Paradigms and Success Stories of Natural Products in Drug Discovery Against Neurodegenerative Disorders (NDDs)


Cite item

Full Text

Abstract

Neurodegenerative disorders (NDDs) are multifaceted complex disorders that have put a great health and economic burden around the globe nowadays. The multi-factorial nature of NDDs has presented a great challenge in drug discovery and continuous efforts are in progress in search of suitable therapeutic candidates. Nature has a great wealth of active principles in its lap that has cured the human population since ancient times. Natural products have revealed several benefits over conventional synthetic medications and scientists have shifted their vision towards exploring the therapeutic potentials of natural products in the past few years. The structural mimicking of natural compounds to endogenous ligands has presented them as a potential therapeutic candidate to prevent the development of NDDs. In the presented review, authors have summarized demographical facts about various NDDs including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD) and various types of sclerosis in the brain. The significant findings of new active principles of natural origin along with their therapeutic potentials on NDDs have been included. Also, a description of clinical trials and patents on natural products has been enlisted in this compilation. Although natural products have shown promising success in drug discovery against NDDs, still their use is associated with several ethical issues which need to be solved in the upcoming time.

About the authors

Sukhwinder Singh

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga

Email: info@benthamscience.net

Shivani Chib

Department of Pharmacology, ISF College of Pharmacy Moga

Email: info@benthamscience.net

Md. Akhtar

Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology

Email: info@benthamscience.net

Bhupinder Kumar

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga

Author for correspondence.
Email: info@benthamscience.net

Pooja Chawla

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga

Author for correspondence.
Email: info@benthamscience.net

Rohit Bhatia

Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga

Author for correspondence.
Email: info@benthamscience.net

References

  1. Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W.; Wang, S. Machine learning methods in drug discovery. Molecules, 2020, 25(22), 5277. doi: 10.3390/molecules25225277 PMID: 33198233
  2. Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 2019, 40(8), 592-604. doi: 10.1016/j.tips.2019.06.004 PMID: 31320117
  3. Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783. doi: 10.3390/ijms20112783 PMID: 31174387
  4. Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085. doi: 10.1016/j.drudis.2019.06.014 PMID: 31238113
  5. Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In silico methods and tools for drug discovery. Comput. Biol. Med., 2021, 137, 104851. doi: 10.1016/j.compbiomed.2021.104851 PMID: 34520990
  6. Rijo, P.; Mori, M. Natural products as an important source in drug discovery. Curr. Pharm. Des., 2020, 26(24), 2805-2806. doi: 10.2174/138161282624200625104355 PMID: 32586237
  7. Medline Plus. Degenerative nerve diseases. Health Topics, 2021, 2022
  8. Butterfield, D.A. Perspectives on oxidative stress in Alzheimer’s disease and predictions of future research emphases. J. Alzheimers Dis., 2018, 64(s1), S469-S479. doi: 10.3233/JAD-179912 PMID: 29504538
  9. Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol., 2016, 147, 1-19. doi: 10.1016/j.pneurobio.2016.07.005 PMID: 27769868
  10. Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206. doi: 10.3389/fnagi.2014.00206 PMID: 25221506
  11. Facts and figures. Alzheimer's and Dementia, , 2021, 2022(17(3)), 327-406.
  12. Kumar, R.; Kumar, V.; Kumar, B.; Thakur, A.; Dwivedi, A.R. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2022, 29(10), 1757-1803. doi: 10.2174/0929867328666210512005508 PMID: 33982650
  13. Foundation, P.s. Understanding Parkinson's. Parkinson's foundation, 2022, 2022
  14. Yohrling, G.; Raimundo, K.; Crowell, V.; Lovecky, D.; Vetter, L.; Seeberger, L. Prevalence of huntington’s disease in the US (954); AAN Enterprises, 2020.
  15. Furby, H.; Siadimas, A.; Rutten-Jacobs, L.; Rodrigues, F.B.; Wild, E.J. Natural history and burden of Huntington’s disease in the UK: A population‐based cohort study. Eur. J. Neurol., 2022, 29(8), 2249-2257. doi: 10.1111/ene.15385 PMID: 35514071
  16. Riccò, M.; Vezzosi, L.; Balzarini, F.; Gualerzi, G.; Ranzieri, S. Prevalence of huntington disease in Italy: A systematic review and meta-analysis. Acta Biomed., 2020, 91(Suppl. 3), 119-127. PMID: 32275276
  17. Wedding, I.M.; Kroken, M.; Henriksen, S.P.; Selmer, K.K.; Fiskerstrand, T.; Knappskog, P.M.; Berge, T.; Tallaksen, C.M.E. Friedreich ataxia in Norway - an epidemiological, molecular and clinical study. Orphanet J. Rare Dis., 2015, 10(1), 108. doi: 10.1186/s13023-015-0328-4 PMID: 26338206
  18. Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr. Opin. Neurol., 2019, 32(5), 771-776. doi: 10.1097/WCO.0000000000000730 PMID: 31361627
  19. Ribeiro, A.; Abreu, R.M.V.; Dias, M.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Lett., 2018, 415, 86-105. doi: 10.1016/j.canlet.2017.12.006 PMID: 29222042
  20. Ballard, C.; Aarsland, D.; Cummings, J.; O’Brien, J.; Mills, R.; Molinuevo, J.L.; Fladby, T.; Williams, G.; Doherty, P.; Corbett, A.; Sultana, J. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol., 2020, 16(12), 661-673. doi: 10.1038/s41582-020-0397-4 PMID: 32939050
  21. Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules, 2020, 25(24), 5789. doi: 10.3390/molecules25245789 PMID: 33302541
  22. Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease. JAMA, 2020, 323(6), 548-560. doi: 10.1001/jama.2019.22360 PMID: 32044947
  23. Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers, 2017, 3(1), 17071. doi: 10.1038/nrdp.2017.71 PMID: 28980624
  24. Singh, K.; Kumar, P.; Bhatia, R.; Mehta, V.; Kumar, B.; Akhtar, M.J. Nipecotic acid as potential lead molecule for the development of GABA uptake inhibitors; structural insights and design strategies. Eur. J. Med. Chem., 2022, 234, 114269. doi: 10.1016/j.ejmech.2022.114269 PMID: 35306287
  25. Sharma, H.; Chawla, P.A.; Bhatia, R. 1, 3, 5-Pyrazoline derivatives in cns disorders: synthesis, biological evaluation and structural insights through molecular docking. CNS & Neurological Disorders- Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2020, 19(6), 448-465.
  26. Chopra, B.; Dhingra, A.K. Natural products: A lead for drug discovery and development. Phytother. Res., 2021, 35(9), 4660-4702. doi: 10.1002/ptr.7099 PMID: 33847440
  27. Meier, B.P.; Lappas, C.M. The influence of safety, efficacy, and medical condition severity on natural versus synthetic drug preference. Med. Decis. Making, 2016, 36(8), 1011-1019. doi: 10.1177/0272989X15621877 PMID: 26683247
  28. Meier, B.P.; Dillard, A.J.; Osorio, E.; Lappas, C.M. A behavioral confirmation and reduction of the natural versus synthetic drug bias. Med. Decis. Making, 2019, 39(4), 360-370. doi: 10.1177/0272989X19838527 PMID: 30896330
  29. Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578. doi: 10.3390/ijms19061578 PMID: 29799486
  30. Motor Neuron Disease. Disorders, 2019, 2022
  31. Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035. doi: 10.1101/cshperspect.a028035 PMID: 28062563
  32. Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine, 2019, 14, 5541-5554. doi: 10.2147/IJN.S200490 PMID: 31410002
  33. Bhatia, R.; Chakrabarti, S.S.; Kaur, U.; Parashar, G.; Banerjee, A.; Rawal, R.K. Multi-Target Directed Ligands (MTDLs): Promising coumarin hybrids for Alzheimer’s disease. Curr. Alzheimer Res., 2021, 18(10), 802-830. doi: 10.2174/1567205018666211208140551 PMID: 34879800
  34. Shi, Y.; Zhang, W.; Yang, Y.; Murzin, A.G.; Falcon, B.; Kotecha, A.; van Beers, M.; Tarutani, A.; Kametani, F.; Garringer, H.J.; Vidal, R.; Hallinan, G.I.; Lashley, T.; Saito, Y.; Murayama, S.; Yoshida, M.; Tanaka, H.; Kakita, A.; Ikeuchi, T.; Robinson, A.C.; Mann, D.M.A.; Kovacs, G.G.; Revesz, T.; Ghetti, B.; Hasegawa, M.; Goedert, M.; Scheres, S.H.W. Structure-based classification of tauopathies. Nature, 2021, 598(7880), 359-363. doi: 10.1038/s41586-021-03911-7 PMID: 34588692
  35. Ratti, A.; Buratti, E. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J. Neurochem., 2016, 138(Suppl. 1), 95-111. doi: 10.1111/jnc.13625 PMID: 27015757
  36. Barkat, M.A.; Goyal, A.; Barkat, H.A.; Salauddin, M.; Pottoo, F.H.; Anwer, E.T. Herbal medicine: Clinical perspective and regulatory status. Comb. Chem. High Throughput Screen., 2021, 24(10), 1573-1582. doi: 10.2174/1386207323999201110192942 PMID: 33176638
  37. Farzaei, M.H.; Shahpiri, Z.; Mehri, M.R.; Bahramsoltani, R.; Rezaei, M.; Raeesdana, A.; Rahimi, R. Medicinal plants in neurodegenerative diseases: perspective of traditional persian medicine. Curr. Drug Metab., 2018, 19(5), 429-442. doi: 10.2174/1389200219666180305150256 PMID: 29512453
  38. Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules, 2021, 11(4), 543. doi: 10.3390/biom11040543 PMID: 33917843
  39. Singh, K.; Bhatia, R.; Kumar, B.; Singh, G.; Monga, V. Design strategies, chemistry and therapeutic insights of multi-target directed ligands as antidepressant agents. Curr. Neuropharmacol., 2022, 20(7), 1329-1358. PMID: 34727859
  40. Dey, A.; Gorai, P.; Mukherjee, A.; Dhan, R.; Modak, B.K. Ethnobiological treatments of neurological conditions in the Chota Nagpur Plateau, India. J. Ethnopharmacol., 2017, 198, 33-44. doi: 10.1016/j.jep.2016.12.040 PMID: 28017696
  41. Amoateng, P.; Quansah, E.; Karikari, T.K.; Asase, A.; Osei-Safo, D.; Kukuia, K.K.E.; Amponsah, I.K.; Nyarko, A.K. Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-14. doi: 10.1155/2018/8590381 PMID: 30671131
  42. Kumar, R.R.; Singh, L.; Thakur, A.; Singh, S.; Kumar, B. Role of vitamins in neurodegenerative diseases: A review. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 667-773. doi: 10.2174/1871527320666211119122150 PMID: 34802410
  43. Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Semin. Cancer Biol., 2021, 69, 200-211. doi: 10.1016/j.semcancer.2019.07.023 PMID: 31374244
  44. Naoi, M.; Maruyama, W.; Shamoto-Nagai, M. Disease-modifying treatment of Parkinson’s disease by phytochemicals: targeting multiple pathogenic factors. J. Neural Transm. (Vienna), 2021. PMID: 34654977
  45. Mohi-ud-din, R.; Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179-193. doi: 10.2174/1570159X19666210428120514 PMID: 33913406
  46. Carbone, F.; Djamshidian, A.; Seppi, K.; Poewe, W. Apomorphine for Parkinson’s disease: Efficacy and safety of current and new formulations. CNS Drugs, 2019, 33(9), 905-918. doi: 10.1007/s40263-019-00661-z PMID: 31473980
  47. Jenner, P.; Katzenschlager, R. Apomorphine - pharmacological properties and clinical trials in Parkinson’s disease. Parkinsonism Relat. Disord., 2016, 33(Suppl. 1), S13-S21. doi: 10.1016/j.parkreldis.2016.12.003 PMID: 27979722
  48. Müller, T. An evaluation of subcutaneous apomorphine for the treatment of Parkinson’s disease. Expert Opin. Pharmacother., 2020, 21(14), 1659-1665. doi: 10.1080/14656566.2020.1787379 PMID: 32640853
  49. Chen, Y.; Chen, Y.; Liang, Y.; Chen, H.; Ji, X.; Huang, M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacother., 2020, 121, 109670. doi: 10.1016/j.biopha.2019.109670 PMID: 31810131
  50. Fan, D.; Liu, L.; Wu, Z.; Cao, M. Combating neurodegenerative diseases with the plant alkaloid berberine: Molecular mechanisms and therapeutic potential. Curr. Neuropharmacol., 2019, 17(6), 563-579. doi: 10.2174/1570159X16666180419141613 PMID: 29676231
  51. Huang, M.; Jiang, X.; Liang, Y.; Liu, Q.; Chen, S.; Guo, Y. Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer’s disease. Exp. Gerontol., 2017, 91, 25-33. doi: 10.1016/j.exger.2017.02.004 PMID: 28223223
  52. Wu, Y.; Chen, Q.; Wen, B.; Wu, N.; He, B.; Chen, J. Berberine reduces Aβ42 deposition and tau hyperphosphorylation via ameliorating endoplasmic reticulum stress. Front. Pharmacol., 2021, 12, 640758. doi: 10.3389/fphar.2021.640758 PMID: 34349640
  53. Kumar, B.; Sheetal, S.; Mantha, A.K.; Kumar, V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Advances, 2016, 6(48), 42660-42683. doi: 10.1039/C6RA00302H
  54. Kumar, B.; Gupta, V.; Kumar, V. A perspective on monoamine oxidase enzyme as drug target: challenges and opportunities. Curr. Drug Targets, 2016, 18(1), 87-97. doi: 10.2174/1389450117666151209123402 PMID: 26648064
  55. Ribaudo, G.; Zanforlin, E.; Canton, M.; Bova, S.; Zagotto, G. Preliminary studies of berberine and its semi-synthetic derivatives as a promising class of multi-target anti-parkinson agents. Nat. Prod. Res., 2018, 32(12), 1395-1401. doi: 10.1080/14786419.2017.1350669 PMID: 28691859
  56. Kim; Cho, K.H.; Shin, M.S.; Lee, J.M.; Cho, H.S.; Kim, C.J.; Shin, D.H.; Yang, H.J. Berberine prevents nigrostriatal dopaminergic neuronal loss and suppresses hippocampal apoptosis in mice with Parkinson’s disease. Int. J. Mol. Med., 2014, 33(4), 870-878. doi: 10.3892/ijmm.2014.1656 PMID: 24535622
  57. Croce, K.R.; Yamamoto, A. A role for autophagy in Huntington’s disease. Neurobiol. Dis., 2019, 122, 16-22. doi: 10.1016/j.nbd.2018.08.010 PMID: 30149183
  58. Sahu, K.; Singh, S.; Devi, B.; Singh, C.; Singh, A. A review on the neuroprotective effect of berberine against chemotherapy- induced cognitive impairment. Curr. Drug Targets, 2022, 23(9), 913-923. doi: 10.2174/1389450123666220303094752 PMID: 35240956
  59. Jiang, W.; Wei, W.; Gaertig, M.A.; Li, S.; Li, X.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model. PLoS One, 2015, 10(7), e0134142. doi: 10.1371/journal.pone.0134142 PMID: 26225560
  60. Dey, A.; Mukherjee, A. Plant-Derived Alkaloids: A promising window for neuroprotective drug discovery. Discovery and Development of Neuroprotective Agents from Natural Products; Brahmachari, G., Ed.; Elsevier, 2018, pp. 237-320. doi: 10.1016/B978-0-12-809593-5.00006-9
  61. Badshah, H.; Ikram, M.; Ali, W.; Ahmad, S.; Hahm, J.R.; Kim, M.O. Caffeine may abrogate LPS-induced oxidative stress and neuroinflammation by regulating Nrf2/TLR4 in adult mouse brains. Biomolecules, 2019, 9(11), 719. doi: 10.3390/biom9110719 PMID: 31717470
  62. Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 902. doi: 10.3390/antiox9090902 PMID: 32971922
  63. Kolahdouzan, M.; Hamadeh, M.J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(4), 272-290. doi: 10.1111/cns.12684 PMID: 28317317
  64. Plazas, E.; Hagenow, S.; Avila Murillo, M.; Stark, H.; Cuca, L.E. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg. Chem., 2020, 98, 103722. doi: 10.1016/j.bioorg.2020.103722 PMID: 32155491
  65. Jiang, B.; Meng, L.; Zou, N.; Wang, H.; Li, S.; Huang, L.; Cheng, X.; Wang, Z.; Chen, W.; Wang, C. Mechanism-based pharmacokinetics-pharmacodynamics studies of harmine and harmaline on neurotransmitters regulatory effects in healthy rats: Challenge on monoamine oxidase and acetylcholinesterase inhibition. Phytomedicine, 2019, 62, 152967. doi: 10.1016/j.phymed.2019.152967 PMID: 31154274
  66. Li, S.P.; Wang, Y.W.; Qi, S.L.; Zhang, Y.P.; Deng, G.; Ding, W.Z.; Ma, C.; Lin, Q.Y.; Guan, H.D.; Liu, W.; Cheng, X.M.; Wang, C.H. Analogous β-carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front. Pharmacol., 2018, 9, 346. doi: 10.3389/fphar.2018.00346 PMID: 29755345
  67. Nurmaganbetov, Z.S.; Arystan, L.I.; Muldaeva, G.M.; Haydargalieva, L.S.; Adekenov, S.M. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound. Pharmacol. Rep., 2019, 71(6), 1050-1058. doi: 10.1016/j.pharep.2019.06.002 PMID: 31605892
  68. Cai, C.Z.; Zhou, H.F.; Yuan, N.N.; Wu, M.Y.; Lee, S.M.Y.; Ren, J.Y.; Su, H.X.; Lu, J.J.; Chen, X.P.; Li, M.; Tan, J.Q.; Lu, J.H. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine, 2019, 61, 152842. doi: 10.1016/j.phymed.2019.152842 PMID: 31048127
  69. Tsai, S.J. Huperzine-A, a versatile herb, for the treatment of Alzheimer’s disease. J. Chin. Med. Assoc., 2019, 82(10), 750-751. doi: 10.1097/JCMA.0000000000000151 PMID: 31305343
  70. Friedli, M.J.; Inestrosa, N.C. Huperzine a and its neuroprotective molecular signaling in Alzheimer’s disease. Molecules, 2021, 26(21), 6531. doi: 10.3390/molecules26216531 PMID: 34770940
  71. Callizot, N.; Campanari, M.L.; Rouvière, L.; Jacquemot, G.; Henriques, A.; Garayev, E.; Poindron, P. Huperzia serrata extract ‘NSP01’ with neuroprotective effects-potential synergies of huperzine a and polyphenols. Front. Pharmacol., 2021, 12, 681532-681532. doi: 10.3389/fphar.2021.681532 PMID: 34526893
  72. Wang, C.; Cai, Z.; Wang, W.; Wei, M.; Kou, D.; Li, T.; Yang, Z.; Guo, H.; Le, W.; Li, S. Piperine attenuates cognitive impairment in an experimental mouse model of sporadic Alzheimer’s disease. J. Nutr. Biochem., 2019, 70, 147-155. doi: 10.1016/j.jnutbio.2019.05.009 PMID: 31207354
  73. Tripathi, A.K.; Ray, A.K.; Mishra, S.K. Molecular and pharmacological aspects of piperine as a potential molecule for disease prevention and management: evidence from clinical trials. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 16. doi: 10.1186/s43088-022-00196-1 PMID: 35127957
  74. Li, R.; Lu, Y.; Zhang, Q.; Liu, W.; Yang, R.; Jiao, J.; Liu, J.; Gao, G.; Yang, H. Piperine promotes autophagy flux by P2RX4 activation in SNCA/α-synuclein-induced Parkinson disease model. Autophagy, 2022, 18(3), 559-575. PMID: 34092198
  75. Sharma, S.; Raj, K.; Singh, S. Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement–induced Parkinson’s disease in experimental rats. Neurotox. Res., 2020, 37(1), 198-209. doi: 10.1007/s12640-019-00120-z PMID: 31654381
  76. Salman, M.; Tabassum, H.; Parvez, S. Piperine mitigates behavioral impairments and provides neuroprotection against 3-nitropropinoic acid-induced Huntington disease-like symptoms. Nutr. Neurosci., 2022, 25(1), 100-109. doi: 10.1080/1028415X.2020.1721645 PMID: 32093571
  77. Tyagi, S.; Shekhar, N.; Thakur, A.K. Protective role of capsaicin in neurological disorders: An overview. Neurochem. Res., 2022, 47(6), 1513-1531. doi: 10.1007/s11064-022-03549-5 PMID: 35150419
  78. Wang, J.; Sun, B.L.; Xiang, Y.; Tian, D.Y.; Zhu, C.; Li, W.W.; Liu, Y.H.; Bu, X.L.; Shen, L.L.; Jin, W.S.; Wang, Z.; Zeng, G.H.; Xu, W.; Chen, L.Y.; Chen, X.W.; Hu, Z.; Zhu, Z.M.; Song, W.; Zhou, H.D.; Yu, J.T.; Wang, Y.J. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice. Transl. Psychiatry, 2020, 10(1), 230. doi: 10.1038/s41398-020-00918-y PMID: 32661266
  79. Shalaby, M.A.; Nounou, H.A.; Deif, M.M. The potential value of capsaicin in modulating cognitive functions in a rat model of streptozotocin-induced Alzheimer’s disease. Egypt. J. Neurol. Psychiat. Neurosurg., 2019, 55(1), 48. doi: 10.1186/s41983-019-0094-7
  80. Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep., 2020, 40(6), BSR20191796. doi: 10.1042/BSR20191796 PMID: 32537633
  81. Siddique, Y.H.; Naz, F.; Jyoti, S. Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson’s disease. Acta Biol. Hung., 2018, 69(2), 115-124. doi: 10.1556/018.69.2018.2.1 PMID: 29888671
  82. Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids: Potential therapeutic agents by their antioxidant capacity. Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing, 2019, pp. 265-288. doi: 10.1016/B978-0-12-814774-0.00014-1
  83. Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377. doi: 10.3390/molecules26175377 PMID: 34500810
  84. Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules, 2020, 25(22), 5243. doi: 10.3390/molecules25225243 PMID: 33187049
  85. Nakajima, A.; Ohizumi, Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(14), 3380. doi: 10.3390/ijms20143380 PMID: 31295812
  86. Ludovici, V.; Barthelmes, J.; Nägele, M.P.; Enseleit, F.; Ferri, C.; Flammer, A.J.; Ruschitzka, F.; Sudano, I. Cocoa, blood pressure, and vascular function. Front. Nutr., 2017, 4, 36. doi: 10.3389/fnut.2017.00036 PMID: 28824916
  87. Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid. Naringenin. Life Sci., 2018, 208, 111-122. doi: 10.1016/j.lfs.2018.07.017 PMID: 30021118
  88. Singh, S.; Sharma, A.; Monga, V.; Bhatia, R. Compendium of naringenin: Potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Crit. Rev. Food Sci. Nutr., 2023, 63(27), 8868-8899. doi: 10.1080/10408398.2022.2056726 PMID: 35357240
  89. Md, S.; Gan, S.Y.; Haw, Y.H.; Ho, C.L.; Wong, S.; Choudhury, H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int. J. Biol. Macromol., 2018, 118(Pt A), 1211-1219. doi: 10.1016/j.ijbiomac.2018.06.190 PMID: 30001606
  90. Lawal, M.; Olotu, F.A.; Soliman, M.E.S. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput. Biol. Med., 2018, 98, 168-177. doi: 10.1016/j.compbiomed.2018.05.012 PMID: 29860210
  91. Wu, J.; Kou, X.; Ju, H.; Zhang, H.; Yang, A.; Shen, R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2021, 49, 128316. doi: 10.1016/j.bmcl.2021.128316 PMID: 34391893
  92. Mi, J.; He, Y.; Yang, J.; Zhou, Y.; Zhu, G.; Wu, A.; Liu, W.; Sang, Z. Development of naringenin-O-carbamate derivatives as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2022, 60, 128574. doi: 10.1016/j.bmcl.2022.128574 PMID: 35065231
  93. Ahmad, M.H.; Fatima, M.; Ali, M.; Rizvi, M.A.; Mondal, A.C. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson’s disease. Neuropharmacology, 2021, 201, 108831. doi: 10.1016/j.neuropharm.2021.108831 PMID: 34655599
  94. Sugumar, M.; Sevanan, M.; Sekar, S. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. Int. J. Neurosci., 2019, 129(6), 534-539. doi: 10.1080/00207454.2018.1545772 PMID: 30433834
  95. Gaba, B.; Khan, T.; Haider, M.F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J.; Vitamin, E.; Vitamin, E. Loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model. BioMed Res. Int., 2019, 2019, 1-20. doi: 10.1155/2019/2382563 PMID: 31111044
  96. Chen, C.; Wei, Y.Z.; He, X.M.; Li, D.D.; Wang, G.Q.; Li, J.J.; Zhang, F. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front. Immunol., 2019, 10, 936. doi: 10.3389/fimmu.2019.00936 PMID: 31118933
  97. Govindasamy, H.; Magudeeswaran, S.; Kandasamy, S.; Poomani, K. Binding mechanism of naringenin with monoamine oxidase – B enzyme: QM/MM and molecular dynamics perspective. Heliyon, 2021, 7(4), e06684. doi: 10.1016/j.heliyon.2021.e06684 PMID: 33898820
  98. Salman, M.; Sharma, P.; Alam, M.I.; Tabassum, H.; Parvez, S. Naringenin mitigates behavioral alterations and provides neuroprotection against 3-nitropropinoic acid-induced Huntington’s disease like symptoms in rats. Nutr. Neurosci., 2022, 25(9), 1898-1908. PMID: 33856270
  99. Dourado, N.S.; Souza, C.S.; de Almeida, M.M.A.; Bispo da Silva, A.; dos Santos, B.L.; Silva, V.D.A.; De Assis, A.M.; da Silva, J.S.; Souza, D.O.; Costa, M.F.D.; Butt, A.M.; Costa, S.L. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in in vitro Models of Neuroinflammation Associated With Alzheimer’s Disease. Front. Aging Neurosci., 2020, 12, 119. doi: 10.3389/fnagi.2020.00119 PMID: 32499693
  100. Alsadat, A.M.; Nikbakht, F.; Hossein Nia, H.; Golab, F.; Khadem, Y.; Barati, M.; Vazifekhah, S. GSK-3β; as a target for apigenin-induced neuroprotection against Aβ 25–35 in a rat model of Alzheimer’s disease. Neuropeptides, 2021, 90, 102200. doi: 10.1016/j.npep.2021.102200 PMID: 34597878
  101. Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol., 2019, 75, 105697. doi: 10.1016/j.intimp.2019.105697 PMID: 31352326
  102. Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem. Biol. Interact., 2017, 269, 67-79. doi: 10.1016/j.cbi.2017.03.016 PMID: 28389404
  103. Kim, Y.J.; Cho, E.J.; Lee, A.Y.; Seo, W.T. Apigenin ameliorates oxidative stress-induced neuronal apoptosis in SH-SY5Y Cells. Han’guk Misaengmul, Saengmyong Konghakhoe Chi., 2021, 49(2), 138-147. doi: 10.48022/mbl.2009.09006
  104. Ginwala, R.; Bhavsar, R.; Moore, P.; Bernui, M.; Singh, N.; Bearoff, F.; Nagarkatti, M.; Khan, Z.K.; Jain, P. Apigenin modulates dendritic cell activities and curbs inflammation via RelB inhibition in the context of neuroinflammatory diseases. J. Neuroimmune Pharmacol., 2021, 16(2), 403-424. doi: 10.1007/s11481-020-09933-8 PMID: 32607691
  105. Tana; Nakagawa, T. Luteolin ameliorates depression-like behaviors by suppressing ER stress in a mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2022, 588, 168-174. doi: 10.1016/j.bbrc.2021.12.074 PMID: 34959189
  106. Kou, J.J.; Shi, J.Z.; He, Y.Y.; Hao, J.J.; Zhang, H.Y.; Luo, D.M.; Song, J.K.; Yan, Y.; Xie, X.M.; Du, G.H.; Pang, X.B. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol. Sin., 2022, 43(4), 840-849. PMID: 34267346
  107. Ali, F. Rahul; Jyoti, S.; Naz, F.; Ashafaq, M.; Shahid, M.; Siddique, Y.H. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci. Lett., 2019, 692, 90-99. doi: 10.1016/j.neulet.2018.10.053 PMID: 30420334
  108. Elmazoglu, Z.; Yar Saglam, A.S.; Sonmez, C.; Karasu, C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug Chem. Toxicol., 2020, 43(1), 96-103. doi: 10.1080/01480545.2018.1504961 PMID: 30207190
  109. Qin, L.; Chen, Z.; Yang, L.; Shi, H.; Wu, H.; Zhang, B.; Zhang, W.; Xu, Q.; Huang, F.; Wu, X. Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice. Toxicology, 2019, 426, 152256. doi: 10.1016/j.tox.2019.152256 PMID: 31381935
  110. Brotini, S. Palmitoylethanolamide/luteolin as adjuvant therapy to improve an unusual case of camptocormia in a patient with Parkinson’s disease: A case report. Innov. Clin. Neurosci., 2021, 18(10-12), 12-14. PMID: 35096476
  111. Hasan, S.Y. Rahul; Varshney, H.; Mantasha, I.; Shahid, M. Effect of luteolin on the transgenic Drosophila model of Huntington’s disease. Comput. Toxicol., 2021, 17, 100148. doi: 10.1016/j.comtox.2020.100148
  112. Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828. doi: 10.3892/or.2017.5766 PMID: 28677813
  113. Zu, G.; Sun, K.; Li, L.; Zu, X.; Han, T.; Huang, H. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Sci. Rep., 2021, 11(1), 22959. doi: 10.1038/s41598-021-02248-5 PMID: 34824300
  114. Zhang, X.W.; Chen, J.Y.; Ouyang, D.; Lu, J.H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies. Int. J. Mol. Sci., 2020, 21(2), 493. doi: 10.3390/ijms21020493 PMID: 31941000
  115. Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119. doi: 10.1016/j.lfs.2019.03.055 PMID: 30914316
  116. Lema Abdullahi, A.; Lema, A.; Jibrin, K.; Nuraddeen, W.; Alexander, E. Ameliorative role of nutraceutical quercetin and its derivatives against cognitive impairment process induced by lead exposure in Drosophila melanogaster (Fruit Fly). Iraqi J. Pharm Sci., 2021, 30(2), 135-142.
  117. Xu, M.; Huang, H.; Mo, X.; Zhu, Y.; Chen, X.; Li, X.; Peng, X.; Xu, Z.; Chen, L.; Rong, S.; Yang, W.; Liu, S.; Liu, L. Quercetin‐3‐ O ‐Glucuronide Alleviates Cognitive Deficit and Toxicity in Aβ 1‐42 ‐Induced AD‐Like Mice and SH‐SY5Y Cells. Mol. Nutr. Food Res., 2021, 65(6), 2000660. doi: 10.1002/mnfr.202000660 PMID: 33141510
  118. Elfiky, A.M.; Mahmoud, A.A.; Elreedy, H.A.; Ibrahim, K.S.; Ghazy, M.A. Quercetin stimulates the non-amyloidogenic pathway via activation of ADAM10 and ADAM17 gene expression in aluminum chloride-induced Alzheimer’s disease rat model. Life Sci., 2021, 285, 119964. doi: 10.1016/j.lfs.2021.119964 PMID: 34537230
  119. Madiha, S.; Batool, Z.; Tabassum, S.; Liaquat, L.; Sadir, S.; Shahzad, S.; Naqvi, F.; Saleem, S.; Yousuf, S.; Nawaz, A.; Ahmad, S.; Sajid, I.; Afzal, A.; Haider, S. Quercetin exhibits potent antioxidant activity, restores motor and non-motor deficits induced by rotenone toxicity. PLoS One, 2021, 16(11), e0258928. doi: 10.1371/journal.pone.0258928 PMID: 34767546
  120. Pantoja, L.V.P.S.; Trindade, S.S.A.; Carneiro, A.S.; Silva, J.P.B.; Paixão, T.P.; Romeiro, C.F.R.; Moraes, C.S.P.; Pinto, A.C.G.; Raposo, N.R.B.; Andrade, M.A. Computational study of the main flavonoids from Chrysobalanus icaco L. against NADPH-oxidase and in vitro antioxidant activity. Res. Soc Devel., 2022, 11(6), e5011628542-e5011628542. doi: 10.33448/rsd-v11i6.28542
  121. Wang, W.W.; Han, R.; He, H.J.; Li, J.; Chen, S.Y.; Gu, Y.; Xie, C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging (Albany NY), 2021, 13(8), 11738-11751. doi: 10.18632/aging.202868 PMID: 33878030
  122. Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front. Immunol., 2022, 13, 943321. doi: 10.3389/fimmu.2022.943321 PMID: 35935939
  123. Xiao, S.; Lu, Y.; Wu, Q.; Yang, J.; Chen, J.; Zhong, S.; Eliezer, D.; Tan, Q.; Wu, C. Fisetin inhibits tau aggregation by interacting with the protein and preventing the formation of β-strands. Int. J. Biol. Macromol., 2021, 178, 381-393. doi: 10.1016/j.ijbiomac.2021.02.210 PMID: 33662414
  124. Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin Improved Rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J. Diet. Suppl., 2021, 18(1), 57-71. doi: 10.1080/19390211.2019.1710646 PMID: 31992104
  125. Watanabe, R.; Kurose, T.; Morishige, Y.; Fujimori, K. Protective effects of fisetin against 6-OHDA-induced apoptosis by activation of PI3K-Akt signaling in human neuroblastoma SH-SY5Y cells. Neurochem. Res., 2018, 43(2), 488-499. doi: 10.1007/s11064-017-2445-z PMID: 29204750
  126. Maher, P. Protective effects of fisetin and other berry flavonoids in Parkinson’s disease. Food Funct., 2017, 8(9), 3033-3042. doi: 10.1039/C7FO00809K PMID: 28714503
  127. Rane, A.R.; Paithankar, H.; Hosur, R.V.; Choudhary, S. Modulation of α-synuclein fibrillation by plant metabolites, daidzein, fisetin and scopoletin under physiological conditions. Int. J. Biol. Macromol., 2021, 182, 1278-1291. doi: 10.1016/j.ijbiomac.2021.05.071 PMID: 33991558
  128. Wang, T.H.; Wang, S.Y.; Wang, X.D.; Jiang, H.Q.; Yang, Y.Q.; Wang, Y.; Cheng, J.L.; Zhang, C.T.; Liang, W.W.; Feng, H.L. Fisetin exerts antioxidant and neuroprotective effects in multiple mutant hSOD1 models of amyotrophic lateral sclerosis by activating ERK. Neuroscience, 2018, 379, 152-166. doi: 10.1016/j.neuroscience.2018.03.008 PMID: 29559385
  129. Abou Baker, D.H.; Ibrahim, B.M.M.; Hassan, N.S.; Yousuf, A.F.; Gengaihi, S.E. Exploiting Citrus aurantium seeds and their secondary metabolites in the management of Alzheimer disease. Toxicol. Rep., 2020, 7, 723-729. doi: 10.1016/j.toxrep.2020.06.001 PMID: 32551234
  130. Justin-Thenmozhi, A.; Dhivya Bharathi, M.; Kiruthika, R.; Manivasagam, T.; Borah, A.; Essa, M.M. Attenuation of aluminum chloride-induced neuroinflammation and caspase activation through the AKT/GSK-3β pathway by hesperidin in wistar rats. Neurotox. Res., 2018, 34(3), 463-476. doi: 10.1007/s12640-018-9904-4 PMID: 29687202
  131. Mandour, D.A.; Bendary, M.A.; Alsemeh, A.E. Histological and imunohistochemical alterations of hippocampus and prefrontal cortex in a rat model of Alzheimer like-disease with a preferential role of the flavonoid "hesperidin". J. Mol. Histol., 2021, 52(5), 1043-1065. doi: 10.1007/s10735-021-09998-6 PMID: 34170456
  132. Elyasi, L.; Jahanshahi, M.; Jameie, S.B.; Hamid Abadi, H.G.; Nikmahzar, E.; Khalili, M.; Jameie, M.; Jameie, M. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels. J. Basic Clin. Physiol. Pharmacol., 2021, 32(2), 11-17. doi: 10.1515/jbcpp-2019-0270 PMID: 32918805
  133. Kesh, S.; Kannan, R.R.; Sivaji, K.; Balakrishnan, A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci. Lett., 2021, 740, 135426. doi: 10.1016/j.neulet.2020.135426 PMID: 33075420
  134. Poetini, M.R.; Araujo, S.M.; Trindade de Paula, M.; Bortolotto, V.C.; Meichtry, L.B.; Polet de Almeida, F.; Jesse, C.R.; Kunz, S.N.; Prigol, M. Hesperidin attenuates iron-induced oxidative damage and dopamine depletion in Drosophila melanogaster model of Parkinson’s disease. Chem. Biol. Interact., 2018, 279, 177-186. doi: 10.1016/j.cbi.2017.11.018 PMID: 29191452
  135. Subedi, L.; Gaire, B.P. Neuroprotective effects of curcumin in cerebral ischemia: cellular and molecular mechanisms. ACS Chem. Neurosci., 2021, 12(14), 2562-2572. doi: 10.1021/acschemneuro.1c00153 PMID: 34251185
  136. Xu, H.; Nie, B.; Liu, L.; Zhang, C.; Zhang, Z.; Xu, M.; Mei, Y. Curcumin prevents brain damage and cognitive dysfunction during ischemic-reperfusion through the regulation of miR-7-5p. Curr. Neurovasc. Res., 2020, 16(5), 441-454. doi: 10.2174/1567202616666191029113633 PMID: 31660818
  137. Çakmak, G.; Kaplan, D.S. Yıldırım, C.; Ulusal, H.; Tarakçıoğlu, M.; Öztürk, Z.A. Improvement of cognitive deficit of curcumin on scopolamine-induced Alzheimer’s disease models. Caspian J. Intern. Med., 2022, 13(1), 16-22. PMID: 35178203
  138. Pluta, R. Furmaga-Jabłońska, W.; Januszewski, S.; Czuczwar, S.J. Post-Ischemic brain neurodegeneration in the form of Alzheimer’s disease proteinopathy: Possible therapeutic role of curcumin. Nutrients, 2022, 14(2), 248. doi: 10.3390/nu14020248 PMID: 35057429
  139. Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234. doi: 10.1136/jim-2016-000240 PMID: 27521081
  140. ELBini-Dhouib, I.; Doghri, R.; Ellefi, A.; Degrach, I.; Srairi-Abid, N.; Gati, A. Curcumin attenuated neurotoxicity in sporadic animal model of Alzheimer’s disease. Molecules, 2021, 26(10), 3011. doi: 10.3390/molecules26103011 PMID: 34070220
  141. Noor, N.A.; Hosny, E.N.; Khadrawy, Y.A.; Mourad, I.M.; Othman, A.I.; Aboul Ezz, H.S.; Mohammed, H.S. Effect of curcumin nanoparticles on streptozotocin-induced male Wistar rat model of Alzheimer’s disease. Metab. Brain Dis., 2022, 37(2), 343-357. doi: 10.1007/s11011-021-00897-z PMID: 35048324
  142. da Costa, I.M.; de Moura Freire, M.A.; de Paiva Cavalcanti, J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira, R.I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: a systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421. doi: 10.2174/0929867325666180117112610 PMID: 29338678
  143. Mollazadeh, H.; Cicero, A.F.G.; Blesso, C.N.; Pirro, M.; Majeed, M.; Sahebkar, A. Immune modulation by curcumin: The role of interleukin-10. Crit. Rev. Food Sci. Nutr., 2019, 59(1), 89-101. doi: 10.1080/10408398.2017.1358139 PMID: 28799796
  144. Nebrisi, E.E. Neuroprotective activities of curcumin in Parkinson’s disease: A review of the literature. Int. J. Mol. Sci., 2021, 22(20), 11248. doi: 10.3390/ijms222011248 PMID: 34681908
  145. Abrahams, S.; Miller, H.C.; Lombard, C.; van der Westhuizen, F.H.; Bardien, S. Curcumin pre-treatment may protect against mitochondrial damage in LRRK2-mutant Parkinson’s disease and healthy control fibroblasts. Biochem. Biophys. Rep., 2021, 27, 101035. doi: 10.1016/j.bbrep.2021.101035 PMID: 34189277
  146. Fikry, H.; Saleh, L.A.; Abdel Gawad, S. Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced Parkinson’s Disease Model. CNS Neurosci. Ther., 2022, 28(5), 732-748. doi: 10.1111/cns.13805 PMID: 35068069
  147. He, H.J.; Xiong, X.; Zhou, S.; Zhang, X.R.; Zhao, X.; Chen, L.; Xie, C.L. Neuroprotective effects of curcumin via autophagy induction in 6-hydroxydopamine Parkinson’s models. Neurochem. Int., 2022, 155, 105297. doi: 10.1016/j.neuint.2022.105297 PMID: 35122926
  148. Ramires Júnior, O.V.; Alves, B.S.; Barros, P.A.B.; Rodrigues, J.L.; Ferreira, S.P.; Monteiro, L.K.S.; Araújo, G.M.S.; Fernandes, S.S.; Vaz, G.R.; Dora, C.L.; Hort, M.A. Nanoemulsion improves the neuroprotective effects of curcumin in an experimental model of Parkinson’s disease. Neurotox. Res., 2021, 39(3), 787-799. doi: 10.1007/s12640-021-00362-w PMID: 33860897
  149. Chetty, D.; Abrahams, S.; Coller, R.; Carr, J.; Kenyon, C.; Bardien, S. Movement of prion-like α‐synuclein along the gut–brain axis in Parkinson’s disease: A potential target of curcumin treatment. Eur. J. Neurosci., 2021, 54(2), 4695-4711. doi: 10.1111/ejn.15324 PMID: 34043864
  150. Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglione, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum. Mol. Genet., 2019, 28(23), ddz247. doi: 10.1093/hmg/ddz247 PMID: 31630202
  151. Aditi, K.; Singh, A.; Shakarad, M.N.; Agrawal, N. Management of altered metabolic activity in Drosophila model of Huntington’s disease by curcumin. Exp. Biol. Med. (Maywood), 2022, 247(2), 152-164. doi: 10.1177/15353702211046927 PMID: 34743577
  152. Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779. doi: 10.2174/1871527317666180720162029 PMID: 30033879
  153. Patel, K.; Patel, D.K. The Beneficial Role of Rutin, A naturally occurring flavonoid in health promotion and disease prevention: A systematic review and update. In: Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed; Academic Press, 2019; pp. 457-479.
  154. Sun, X.; Li, L.; Dong, Q.X.; Zhu, J.; Huang, Y.; Hou, S.; Yu, X.; Liu, R. Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflammation, 2021, 18(1), 131. doi: 10.1186/s12974-021-02182-3 PMID: 34116706
  155. Ouyang, Q.; Liu, K.; Zhu, Q.; Deng, H.; Le, Y.; Ouyang, W.; Yan, X.; Zhou, W.; Tong, J. Brain-penetration and neuron-targeting DNA nanoflowers co-delivering miR-124 and rutin for synergistic THerapy of Alzheimer’s disease. Small, 2022, 18(14), 2107534. doi: 10.1002/smll.202107534 PMID: 35182016
  156. Cordeiro, L.M.; Soares, M.V.; da Silva, A.F.; Machado, M.L.; Bicca, O.B.F.; da Silveira, T.L.; Arantes, L.P.; Soares, F.A.A. Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntington’s disease. Nutr. Neurosci., 2021, 1-14. doi: 10.1080/1028415X.2021.1956254 PMID: 34311678
  157. Cordeiro, L.M.; Machado, M.L.; da Silva, A.F.; Obetine, B.F.B.; da Silveira, T.L.; Soares, F.A.A.; Arantes, L.P. Rutin protects Huntington’s disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: Study in Caenorhabditis elegans model. Food Chem. Toxicol., 2020, 141, 111323. doi: 10.1016/j.fct.2020.111323 PMID: 32278002
  158. Suganya, S.N.; Sumathi, T. Effect of rutin against a mitochondrial toxin, 3-nitropropionicacid induced biochemical, behavioral and histological alterations-a pilot study on Huntington’s disease model in rats. Metab. Brain Dis., 2017, 32(2), 471-481. doi: 10.1007/s11011-016-9929-4 PMID: 27928694
  159. Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E.; Kassab, R.B. Rutin and selenium co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox. Res., 2020, 37(1), 77-92. doi: 10.1007/s12640-019-00086-y PMID: 31332714
  160. Neta, F.; Da Costa, I.; Lima, F.; Fernandes, L.; Cavalcanti, J.; Freire, M.; Lucena, E.D.S.; Do Rêgo, A.M.; De Azevedo, E.; Guzen, F. Effects of Mucuna pruriens (L.) supplementation on experimental models of Parkinson’s disease: A systematic review. Pharmacogn. Rev., 2018, 12(23), 78-84.
  161. Nayak, V.S.; Kumar, N.; D’Souza, A.S.; Nayak, S.S.; Cheruku, S.P.; Pai, K.S.R. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia. Neuroreport, 2017, 28(18), 1195-1201. doi: 10.1097/WNR.0000000000000888 PMID: 28953092
  162. Duttaroy, A.K. Health effects of terpenoids.Evidence-Based Nutrition and Clinical Evidence of Bioactive Foods in Human Health and Disease; Duttaroy, A.K., Ed.; Academic Press, 2021, pp. 413-424. doi: 10.1016/B978-0-12-822405-2.00017-7
  163. Song, Y.; Wang, Y.; Zheng, Y.; Liu, T.; Zhang, C. Crocins: A comprehensive review of structural characteristics, pharmacokinetics and therapeutic effects. Fitoterapia, 2021, 153, 104969. doi: 10.1016/j.fitote.2021.104969 PMID: 34147548
  164. Taheri, R.; Hadipour, E.; Tayarani-Najaran, Z. Crocin protects against beta-amyloid peptide-induced apoptosis in PC12 cells via the PI3 K pathway. Curr. Mol. Pharmacol., 2021, 14(4), 627-634. doi: 10.2174/1874467213666201012160401 PMID: 33045973
  165. Yousefsani, B.S.; Mehri, S.; Pourahmad, J.; Hosseinzadeh, H. Protective effect of crocin against mitochondrial damage and memory deficit induced by beta-amyloid in the hippocampus of rats. Iran. J. Pharm. Res., 2021, 20(2), 79-94. PMID: 34567148
  166. Hadipour, M.; Bahari, Z.; Afarinesh, M.R.; Jangravi, Z.; Shirvani, H.; Meftahi, G.H. Administering crocin ameliorates anxiety-like behaviours and reduces the inflammatory response in amyloid-beta induced neurotoxicity in rat. Clin. Exp. Pharmacol. Physiol., 2021, 48(6), 877-889. doi: 10.1111/1440-1681.13494 PMID: 33686675
  167. Saeedi, M.; Rashidy-Pour, A. Association between chronic stress and Alzheimer’s disease: Therapeutic effects of Saffron. Biomed. Pharmacother., 2021, 133, 110995. doi: 10.1016/j.biopha.2020.110995 PMID: 33232931
  168. Mohammadzadeh, L.; Hosseinzadeh, H.; Abnous, K.; Razavi, B.M. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ. Sci. Pollut. Res. Int., 2018, 25(5), 4904-4914. doi: 10.1007/s11356-017-0842-0 PMID: 29204935
  169. Chongtham, A.; Yoo, J.H.; Chin, T.M.; Akingbesote, N.D.; Huda, A.; Khoshnan, A. Gut bacteria regulate the pathogenesis of Huntington’s disease in Drosophila. bioRxiv, 2021, 16. doi: 10.1101/2021.08.12.456124
  170. Siahaan, E.A.; Pangestuti, R.; Pratama, I.S.; Putra, Y.; Kim, S-K. Beneficial effects of astaxanthin in cosmeceuticals with focus on emerging market trends. In: Global Perspectives on Astaxanthin; Ravishankar, G.A.; Ranga, R.A., Eds.; Academic Press, 2021; pp. 557-568.
  171. Alghazwi, M.; Smid, S.; Musgrave, I.; Zhang, W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation. Neurochem. Int., 2019, 124, 215-224. doi: 10.1016/j.neuint.2019.01.010 PMID: 30639263
  172. Rahman, S.O.; Panda, B.P.; Parvez, S.; Kaundal, M.; Hussain, S.; Akhtar, M.; Najmi, A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother., 2019, 110, 47-58. doi: 10.1016/j.biopha.2018.11.043 PMID: 30463045
  173. Sakayanathan, P.; Loganathan, C.; Kandasamy, S.; Ramanna, R.V.; Poomani, K.; Thayumanavan, P. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int. J. Biol. Macromol., 2019, 140, 1147-1157. doi: 10.1016/j.ijbiomac.2019.08.168 PMID: 31442505
  174. Chen, C-C.; Lee, H-C.; Chang, J-H.; Chen, S-S.; Li, T-C.; Tsai, C-H.; Cho, D-Y.; Hsieh, C-L. Chinese herb Astragalus membranaceus enhances recovery of hemorrhagic stroke: double-blind, placebo-controlled, randomized study. Evid-Based Compl Alter Med, 2012, 2012, 708452.
  175. Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665. doi: 10.2174/1570159X16666180911123341 PMID: 30207235
  176. Shen, D.F.; Qi, H.P.; Ma, C.; Chang, M.X.; Zhang, W.N.; Song, R.R. Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson’s disease by regulating miR-7/SNCA axis. Neurosci. Res., 2021, 165, 51-60. doi: 10.1016/j.neures.2020.04.003 PMID: 32333925
  177. Akinade, T.C.; Babatunde, O.O.; Adedara, A.O.; Adeyemi, O.E.; Otenaike, T.A.; Ashaolu, O.P.; Johnson, T.O.; Terriente-Felix, A.; Whitworth, A.J.; Abolaji, A.O. Protective capacity of carotenoid trans-astaxanthin in rotenone-induced toxicity in Drosophila melanogaster. Sci. Rep., 2022, 12(1), 4594. doi: 10.1038/s41598-022-08409-4 PMID: 35301354
  178. Yang, J.; Li, J.; Lu, J.; Zhang, Y.; Zhu, Z.; Wan, H. Synergistic protective effect of astragaloside IV–tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. J. Ethnopharmacol., 2012, 140(1), 64-72. doi: 10.1016/j.jep.2011.12.023 PMID: 22207211
  179. Sánchez-Illana, Á.; Piñeiro-Ramos, J.D.; Ramos-Garcia, V.; Ten-Doménech, I.; Vento, M.; Kuligowski, J. Chapter Three - Oxidative stress biomarkers in the preterm infant. Adv. Clin. Chem; Makowski, G.S., Ed.; Elsevier, 2021, Vol. 102, pp. 127-189.
  180. Singhrang, N.; Tocharus, C.; Thummayot, S.; Sutheerawattananonda, M.; Tocharus, J. Protective effects of silk lutein extract from Bombyx mori cocoons on β-Amyloid peptide-induced apoptosis in PC12 cells. Biomed. Pharmacother., 2018, 103, 582-587. doi: 10.1016/j.biopha.2018.04.045 PMID: 29677545
  181. Ademowo, O.S.; Dias, I.H.K.; Diaz-Sanchez, L.; Sanchez-Aranguren, L.; Stahl, W.; Griffiths, H.R. Partial mitigation of oxidized phospholipid-mediated mitochondrial dysfunction in neuronal cells by oxocarotenoids. J. Alzheimers Dis., 2020, 74(1), 113-126. doi: 10.3233/JAD-190923 PMID: 31985464
  182. Fernandes, E.J.; Poetini, M.R.; Barrientos, M.S.; Bortolotto, V.C.; Araujo, S.M.; Santos Musachio, E.A.; De Carvalho, A.S.; Leimann, F.V.; Gonçalves, O.H.; Ramborger, B.P.; Roehrs, R.; Prigol, M.; Guerra, G.P. Exposure to lutein-loaded nanoparticles attenuates Parkinson’s model-induced damage in Drosophila melanogaster: restoration of dopaminergic and cholinergic system and oxidative stress indicators. Chem. Biol. Interact., 2021, 340, 109431. doi: 10.1016/j.cbi.2021.109431 PMID: 33716020
  183. Binawade, Y.; Jagtap, A. Neuroprotective effect of lutein against 3-nitropropionic acid-induced Huntington’s disease-like symptoms: possible behavioral, biochemical, and cellular alterations. J. Med. Food, 2013, 16(10), 934-943. doi: 10.1089/jmf.2012.2698 PMID: 24138168
  184. Wani, A.; Al Rihani, S.B.; Sharma, A.; Weadick, B.; Govindarajan, R.; Khan, S.U.; Sharma, P.R.; Dogra, A.; Nandi, U.; Reddy, C.N.; Bharate, S.S.; Singh, G.; Bharate, S.B.; Vishwakarma, R.A.; Kaddoumi, A.; Kumar, A. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy, 2021, 17(11), 3813-3832. doi: 10.1080/15548627.2021.1872187 PMID: 33404280
  185. Zhang, J.; Wang, Y.; Dong, X.; Liu, J. Crocetin attenuates inflammation and amyloid-β; accumulation in APPsw transgenic mice. Immun. Ageing, 2018, 15(1), 24. doi: 10.1186/s12979-018-0132-9 PMID: 30450117
  186. Dong, N.; Dong, Z.; Chen, Y.; Gu, X. Crocetin alleviates inflammation in MPTP-induced Parkinson’s disease models through improving mitochondrial functions. Parkinsons Dis., 2020, 2020, 1-9. doi: 10.1155/2020/9864370 PMID: 33101635
  187. Montgomery Hays, B.; Hudson, T. 166 - Endometriosis. Textbook of Natural Medicine; 5th ed; Pizzorno, J.E.; Murray, M.T., Eds.; Churchill Livingstone: St. Louis, MO,, 2020, pp. 1287-1295. e1283 doi: 10.1016/B978-0-323-43044-9.00166-7
  188. Hira, S. Saleem, U.; Anwar, F.; Sohail, M.F.; Raza, Z.; Ahmad, B. β-Carotene: A natural compound improves cognitive impairment and oxidative stress in a mouse model of streptozotocin-induced Alzheimer’s disease. Biomolecules, 2019, 9(9), 441. doi: 10.3390/biom9090441 PMID: 31480727
  189. Kim, J.H.; Hwang, J.; Shim, E.; Chung, E.J.; Jang, S.H.; Koh, S.B. Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson’s Disease. Nutr. Res. Pract., 2017, 11(2), 114-120. doi: 10.4162/nrp.2017.11.2.114 PMID: 28386384
  190. Przybylska, S. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. Int. J. Food Sci. Technol., 2020, 55(1), 11-32. doi: 10.1111/ijfs.14260
  191. Huang, C.; Wen, C.; Yang, M.; Gan, D.; Fan, C.; Li, A.; Li, Q.; Zhao, J.; Zhu, L.; Lu, D. Lycopene protects against t-BHP-induced neuronal oxidative damage and apoptosis via activation of the PI3K/Akt pathway. Mol. Biol. Rep., 2019, 46(3), 3387-3397. doi: 10.1007/s11033-019-04801-y PMID: 31006097
  192. Putteeraj, M.; Lim, W.L.; Teoh, S.L.; Yahaya, M.F. Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Curr. Drug Targets, 2018, 19(14), 1710-1720. doi: 10.2174/1389450119666180326125252 PMID: 29577854
  193. Tripathi, R.; Shalini, R.; Singh, R.K. 7 - Prophyletic origin of algae as potential repository of anticancer compounds. Evolutionary Diversity as a Source for Anticancer Molecules; Srivastava, A.K.; Kannaujiya, V.K.; Singh, R.K; Singh, D., Ed.; Academic Press, 2021, pp. 155-189. doi: 10.1016/B978-0-12-821710-8.00007-2
  194. Nazih, H.; Bard, J-M. Microalgae in human health: Interest as a functional food. Microalgae in Health and Disease Prevention; Levine, I.A; Fleurence, J., Ed.; Academic Press, 2018, pp. 211-226. doi: 10.1016/B978-0-12-811405-6.00010-4
  195. Xiang, S.; Liu, F.; Lin, J.; Chen, H.; Huang, C.; Chen, L.; Zhou, Y.; Ye, L.; Zhang, K.; Jin, J.; Zhen, J.; Wang, C.; He, S.; Wang, Q.; Cui, W.; Zhang, J. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J. Agric. Food Chem., 2017, 65(20), 4092-4102. doi: 10.1021/acs.jafc.7b00805 PMID: 28478680
  196. Lee, A.H.; Shin, H.Y.; Park, J.H.; Koo, S.Y.; Kim, S.M.; Yang, S.H. Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NFκB and NLRP3 inflammasome activation. Sci. Rep., 2021, 11(1), 543. doi: 10.1038/s41598-020-80748-6 PMID: 33436909
  197. Wu, W.; Han, H.; Liu, J.; Tang, M.; Wu, X.; Cao, X.; Zhao, T.; Lu, Y.; Niu, T.; Chen, J. Fucoxanthin prevents 6-OHDA-induced neurotoxicity by targeting Keap1. Oxid. Med. Cell. Long.,, 2021, 2021
  198. Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem., 2018, 151, 62-97. doi: 10.1016/j.ejmech.2018.03.057 PMID: 29605809
  199. Singh, A.; Mahajan, S.D.; Kutscher, H.L.; Kim, S.; Prasad, P.N. Curcumin-pluronic nanoparticles: A theranostic nanoformulation for Alzheimer’s disease. Crit. Rev. Biomed. Eng., 2020, 48(3), 153-168. doi: 10.1615/CritRevBiomedEng.2020034302 PMID: 33389893
  200. Mursaleen, L.; Somavarapu, S.; Zariwala, M.G. Deferoxamine and curcumin loaded nanocarriers protect against rotenone-induced neurotoxicity. J. Parkinsons Dis., 2020, 10(1), 99-111. doi: 10.3233/JPD-191754 PMID: 31868679
  201. Pan, Q.; Ban, Y.; Xu, L. Silibinin-albumin nanoparticles: Characterization and biological evaluation against oxidative stress-stimulated neurotoxicity associated with Alzheimer’s disease. J. Biomed. Nanotechnol., 2021, 17(6), 1123-1130. doi: 10.1166/jbn.2021.3038 PMID: 34167626
  202. Mandal, S.; Debnath, K.; Jana, N.R.; Jana, N.R. Trehalose-conjugated, catechin-loaded polylactide nanoparticles for improved neuroprotection against intracellular polyglutamine aggregates. Biomacromolecules, 2020, 21(4), 1578-1586. doi: 10.1021/acs.biomac.0c00143 PMID: 32105465
  203. Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305. doi: 10.1021/acsabm.9b00518 PMID: 35021530
  204. Cano, A.; Ettcheto, M.; Espina, M.; Auladell, C.; Folch, J.; Kühne, B.A.; Barenys, M.; Sánchez-López, E.; Souto, E.B.; García, M.L.; Turowski, P.; Camins, A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond.), 2021, 16(1), 19-35. doi: 10.2217/nnm-2020-0239 PMID: 33410329
  205. Lima, B.S.; Campos, C.A.; da Silva Santos, A.C.R.; Santos, V.C.N.; Trindade, G.G.G.; Shanmugam, S.; Pereira, E.W.M.; Marreto, R.N.; Duarte, M.C.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans, L.J., Jr; Araújo, A.A.S. Development of morin/hydroxypropyl-β-cyclodextrin inclusion complex: Enhancement of bioavailability, antihyperalgesic and anti-inflammatory effects. Food Chem. Toxicol., 2019, 126, 15-24. doi: 10.1016/j.fct.2019.01.038 PMID: 30738132
  206. Manta, K.; Papakyriakopoulou, P.; Chountoulesi, M.; Diamantis, D.A.; Spaneas, D.; Vakali, V.; Naziris, N.; Chatziathanasiadou, M.V.; Andreadelis, I.; Moschovou, K.; Athanasiadou, I.; Dallas, P.; Rekkas, D.M.; Demetzos, C.; Colombo, G.; Banella, S.; Javornik, U.; Plavec, J.; Mavromoustakos, T.; Tzakos, A.G.; Valsami, G. Preparation and biophysical characterization of quercetin inclusion complexes with β-cyclodextrin derivatives to be formulated as possible nose-to-brain quercetin delivery systems. Mol. Pharm., 2020, 17(11), 4241-4255. doi: 10.1021/acs.molpharmaceut.0c00672 PMID: 32986435
  207. Wong, K.H.; Xie, Y.; Huang, X.; Kadota, K.; Yao, X.S.; Yu, Y.; Chen, X.; Lu, A.; Yang, Z. Delivering crocetin across the blood brain barrier by using γ-cyclodextrin to treat Alzheimer’s disease. Sci. Rep., 2020, 10(1), 3654. doi: 10.1038/s41598-020-60293-y PMID: 32107408
  208. Zhang, L.; Yang, S.; Wong, L.R.; Xie, H.; Ho, P.C.L. In vitro and in vivo comparison of curcumin-encapsulated chitosan-coated Poly(lactic-co-glycolic acid) nanoparticles and curcumin/hydroxypropyl-β-cyclodextrin inclusion complexes administered intranasally as therapeutic strategies for Alzheimer’s disease. Mol. Pharm., 2020, 17(11), 4256-4269. doi: 10.1021/acs.molpharmaceut.0c00675 PMID: 33084343
  209. Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Kapoor, B.; Vyas, M.; Khursheed, R.; Awasthi, A.; Kaur, J.; Corrie, L. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson’s disease rat model. Food Chem. Toxicol., 2020, 144, 111590. doi: 10.1016/j.fct.2020.111590 PMID: 32710995
  210. Kumar, R.; Kumar, R.; Khurana, N.; Singh, S.K.; Khurana, S.; Verma, S.; Sharma, N.; Vyas, M.; Dua, K.; Khursheed, R.; Awasthi, A.; Vishwas, S. Improved neuroprotective activity of Fisetin through SNEDDS in ameliorating the behavioral alterations produced in rotenone-induced Parkinson’s model. Environ. Sci. Pollut. Res. Int., 2022, 29(33), 50488-50499. doi: 10.1007/s11356-022-19428-z PMID: 35230633
  211. Sangsen, Y.; Sooksawate, T.; Likhitwitayawuid, K.; Sritularak, B.; Wiwattanapatapee, R. A self-microemulsifying formulation of oxyresveratrol prevents amyloid beta protein-induced neurodegeneration in mice. Planta Med., 2018, 84(11), 820-828. doi: 10.1055/s-0043-125337 PMID: 29301146
  212. Huo, X.; Zhang, Y.; Jin, X.; Li, Y.; Zhang, L. A novel synthesis of selenium nanoparticles encapsulated PLGA nanospheres with curcumin molecules for the inhibition of amyloid β aggregation in Alzheimer’s disease. J. Photochem. Photobiol. B, 2019, 190, 98-102. doi: 10.1016/j.jphotobiol.2018.11.008 PMID: 30504054
  213. Mazibuko, Z.; Indermun, S.; Govender, M.; Kumar, P.; Du Toit, L.C.; Choonara, Y.E.; Modi, G.; Naidoo, D.; Pillay, V. Targeted delivery of amantadine-loaded methacrylate nanosphere-ligands for the potential treatment of amyotrophic lateral sclerosis. J. Pharm. Pharm. Sci., 2018, 21(1), 94-109. doi: 10.18433/jpps29595 PMID: 29510799
  214. Agwa, M.M.; Abdelmonsif, D.A.; Khattab, S.N.; Sabra, S. Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer’s disease. Int. J. Biol. Macromol., 2020, 162, 246-261. doi: 10.1016/j.ijbiomac.2020.06.058 PMID: 32531361
  215. Chibhabha, F.; Yang, Y.; Ying, K.; Jia, F.; Zhang, Q.; Ullah, S.; Liang, Z.; Xie, M.; Li, F. Non-invasive optical imaging of retinal Aβ plaques using curcumin loaded polymeric micelles in APP swe/PS1 ΔE9 transgenic mice for the diagnosis of Alzheimer’s disease. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(33), 7438-7452. doi: 10.1039/D0TB01101K PMID: 32662804
  216. Singh, M.; Thakur, V.; Deshmukh, R.; Sharma, A.; Rathore, M.S.; Kumar, A.; Mishra, N. Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer’s disease. J. Microencapsul., 2018, 35(2), 137-148. doi: 10.1080/02652048.2018.1441916 PMID: 29448848
  217. Mursaleen, L.; Noble, B.; Somavarapu, S.; Zariwala, M.G. Micellar nanocarriers of hydroxytyrosol are protective against Parkinson’s related oxidative stress in an in vitro hCMEC/D3-SH-SY5Y co-culture system. Antioxidants, 2021, 10(6), 887. doi: 10.3390/antiox10060887 PMID: 34073115
  218. D’Ambrosio, D.; Panina-Bordignon, P.; Sinigaglia, F. Chemokine receptors in inflammation: an overview. J. Immunol. Methods, 2003, 273(1-2), 3-13. doi: 10.1016/S0022-1759(02)00414-3 PMID: 12535793
  219. Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025 PMID: 20303878
  220. Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
  221. Flower, R.J. The development of COX2 inhibitors. Nat. Rev. Drug Discov., 2003, 2(3), 179-191. doi: 10.1038/nrd1034 PMID: 12612644
  222. Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6), 805-820. doi: 10.1016/j.cell.2010.01.022 PMID: 20303872
  223. Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell, 2010, 140(6), 771-776. doi: 10.1016/j.cell.2010.03.006 PMID: 20303867
  224. Chertov, O.; Yang, D.; Howard, O.M.Z.; Oppenheim, J.J. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol. Rev., 2000, 177(1), 68-78. doi: 10.1034/j.1600-065X.2000.17702.x PMID: 11138786
  225. Stichtenoth, D.O.; Frölich, J.C. The second generation of COX-2 inhibitors: what advantages do the newest offer? Drugs, 2003, 63(1), 33-45. doi: 10.2165/00003495-200363010-00003 PMID: 12487621
  226. Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci., 1997, 2(1), d12-d26. PMID: 9159205
  227. Arango Duque, G.; Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol., 2014, 5, 491. doi: 10.3389/fimmu.2014.00491 PMID: 25339958
  228. Zhou, Y.; Hong, Y.; Huang, H. Triptolide attenuates inflammatory response in membranous glomerulo-nephritis rat via downregulation of NF-κB signaling pathway. Kidney Blood Press. Res., 2016, 41(6), 901-910. doi: 10.1159/000452591 PMID: 27871079
  229. Fritz, J.H.; Girardin, S.E. How Toll-like receptors and Nod-like receptors contribute to innate immunity in mammals. J. Endotoxin Res., 2005, 11(6), 390-394. doi: 10.1177/09680519050110060301 PMID: 16303096
  230. Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res., 2018, 11, 23-32. doi: 10.1016/j.jare.2018.03.005 PMID: 30034873
  231. Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol., 2015, 15(8), 511-523. doi: 10.1038/nri3859 PMID: 26139350
  232. Gaddi, A.; Cicero, A.F.G.; Pedro, E.J. Clinical perspectives of anti-inflammatory therapy in the elderly: the lipoxigenase (LOX)/cycloxigenase (COX) inhibition concept. Arch. Gerontol. Geriatr., 2004, 38(3), 201-212. doi: 10.1016/j.archger.2003.10.001 PMID: 15066307
  233. Rådmark, O.; Werz, O.; Steinhilber, D.; Samuelsson, B. 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(4), 331-339. doi: 10.1016/j.bbalip.2014.08.012 PMID: 25152163
  234. Poetker, D.M.; Reh, D.D. A comprehensive review of the adverse effects of systemic corticosteroids. Otolaryngol. Clin. North Am., 2010, 43(4), 753-768. doi: 10.1016/j.otc.2010.04.003 PMID: 20599080
  235. Day, R.O.; Graham, G.G. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ, 2013, 346, f3195. PMID: 23757736
  236. Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: an update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2014, 16(5), 821-847. doi: 10.18433/J3VW2F PMID: 24393558
  237. Rao, P.P.N.; Kabir, S.N.; Mohamed, T. Nonsteroidal anti-inflammatory drugs (NSAIDs): progress in small molecule drug development. Pharmaceuticals (Basel), 2010, 3(5), 1530-1549. doi: 10.3390/ph3051530 PMID: 27713316
  238. Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA, 2001, 286(8), 954-959. doi: 10.1001/jama.286.8.954 PMID: 11509060
  239. Arora, M.; Choudhary, S.; Singh, P.K.; Sapra, B.; Silakari, O. Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: A review. Life Sci., 2020, 251, 117631. doi: 10.1016/j.lfs.2020.117631 PMID: 32251635
  240. Meyer-Kirchrath, J.; Schrör, K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr. Med. Chem., 2000, 7(11), 1121-1129. doi: 10.2174/0929867003374219 PMID: 11032962
  241. Jose, M-G.; Lina, B. Mechanisms underlying the cardiovascular effects of COX-inhibition: benefits and risks. Curr. Pharm. Des., 2007, 13(22), 2215-2227. doi: 10.2174/138161207781368774 PMID: 17691994
  242. Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J. Pharm. Pharm. Sci., 2008, 11(2), 81. doi: 10.18433/J3T886 PMID: 19203472
  243. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
  244. Addington, O.C.; Newman, R.A. Method of treating neurological conditions with oleandrin. US Patent US 9,877,979, 2018.
  245. Mazed, M.A.; Mazed, S. Nutritional supplement for the prevention of cardiovascular disease, alzheimer's disease, diabetes, and regulation and reduction of blood sugar and insulin resistance. US Patent US 8017147 B2, 2011.
  246. Gennari, G.; Panfilo, S. Pharmaceutical compositions containing phosphatidylserine and curcumin. US Patent US 9381204 B2, 2016.
  247. Tan, J.; Luo, D.; Shytle, R.D. Luteolin and diosmin/diosmetin as novel STAT3 inhibitors for treating autism. US Patent US 8778894 B2, 2014.
  248. Crowley, K.L. Buccal and sublingual cannabinoid formulations and method of making the same. EP Patent EP 3160451 B1 2021.
  249. Rupasinghe, H.P.; Robertson, G.S. Phenolic compositions derived from apple skin and uses thereof. US Patent US 9511107 B2 2016.
  250. Soman, G.S.; Phadke, S.G. Herbal composition for reducing ADD/ ADHD and method thereof. US Patent US 8394429 B2, 2013.
  251. Baraona, R.M.; Sepúlveda, L.Q.; Saavedra, I.S.; Salas, R.S.; Salas, V.S. Nutraceutical composition that comprises extract of andean shilajit, for preventing and/or treating neurodegenerative diseases and/or the cognitive deterioration associated with cerebral aging. US Patent US 8784804 B2, 2014.
  252. Guy, G.; Platt, B. Cannabinoid-containing plant extracts as neuroprotective agents. US Patent US 8673368 B2 2014.
  253. Choi, P.; Castillo, G.; Nguyen, B.; Snow, A.; Cummings, J. Catechins for the treatment of fibrillogenesis in alzheimer's disease, parkinson's disease, systemic aa amyloidosis, and other amyloid disorders. CA Patent CA 2440293 C, 2012.
  254. Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. doi: 10.1038/s41573-020-00114-z PMID: 33510482
  255. Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Analyt. Chem., 2019, 118, 248-263. doi: 10.1016/j.trac.2019.05.037
  256. Shinde, P.; Banerjee, P.; Mandhare, A. Marine natural products as source of new drugs: a patent review (2015–2018). Expert Opin. Ther. Pat., 2019, 29(4), 283-309. doi: 10.1080/13543776.2019.1598972 PMID: 30902039
  257. McGonigle, I.V. Patenting nature or protecting culture? Ethnopharmacology and indigenous intellectual property rights. J. Law Biosci., 2016, 3(1), 217-226. doi: 10.1093/jlb/lsw003 PMID: 27774245
  258. Heffernan, O. Why a landmark treaty to stop ocean biopiracy could stymie research. Nature, 2020, 580(7801), 20-22. doi: 10.1038/d41586-020-00912-w PMID: 32221504
  259. Rahman, M.H.; Bajgai, J.; Fadriquela, A.; Sharma, S.; Trinh, T.T.; Akter, R.; Jeong, Y.J.; Goh, S.H.; Kim, C.S.; Lee, K.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges. Molecules, 2021, 26(17), 5327. doi: 10.3390/molecules26175327 PMID: 34500759
  260. Di Paolo, M.; Papi, L.; Gori, F.; Turillazzi, E. Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci., 2019, 20(20), 5170. doi: 10.3390/ijms20205170 PMID: 31635296

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers