Pai, K.S.R. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia. Neuroreport, 2017, 28(18), 1195-1201. doi: 10.1097/WNR.0000000000000888 PMID: 28953092
- Duttaroy, A.K. Health effects of terpenoids.Evidence-Based Nutrition and Clinical Evidence of Bioactive Foods in Human Health and Disease; Duttaroy, A.K., Ed.; Academic Press, 2021, pp. 413-424. doi: 10.1016/B978-0-12-822405-2.00017-7
- Song, Y.; Wang, Y.; Zheng, Y.; Liu, T.; Zhang, C. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia, 2021, 153, 104969. doi: 10.1016/j.fitote.2021.104969 PMID: 34147548
- Taheri, R.; Hadipour, E.; Tayarani-Najaran, Z. Crocin protects against beta-amyloid peptide-induced apoptosis in PC12 cells via the PI3 K pathway. Curr. Mol. Pharmacol., 2021, 14(4), 627-634. doi: 10.2174/1874467213666201012160401 PMID: 33045973
- Yousefsani, B.S.; Mehri, S.; Pourahmad, J.; Hosseinzadeh, H. Protective effect of crocin against mitochondrial damage and memory deficit induced by beta-amyloid in the hippocampus of rats. Iran. J. Pharm. Res., 2021, 20(2), 79-94. PMID: 34567148
- Hadipour, M.; Bahari, Z.; Afarinesh, M.R.; Jangravi, Z.; Shirvani, H.; Meftahi, G.H. Administering crocin ameliorates anxiety-like behaviours and reduces the inflammatory response in amyloid-beta induced neurotoxicity in rat. Clin. Exp. Pharmacol. Physiol., 2021, 48(6), 877-889. doi: 10.1111/1440-1681.13494 PMID: 33686675
- Saeedi, M.; Rashidy-Pour, A. Association between chronic stress and Alzheimers disease: Therapeutic effects of Saffron. Biomed. Pharmacother., 2021, 133, 110995. doi: 10.1016/j.biopha.2020.110995 PMID: 33232931
- Mohammadzadeh, L.; Hosseinzadeh, H.; Abnous, K.; Razavi, B.M. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ. Sci. Pollut. Res. Int., 2018, 25(5), 4904-4914. doi: 10.1007/s11356-017-0842-0 PMID: 29204935
- Chongtham, A.; Yoo, J.H.; Chin, T.M.; Akingbesote, N.D.; Huda, A.; Khoshnan, A. Gut bacteria regulate the pathogenesis of Huntingtons disease in Drosophila. bioRxiv, 2021, 16. doi: 10.1101/2021.08.12.456124
- Siahaan, E.A.; Pangestuti, R.; Pratama, I.S.; Putra, Y.; Kim, S-K. Beneficial effects of astaxanthin in cosmeceuticals with focus on emerging market trends. In: Global Perspectives on Astaxanthin; Ravishankar, G.A.; Ranga, R.A., Eds.; Academic Press, 2021; pp. 557-568.
- Alghazwi, M.; Smid, S.; Musgrave, I.; Zhang, W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation. Neurochem. Int., 2019, 124, 215-224. doi: 10.1016/j.neuint.2019.01.010 PMID: 30639263
- Rahman, S.O.; Panda, B.P.; Parvez, S.; Kaundal, M.; Hussain, S.; Akhtar, M.; Najmi, A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimers disease. Biomed. Pharmacother., 2019, 110, 47-58. doi: 10.1016/j.biopha.2018.11.043 PMID: 30463045
- Sakayanathan, P.; Loganathan, C.; Kandasamy, S.; Ramanna, R.V.; Poomani, K.; Thayumanavan, P. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int. J. Biol. Macromol., 2019, 140, 1147-1157. doi: 10.1016/j.ijbiomac.2019.08.168 PMID: 31442505
- Chen, C-C.; Lee, H-C.; Chang, J-H.; Chen, S-S.; Li, T-C.; Tsai, C-H.; Cho, D-Y.; Hsieh, C-L. Chinese herb Astragalus membranaceus enhances recovery of hemorrhagic stroke: double-blind, placebo-controlled, randomized study. Evid-Based Compl Alter Med, 2012, 2012, 708452.
- Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665. doi: 10.2174/1570159X16666180911123341 PMID: 30207235
- Shen, D.F.; Qi, H.P.; Ma, C.; Chang, M.X.; Zhang, W.N.; Song, R.R. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinsons disease by regulating miR-7/SNCA axis. Neurosci. Res., 2021, 165, 51-60. doi: 10.1016/j.neures.2020.04.003 PMID: 32333925
- Akinade, T.C.; Babatunde, O.O.; Adedara, A.O.; Adeyemi, O.E.; Otenaike, T.A.; Ashaolu, O.P.; Johnson, T.O.; Terriente-Felix, A.; Whitworth, A.J.; Abolaji, A.O. Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Sci. Rep., 2022, 12(1), 4594. doi: 10.1038/s41598-022-08409-4 PMID: 35301354
- Yang, J.; Li, J.; Lu, J.; Zhang, Y.; Zhu, Z.; Wan, H. Synergistic protective effect of astragaloside IVtetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. J. Ethnopharmacol., 2012, 140(1), 64-72. doi: 10.1016/j.jep.2011.12.023 PMID: 22207211
- Sánchez-Illana, Á.; Piñeiro-Ramos, J.D.; Ramos-Garcia, V.; Ten-Doménech, I.; Vento, M.; Kuligowski, J. Chapter Three - Oxidative stress biomarkers in the preterm infant. Adv. Clin. Chem; Makowski, G.S., Ed.; Elsevier, 2021, Vol. 102, pp. 127-189.
- Singhrang, N.; Tocharus, C.; Thummayot, S.; Sutheerawattananonda, M.; Tocharus, J. Protective effects of silk lutein extract from Bombyx mori cocoons on β-Amyloid peptide-induced apoptosis in PC12 cells. Biomed. Pharmacother., 2018, 103, 582-587. doi: 10.1016/j.biopha.2018.04.045 PMID: 29677545
- Ademowo, O.S.; Dias, I.H.K.; Diaz-Sanchez, L.; Sanchez-Aranguren, L.; Stahl, W.; Griffiths, H.R. Partial mitigation of oxidized phospholipid-mediated mitochondrial dysfunction in neuronal cells by oxocarotenoids. J. Alzheimers Dis., 2020, 74(1), 113-126. doi: 10.3233/JAD-190923 PMID: 31985464
- Fernandes, E.J.; Poetini, M.R.; Barrientos, M.S.; Bortolotto, V.C.; Araujo, S.M.; Santos Musachio, E.A.; De Carvalho, A.S.; Leimann, F.V.; Gonçalves, O.H.; Ramborger, B.P.; Roehrs, R.; Prigol, M.; Guerra, G.P. Exposure to lutein-loaded nanoparticles attenuates Parkinsons model-induced damage in Drosophila melanogaster: restoration of dopaminergic and cholinergic system and oxidative stress indicators. Chem. Biol. Interact., 2021, 340, 109431. doi: 10.1016/j.cbi.2021.109431 PMID: 33716020
- Binawade, Y.; Jagtap, A. Neuroprotective effect of lutein against 3-nitropropionic acid-induced Huntingtons disease-like symptoms: possible behavioral, biochemical, and cellular alterations. J. Med. Food, 2013, 16(10), 934-943. doi: 10.1089/jmf.2012.2698 PMID: 24138168
- Wani, A.; Al Rihani, S.B.; Sharma, A.; Weadick, B.; Govindarajan, R.; Khan, S.U.; Sharma, P.R.; Dogra, A.; Nandi, U.; Reddy, C.N.; Bharate, S.S.; Singh, G.; Bharate, S.B.; Vishwakarma, R.A.; Kaddoumi, A.; Kumar, A. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy, 2021, 17(11), 3813-3832. doi: 10.1080/15548627.2021.1872187 PMID: 33404280
- Zhang, J.; Wang, Y.; Dong, X.; Liu, J. Crocetin attenuates inflammation and amyloid-β; accumulation in APPsw transgenic mice. Immun. Ageing, 2018, 15(1), 24. doi: 10.1186/s12979-018-0132-9 PMID: 30450117
- Dong, N.; Dong, Z.; Chen, Y.; Gu, X. Crocetin alleviates inflammation in MPTP-induced Parkinsons disease models through improving mitochondrial functions. Parkinsons Dis., 2020, 2020, 1-9. doi: 10.1155/2020/9864370 PMID: 33101635
- Montgomery Hays, B.; Hudson, T. 166 - Endometriosis. Textbook of Natural Medicine; 5th ed; Pizzorno, J.E.; Murray, M.T., Eds.; Churchill Livingstone: St. Louis, MO,, 2020, pp. 1287-1295. e1283 doi: 10.1016/B978-0-323-43044-9.00166-7
- Hira, S. Saleem, U.; Anwar, F.; Sohail, M.F.; Raza, Z.; Ahmad, B. β-Carotene: A natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimers disease. Biomolecules, 2019, 9(9), 441. doi: 10.3390/biom9090441 PMID: 31480727
- Kim, J.H.; Hwang, J.; Shim, E.; Chung, E.J.; Jang, S.H.; Koh, S.B. Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinsons Disease. Nutr. Res. Pract., 2017, 11(2), 114-120. doi: 10.4162/nrp.2017.11.2.114 PMID: 28386384
- Przybylska, S. Lycopene a bioactive carotenoid offering multiple health benefits: a review. Int. J. Food Sci. Technol., 2020, 55(1), 11-32. doi: 10.1111/ijfs.14260
- Huang, C.; Wen, C.; Yang, M.; Gan, D.; Fan, C.; Li, A.; Li, Q.; Zhao, J.; Zhu, L.; Lu, D. Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol. Biol. Rep., 2019, 46(3), 3387-3397. doi: 10.1007/s11033-019-04801-y PMID: 31006097
- Putteeraj, M.; Lim, W.L.; Teoh, S.L.; Yahaya, M.F. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug Targets, 2018, 19(14), 1710-1720. doi: 10.2174/1389450119666180326125252 PMID: 29577854
- Tripathi, R.; Shalini, R.; Singh, R.K. 7 - Prophyletic origin of algae as potential repository of anticancer compounds. Evolutionary Diversity as a Source for Anticancer Molecules; Srivastava, A.K.; Kannaujiya, V.K.; Singh, R.K; Singh, D., Ed.; Academic Press, 2021, pp. 155-189. doi: 10.1016/B978-0-12-821710-8.00007-2
- Nazih, H.; Bard, J-M. Microalgae in human health: Interest as a functional food. Microalgae in Health and Disease Prevention; Levine, I.A; Fleurence, J., Ed.; Academic Press, 2018, pp. 211-226. doi: 10.1016/B978-0-12-811405-6.00010-4
- Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; Zhen, J.; Wang, C.; He, S.; Wang, Q.; Cui, W.; Zhang, J. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J. Agric. Food Chem., 2017, 65(20), 4092-4102. doi: 10.1021/acs.jafc.7b00805 PMID: 28478680
- Lee, A.H.; Shin, H.Y.; Park, J.H.; Koo, S.Y.; Kim, S.M.; Yang, S.H. Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NFκB and NLRP3 inflammasome activation. Sci. Rep., 2021, 11(1), 543. doi: 10.1038/s41598-020-80748-6 PMID: 33436909
- Wu, W.; Han, H.; Liu, J.; Tang, M.; Wu, X.; Cao, X.; Zhao, T.; Lu, Y.; Niu, T.; Chen, J. Fucoxanthin prevents 6-OHDA-induced neurotoxicity by targeting Keap1. Oxid. Med. Cell. Long.,, 2021, 2021
- Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97. doi: 10.1016/j.ejmech.2018.03.057 PMID: 29605809
- Singh, A.; Mahajan, S.D.; Kutscher, H.L.; Kim, S.; Prasad, P.N. Curcumin-pluronic nanoparticles: A theranostic nanoformulation for Alzheimers disease. Crit. Rev. Biomed. Eng., 2020, 48(3), 153-168. doi: 10.1615/CritRevBiomedEng.2020034302 PMID: 33389893
- Mursaleen, L.; Somavarapu, S.; Zariwala, M.G. Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. J. Parkinsons Dis., 2020, 10(1), 99-111. doi: 10.3233/JPD-191754 PMID: 31868679
- Pan, Q.; Ban, Y.; Xu, L. Silibinin-albumin nanoparticles: Characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimers disease. J. Biomed. Nanotechnol., 2021, 17(6), 1123-1130. doi: 10.1166/jbn.2021.3038 PMID: 34167626
- Mandal, S.; Debnath, K.; Jana, N.R.; Jana, N.R. Trehalose-conjugated, catechin-loaded polylactide nanoparticles for improved neuroprotection against intracellular polyglutamine aggregates. Biomacromolecules, 2020, 21(4), 1578-1586. doi: 10.1021/acs.biomac.0c00143 PMID: 32105465
- Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305. doi: 10.1021/acsabm.9b00518 PMID: 35021530
- Cano, A.; Ettcheto, M.; Espina, M.; Auladell, C.; Folch, J.; Kühne, B.A.; Barenys, M.; Sánchez-López, E.; Souto, E.B.; García, M.L.; Turowski, P.; Camins, A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond.), 2021, 16(1), 19-35. doi: 10.2217/nnm-2020-0239 PMID: 33410329
- Lima, B.S.; Campos, C.A.; da Silva Santos, A.C.R.; Santos, V.C.N.; Trindade, G.G.G.; Shanmugam, S.; Pereira, E.W.M.; Marreto, R.N.; Duarte, M.C.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans, L.J., Jr; Araújo, A.A.S. Development of morin/hydroxypropyl-β-cyclodextrin inclusion complex: Enhancement of bioavailability, antihyperalgesic and anti-inflammatory effects. Food Chem. Toxicol., 2019, 126, 15-24. doi: 10.1016/j.fct.2019.01.038 PMID: 30738132
- Manta, K.; Papakyriakopoulou, P.; Chountoulesi, M.; Diamantis, D.A.; Spaneas, D.; Vakali, V.; Naziris, N.; Chatziathanasiadou, M.V.; Andreadelis, I.; Moschovou, K.; Athanasiadou, I.; Dallas, P.; Rekkas, D.M.; Demetzos, C.; Colombo, G.; Banella, S.; Javornik, U.; Plavec, J.; Mavromoustakos, T.; Tzakos, A.G.; Valsami, G. Preparation and biophysical characterization of quercetin inclusion complexes with β-cyclodextrin derivatives to be formulated as possible nose-to-brain quercetin delivery systems. Mol. Pharm., 2020, 17(11), 4241-4255. doi: 10.1021/acs.molpharmaceut.0c00672 PMID: 32986435
- Wong, K.H.; Xie, Y.; Huang, X.; Kadota, K.; Yao, X.S.; Yu, Y.; Chen, X.; Lu, A.; Yang, Z. Delivering crocetin across the blood brain barrier by using γ-cyclodextrin to treat Alzheimers disease. Sci. Rep., 2020, 10(1), 3654. doi: 10.1038/s41598-020-60293-y PMID: 32107408
- Zhang, L.; Yang, S.; Wong, L.R.; Xie, H.; Ho, P.C.L. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated Poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimers disease. Mol. Pharm., 2020, 17(11), 4256-4269. doi: 10.1021/acs.molpharmaceut.0c00675 PMID: 33084343
- Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Kapoor, B.; Vyas, M.; Khursheed, R.; Awasthi, A.; Kaur, J.; Corrie, L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinsons disease rat model. Food Chem. Toxicol., 2020, 144, 111590. doi: 10.1016/j.fct.2020.111590 PMID: 32710995
- Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Vyas, M.; Dua, K.; Khursheed, R.; Awasthi, A.; Vishwas, S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinsons model. Environ. Sci. Pollut. Res. Int., 2022, 29(33), 50488-50499. doi: 10.1007/s11356-022-19428-z PMID: 35230633
- Sangsen, Y.; Sooksawate, T.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. A self-microemulsifying formulation of oxyresveratrol prevents amyloid beta protein-induced neurodegeneration in mice. Planta Med., 2018, 84(11), 820-828. doi: 10.1055/s-0043-125337 PMID: 29301146
- Huo, X.; Zhang, Y.; Jin, X.; Li, Y.; Zhang, L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimers disease. J. Photochem. Photobiol. B, 2019, 190, 98-102. doi: 10.1016/j.jphotobiol.2018.11.008 PMID: 30504054
- Mazibuko, Z.; Indermun, S.; Govender, M.; Kumar, P.; Du Toit, L.C.; Choonara, Y.E.; Modi, G.; Naidoo, D.; Pillay, V. Targeted delivery of amantadine-loaded methacrylate nanosphere-ligands for the potential treatment of amyotrophic lateral sclerosis. J. Pharm. Pharm. Sci., 2018, 21(1), 94-109. doi: 10.18433/jpps29595 PMID: 29510799
- Agwa, M.M.; Abdelmonsif, D.A.; Khattab, S.N.; Sabra, S. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimers disease. Int. J. Biol. Macromol., 2020, 162, 246-261. doi: 10.1016/j.ijbiomac.2020.06.058 PMID: 32531361
- Chibhabha, F.; Yang, Y.; Ying, K.; Jia, F.; Zhang, Q.; Ullah, S.; Liang, Z.; Xie, M.; Li, F. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimers disease. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(33), 7438-7452. doi: 10.1039/D0TB01101K PMID: 32662804
- Singh, M.; Thakur, V.; Deshmukh, R.; Sharma, A.; Rathore, M.S.; Kumar, A.; Mishra, N. Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimers disease. J. Microencapsul., 2018, 35(2), 137-148. doi: 10.1080/02652048.2018.1441916 PMID: 29448848
- Mursaleen, L.; Noble, B.; Somavarapu, S.; Zariwala, M.G. Micellar nanocarriers of hydroxytyrosol are protective against Parkinsons related oxidative stress in an in vitro hCMEC/D3-SH-SY5Y co-culture system. Antioxidants, 2021, 10(6), 887. doi: 10.3390/antiox10060887 PMID: 34073115
- DAmbrosio, D.; Panina-Bordignon, P.; Sinigaglia, F. Chemokine receptors in inflammation: an overview. J. Immunol. Methods, 2003, 273(1-2), 3-13. doi: 10.1016/S0022-1759(02)00414-3 PMID: 12535793
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
- Flower, R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov., 2003, 2(3), 179-191. doi: 10.1038/nrd1034 PMID: 12612644
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820. doi: 10.1016/j.cell.2010.01.022 PMID: 20303872
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776. doi: 10.1016/j.cell.2010.03.006 PMID: 20303867
- Chertov, O.; Yang, D.; Howard, O.M.Z.; Oppenheim, J.J. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev., 2000, 177(1), 68-78. doi: 10.1034/j.1600-065X.2000.17702.x PMID: 11138786
- Stichtenoth, D.O.; Frölich, J.C. The second generation of COX-2 inhibitors: what advantages do the newest offer? Drugs, 2003, 63(1), 33-45. doi: 10.2165/00003495-200363010-00003 PMID: 12487621
- Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci., 1997, 2(1), d12-d26. PMID: 9159205
- Arango Duque, G.; Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491. doi: 10.3389/fimmu.2014.00491 PMID: 25339958
- Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910. doi: 10.1159/000452591 PMID: 27871079
- Fritz, J.H.; Girardin, S.E. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. J. Endotoxin Res., 2005, 11(6), 390-394. doi: 10.1177/09680519050110060301 PMID: 16303096
- Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res., 2018, 11, 23-32. doi: 10.1016/j.jare.2018.03.005 PMID: 30034873
- Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol., 2015, 15(8), 511-523. doi: 10.1038/nri3859 PMID: 26139350
- Gaddi, A.; Cicero, A.F.G.; Pedro, E.J. Clinical perspectives of anti-inflammatory therapy in the elderly: the lipoxigenase (LOX)/cycloxigenase (COX) inhibition concept. Arch. Gerontol. Geriatr., 2004, 38(3), 201-212. doi: 10.1016/j.archger.2003.10.001 PMID: 15066307
- Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(4), 331-339. doi: 10.1016/j.bbalip.2014.08.012 PMID: 25152163
- Poetker, D.M.; Reh, D.D. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am., 2010, 43(4), 753-768. doi: 10.1016/j.otc.2010.04.003 PMID: 20599080
- Day, R.O.; Graham, G.G. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ, 2013, 346, f3195. PMID: 23757736
- Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2014, 16(5), 821-847. doi: 10.18433/J3VW2F PMID: 24393558
- Rao, P.P.N.; Kabir, S.N.; Mohamed, T. Nonsteroidal anti-inflammatory drugs (NSAIDs): progress in small molecule drug development. Pharmaceuticals (Basel), 2010, 3(5), 1530-1549. doi: 10.3390/ph3051530 PMID: 27713316
- Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA, 2001, 286(8), 954-959. doi: 10.1001/jama.286.8.954 PMID: 11509060
- Arora, M.; Choudhary, S.; Singh, P.K.; Sapra, B.; Silakari, O. Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review. Life Sci., 2020, 251, 117631. doi: 10.1016/j.lfs.2020.117631 PMID: 32251635
- Meyer-Kirchrath, J.; Schrör, K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr. Med. Chem., 2000, 7(11), 1121-1129. doi: 10.2174/0929867003374219 PMID: 11032962
- Jose, M-G.; Lina, B. Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks. Curr. Pharm. Des., 2007, 13(22), 2215-2227. doi: 10.2174/138161207781368774 PMID: 17691994
- Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81. doi: 10.18433/J3T886 PMID: 19203472
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
- Addington, O.C.; Newman, R.A. Method of treating neurological conditions with oleandrin. US Patent US 9,877,979, 2018.
- Mazed, M.A.; Mazed, S. Nutritional supplement for the prevention of cardiovascular disease, alzheimer's disease, diabetes, and regulation and reduction of blood sugar and insulin resistance. US Patent US 8017147 B2, 2011.
- Gennari, G.; Panfilo, S. Pharmaceutical compositions containing phosphatidylserine and curcumin. US Patent US 9381204 B2, 2016.
- Tan, J.; Luo, D.; Shytle, R.D. Luteolin and diosmin/diosmetin as novel STAT3 inhibitors for treating autism. US Patent US 8778894 B2, 2014.
- Crowley, K.L. Buccal and sublingual cannabinoid formulations and method of making the same. EP Patent EP 3160451 B1 2021.
- Rupasinghe, H.P.; Robertson, G.S. Phenolic compositions derived from apple skin and uses thereof. US Patent US 9511107 B2 2016.
- Soman, G.S.; Phadke, S.G. Herbal composition for reducing ADD/ ADHD and method thereof. US Patent US 8394429 B2, 2013.
- Baraona, R.M.; Sepúlveda, L.Q.; Saavedra, I.S.; Salas, R.S.; Salas, V.S. Nutraceutical composition that comprises extract of andean shilajit, for preventing and/or treating neurodegenerative diseases and/or the cognitive deterioration associated with cerebral aging. US Patent US 8784804 B2, 2014.
- Guy, G.; Platt, B. Cannabinoid-containing plant extracts as neuroprotective agents. US Patent US 8673368 B2 2014.
- Choi, P.; Castillo, G.; Nguyen, B.; Snow, A.; Cummings, J. Catechins for the treatment of fibrillogenesis in alzheimer's disease, parkinson's disease, systemic aa amyloidosis, and other amyloid disorders. CA Patent CA 2440293 C, 2012.
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Analyt. Chem., 2019, 118, 248-263. doi: 10.1016/j.trac.2019.05.037
- Shinde, P.; Banerjee, P.; Mandhare, A. Marine natural products as source of new drugs: a patent review (20152018). Expert Opin. Ther. Pat., 2019, 29(4), 283-309. doi: 10.1080/13543776.2019.1598972 PMID: 30902039
- McGonigle, I.V. Patenting nature or protecting culture? Ethnopharmacology and indigenous intellectual property rights. J. Law Biosci., 2016, 3(1), 217-226. doi: 10.1093/jlb/lsw003 PMID: 27774245
- Heffernan, O. Why a landmark treaty to stop ocean biopiracy could stymie research. Nature, 2020, 580(7801), 20-22. doi: 10.1038/d41586-020-00912-w PMID: 32221504
- Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh, T.T.; Akter, R.; Jeong, Y.J.; Goh, S.H.; Kim, C.S.; Lee, K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules, 2021, 26(17), 5327. doi: 10.3390/molecules26175327 PMID: 34500759
- Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170. doi: 10.3390/ijms20205170 PMID: 31635296
Supplementary files
