ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimer’s Disease


Cite item

Full Text

Abstract

Background:The pathological manifestations of Alzheimer’s disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-- tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation.

Methods:While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions.

Results:Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities.

Conclusion:Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.

About the authors

Xiaosen Ouyang

Department of Pathology, University of Alabama at Birmingham

Email: info@benthamscience.net

Roberto Collu

Geriatric Research Education and Clinical Center, Bedford VA Healthcare System

Email: info@benthamscience.net

Gloria Benavides

Department of Pathology, University of Alabama at Birmingham

Email: info@benthamscience.net

Ran Tian

Department of Pathology, University of Alabama at Birmingham

Email: info@benthamscience.net

Victor Darley-Usmar

Department of Pathology, University of Alabama at Birmingham

Email: info@benthamscience.net

Weiming Xia

Geriatric Research Education and Clinical Center, Bedford VA Healthcare System

Author for correspondence.
Email: info@benthamscience.net

Jianhua Zhang

Department of Pathology, University of Alabama at Birmingham

Author for correspondence.
Email: info@benthamscience.net

References

  1. Alzheimer’s disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89. doi: 10.1002/alz.12638 PMID: 35289055
  2. Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances. Mol Neurodegener 2020; 15(1): 30. doi: 10.1186/s13024-020-00376-6 PMID: 32471464
  3. Austad SNBS, Buford TW, Carter CS, Smith DL Jr, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer’s disease. Acta Pharm Sin B 2021; 12(2): 511-31. PMID: 35256932
  4. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20(3): 148-60. doi: 10.1038/s41583-019-0132-6 PMID: 30737462
  5. Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405. doi: 10.1016/S1474-4422(15)70016-5 PMID: 25792098
  6. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298(5594): 789-91. doi: 10.1126/science.1074069 PMID: 12399581
  7. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early alzheimer’s disease. N Engl J Med 2023; 388(1): 9-21. doi: 10.1056/NEJMoa2212948 PMID: 36449413
  8. Gueorguieva I, Willis BA, Chua L, et al. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with alzheimer’s disease. Clin Pharmacol Ther 2023; 113(6): 1258-67. doi: 10.1002/cpt.2875 PMID: 36805552
  9. Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic alzheimer disease. JAMA 2023; 330(6): 512-27. doi: 10.1001/jama.2023.13239 PMID: 37459141
  10. Reardon S. Alzheimer’s drug donanemab helps most when taken at earliest disease stage, study finds. Nature 2023; 619(7971): 682-3. doi: 10.1038/d41586-023-02321-1 PMID: 37460689
  11. Manly JJ, Deters KD. Donanemab for alzheimer disease—who benefits and who is harmed? JAMA 2023; 330(6): 510-1. doi: 10.1001/jama.2023.11704 PMID: 37459138
  12. Gueorguieva I, Willis BA, Chua L, et al. Donanemab exposure and efficacy relationship using modeling in Alzheimer’s disease. Alzheimers Dement 2023; 9(2): e12404. doi: 10.1002/trc2.12404 PMID: 37388759
  13. Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat Rev Neurol 2023; 19(12): 715-36. doi: 10.1038/s41582-023-00883-2 PMID: 37875627
  14. Ayalon G, Lee SH, Adolfsson O, et al. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer’s disease. Sci Transl Med 2021; 13(593): eabb2639. doi: 10.1126/scitranslmed.abb2639 PMID: 33980574
  15. Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19(9): 609-33. doi: 10.1038/s41573-020-0072-x PMID: 32709961
  16. Tai YH, Engels D, Locatelli G, et al. Targeting the TCA cycle can ameliorate widespread axonal energy deficiency in neuroinflammatory lesions. Nat Metab 2023; 5(8): 1364-81. doi: 10.1038/s42255-023-00838-3 PMID: 37430025
  17. Pålsson-McDermott EM, O’Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30(4): 300-14. doi: 10.1038/s41422-020-0291-z PMID: 32132672
  18. Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 2018; 10: 192. doi: 10.3389/fnagi.2018.00192 PMID: 29988480
  19. Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol 2020; 57(7): 3075-88. doi: 10.1007/s12035-020-01945-y PMID: 32462551
  20. Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96. doi: 10.1016/j.bioorg.2018.12.017 PMID: 30605887
  21. Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35. doi: 10.1016/j.ejmech.2018.11.049 PMID: 30503937
  22. Lee DH, Lee JY, Hong DY, et al. ROCK and PDE-5 inhibitors for the treatment of dementia: literature review and meta-analysis. Biomedicines 2022; 10(6): 1348. doi: 10.3390/biomedicines10061348 PMID: 35740369
  23. Chong CM, Ai N, Lee S. ROCK in CNS: Different roles of isoforms and therapeutic target for neurodegenerative disorders. Curr Drug Targets 2017; 18(4): 455-62. doi: 10.2174/1389450117666160401123825 PMID: 27033194
  24. Henderson BW, Gentry EG, Rush T, et al. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK 1 depletion reduces amyloid-β levels in brain. J Neurochem 2016; 138(4): 525-31. doi: 10.1111/jnc.13688 PMID: 27246255
  25. Weber AJ, Herskowitz JH. Perspectives on ROCK2 as a therapeutic target for alzheimer’s disease. Front Cell Neurosci 2021; 15: 636017. doi: 10.3389/fncel.2021.636017 PMID: 33790742
  26. Herskowitz JH, Feng Y, Mattheyses AL, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci 2013; 33(49): 19086-98. doi: 10.1523/JNEUROSCI.2508-13.2013 PMID: 24305806
  27. Cai R, Wang Y, Huang Z, et al. Role of RhoA/ROCK signaling in Alzheimer’s disease. Behav Brain Res 2021; 414: 113481. doi: 10.1016/j.bbr.2021.113481 PMID: 34302876
  28. Ono-Saito N, Niki I, Hidaka H. H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther 1999; 82(2-3): 123-31. doi: 10.1016/S0163-7258(98)00070-9 PMID: 10454191
  29. Couch BA, DeMarco GJ, Gourley SL, Koleske AJ. Increased dendrite branching in AbetaPP/PS1 mice and elongation of dendrite arbors by fasudil administration. J Alzheimers Dis 2010; 20(4): 1003-8. doi: 10.3233/JAD-2010-091114 PMID: 20413901
  30. Zhao Y, Tseng I-C, Heyser CJ, et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron 2015; 87(5): 963-75. doi: 10.1016/j.neuron.2015.08.020 PMID: 26335643
  31. Guo H, Zhao Z, Zhang R, et al. Monocytes in the peripheral clearance of amyloid-β and alzheimer’s disease. J Alzheimers Dis 2019; 68(4): 1391-400. doi: 10.3233/JAD-181177 PMID: 30958361
  32. Hamano T, Shirafuji N, Yen SH, et al. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol Aging 2020; 89: 41-54. doi: 10.1016/j.neurobiolaging.2019.12.009 PMID: 31982202
  33. Elliott C, Rojo AI, Ribe E, et al. A role for APP in Wnt signalling links synapse loss with β-amyloid production. Transl Psychiatry 2018; 8(1): 179. doi: 10.1038/s41398-018-0231-6 PMID: 30232325
  34. Guo MF, Zhang HY, Zhang PJ, et al. Fasudil reduces β-amyloid levels and neuronal apoptosis in APP/PS1 transgenic mice via inhibition of the Nogo-A/NgR/RhoA signaling axis. J Integr Neurosci 2020; 19(4): 651-62. doi: 10.31083/j.jin.2020.04.243 PMID: 33378839
  35. Wei W, Wang Y, Zhang J, et al. Fasudil ameliorates cognitive deficits, oxidative stress and neuronal apoptosis via inhibiting ROCK/MAPK and activating Nrf2 signalling pathways in APP/PS1 mice. Folia Neuropathol 2021; 59(1): 32-49. doi: 10.5114/fn.2021.105130 PMID: 33969676
  36. Yan Y, Gao Y, Fang Q, et al. Inhibition of Rho kinase by fasudil ameliorates cognition impairment in APP/PS1 transgenic mice via modulation of gut microbiota and metabolites. Front Aging Neurosci 2021; 13: 755164. doi: 10.3389/fnagi.2021.755164 PMID: 34721000
  37. Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53(3): 337-51. doi: 10.1016/j.neuron.2007.01.010 PMID: 17270732
  38. Benavides GA, Mueller T, Darley-Usmar V, Zhang J. Optimization of measurement of mitochondrial electron transport activity in postmortem human brain samples and measurement of susceptibility to rotenone and 4-hydroxynonenal inhibition. Redox Biol 2022; 50: 102241. doi: 10.1016/j.redox.2022.102241 PMID: 35066289
  39. Huynh VN, Benavides GA, Johnson MS, et al. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15(1): 22. doi: 10.1186/s13041-022-00906-x PMID: 35248135
  40. Ha C, Bakshi S, Brahma MK, et al. Sustained increases in cardiomyocyte protein O-linked β-N-acetylglucosamine levels lead to cardiac hypertrophy and reduced mitochondrial function without systolic contractile impairment. J Am Heart Assoc. 2023; 12: p. (19)e029898.
  41. Kane MS, Benavides GA, Osuma E, et al. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics. Sci Rep 2023; 13(1): 21638. doi: 10.1038/s41598-023-49018-z PMID: 38062139
  42. Ouyang X, Bakshi S, Benavides GA, et al. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload. Physiol Rep 2023; 11(9): e15686. doi: 10.14814/phy2.15686 PMID: 37144628
  43. Acin-Perez R, Benador IY, Petcherski A, et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020; 39(13): e104073. doi: 10.15252/embj.2019104073 PMID: 32432379
  44. Yang W, Wei H, Benavides GA, et al. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection. J Immunol 2022; 209(5): 896-906. doi: 10.4049/jimmunol.2101080 PMID: 35914835
  45. Ouyang X, Ahmad I, Johnson MS, et al. Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory. Lab Invest 2020; 100(9): 1238-51. doi: 10.1038/s41374-020-0433-4 PMID: 32350405
  46. Wright JN, Benavides GA, Johnson MS, et al. Acute increases in O -GlcNAc indirectly impair mitochondrial bioenergetics through dysregulation of LonP1-mediated mitochondrial protein complex turnover. Am J Physiol Cell Physiol 2019; 316(6): C862-75. doi: 10.1152/ajpcell.00491.2018 PMID: 30865517
  47. Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol 2018; 17: 59-69. doi: 10.1016/j.redox.2018.04.005 PMID: 29677567
  48. Bernard K, Logsdon NJ, Benavides GA, et al. Glutaminolysis is required for transforming growth factor-β1–induced myofibroblast differentiation and activation. J Biol Chem 2018; 293(4): 1218-28. doi: 10.1074/jbc.RA117.000444 PMID: 29222329
  49. Dodson M, Wani WY, Redmann M, et al. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy 2017; 13(11): 1828-40. doi: 10.1080/15548627.2017.1356948 PMID: 28837411
  50. Wani WY, Ouyang X, Benavides GA, et al. O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson’s disease. Mol Brain 2017; 10(1): 32. doi: 10.1186/s13041-017-0311-1 PMID: 28724388
  51. Bernard K, Logsdon NJ, Miguel V, et al. NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J Biol Chem 2017; 292(7): 3029-38. doi: 10.1074/jbc.M116.752261 PMID: 28049732
  52. Redmann M, Benavides GA, Berryhill TF, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 2017; 11: 73-81. doi: 10.1016/j.redox.2016.11.004 PMID: 27889640
  53. Boyer-Guittaut M, Poillet L, Liang Q, et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014; 10(6): 986-1003. doi: 10.4161/auto.28390 PMID: 24879149
  54. Benavides GA, Liang Q, Dodson M, Darley-Usmar V, Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia–reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic Biol Med 2013; 65: 1215-28. doi: 10.1016/j.freeradbiomed.2013.09.006 PMID: 24056030
  55. Liang Q, Benavides GA, Vassilopoulos A, Gius D, Darley-Usmar V, Zhang J. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem J 2013; 454(2): 249-57. doi: 10.1042/BJ20130414 PMID: 23767918
  56. Higdon AN, Benavides GA, Chacko BK, et al. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy. Am J Physiol Heart Circ Physiol 2012; 302(7): H1394-409. doi: 10.1152/ajpheart.00584.2011 PMID: 22245770
  57. Hill BG, Benavides GA, Lancaster JR Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. bchm 2012; 393(12): 1485-512. doi: 10.1515/hsz-2012-0198 PMID: 23092819
  58. Schneider L, Giordano S, Zelickson BR, et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 2011; 51(11): 2007-17. doi: 10.1016/j.freeradbiomed.2011.08.030 PMID: 21945098
  59. Dranka BP, Benavides GA, Diers AR, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 2011; 51(9): 1621-35. doi: 10.1016/j.freeradbiomed.2011.08.005 PMID: 21872656
  60. Xia Y, Prokop S, Gorion KMM, et al. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimer’s disease and other tauopathies. Acta Neuropathol Commun 2020; 8(1): 88. doi: 10.1186/s40478-020-00967-w PMID: 32571418
  61. Luan W, Wang Y, Chen X, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget 2015; 6(15): 13006-18. doi: 10.18632/oncotarget.3514 PMID: 25948776
  62. Morita M, Sato T, Nomura M, et al. PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell 2018; 33(3): 355-367.e7. doi: 10.1016/j.ccell.2018.02.004 PMID: 29533781
  63. Davidson SM, Schmidt DR, Heyman JE, et al. Pyruvate kinase M1 suppresses development and progression of prostate adenocarcinoma. Cancer Res 2022; 82(13): 2403-16. doi: 10.1158/0008-5472.CAN-21-2352 PMID: 35584006
  64. Li Q, Li C, Elnwasany A, et al. PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart. Circulation 2021; 144(9): 712-27. doi: 10.1161/CIRCULATIONAHA.121.054885 PMID: 34102853
  65. Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res 2018; 131: 87-101. doi: 10.1016/j.phrs.2018.03.010 PMID: 29551631
  66. Wiegand G, Remington SJ. Citrate synthase: Structure, control, and mechanism. Annu Rev Biophys Biophys Chem 1986; 15(1): 97-117. doi: 10.1146/annurev.bb.15.060186.000525 PMID: 3013232
  67. Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu S. The voltage-dependent anion channel (VDAC): Function in intracellular signalling, cell life and cell death. Curr Pharm Des 2006; 12(18): 2249-70. doi: 10.2174/138161206777585111 PMID: 16787253
  68. Baumgart M, Priebe S, Groth M, et al. Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst 2016; 2(2): 122-32. doi: 10.1016/j.cels.2016.01.014 PMID: 27135165
  69. Copeland JM, Cho J, Lo T Jr, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19(19): 1591-8. doi: 10.1016/j.cub.2009.08.016 PMID: 19747824
  70. Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer’s disease. Acta Pharm Sin B 2022; 12(2): 483-95. doi: 10.1016/j.apsb.2021.11.003 PMID: 35256930
  71. Collu R, Yin Z, Giunti E, et al. Effect of the ROCK inhibitor fasudil on the brain proteomic profile in the tau transgenic mouse model of Alzheimer’s disease. Front Aging Neurosci 2024; 16: 1323563. doi: 10.3389/fnagi.2024.1323563 PMID: 38440100
  72. Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24(3): 312-25. doi: 10.1038/s41593-020-00783-4 PMID: 33589835
  73. Allen NJ. Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 2014; 30(1): 439-63. doi: 10.1146/annurev-cellbio-100913-013053 PMID: 25288116
  74. Perego C, Vanoni C, Bossi M, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000; 75(3): 1076-84. doi: 10.1046/j.1471-4159.2000.0751076.x PMID: 10936189
  75. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7. doi: 10.1038/nature21029 PMID: 28099414
  76. Bernardinelli Y, Randall J, Janett E, et al. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 2014; 24(15): 1679-88. doi: 10.1016/j.cub.2014.06.025 PMID: 25042585
  77. Taday J, Fróes FT, Seady M, Gonçalves CA, Leite MC. In vitro astroglial dysfunction induced by neurotoxins: Mimicking astrocytic metabolic alterations of alzheimer’s disease. Metabolites 2024; 14(3): 151. doi: 10.3390/metabo14030151 PMID: 38535311
  78. Moolman DL, Vitolo OV, Vonsattel JPG, Shelanski ML. Dendrite and dendritic spine alterations in alzheimer models. J Neurocytol 2004; 33(3): 377-87. doi: 10.1023/B:NEUR.0000044197.83514.64 PMID: 15475691
  79. Johansson C, Thordardottir S, Laffita-Mesa J, et al. Plasma biomarker profiles in autosomal dominant Alzheimer’s disease. Brain 2023; 146(3): 1132-40. doi: 10.1093/brain/awac399 PMID: 36626935
  80. Paciotti S, Wojdała AL, Bellomo G, et al. Potential diagnostic value of CSF metabolism-related proteins across the Alzheimer’s disease continuum. Alzheimers Res Ther 2023; 15(1): 124. doi: 10.1186/s13195-023-01269-8 PMID: 37454217
  81. Han J, Hyun J, Park J, et al. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer’s disease. Cell Rep 2021; 37(10): 110102. doi: 10.1016/j.celrep.2021.110102 PMID: 34879266
  82. da Silva EMG, Santos LGC, de Oliveira FS, et al. Proteogenomics reveals orthologous alternatively spliced proteoforms in the same human and mouse brain regions with differential abundance in an alzheimer’s disease mouse model. Cells 2021; 10(7): 1583. doi: 10.3390/cells10071583 PMID: 34201730
  83. Martire S, Fuso A, Mosca L, et al. Bioenergetic impairment in animal and cellular models of alzheimer’s disease: PARP-1 inhibition rescues metabolic dysfunctions. J Alzheimers Dis 2016; 54(1): 307-24. doi: 10.3233/JAD-151040 PMID: 27567805
  84. Day NJ, Zhang T, Gaffrey MJ, et al. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model. Free Radic Biol Med 2022; 193(Pt 1): 373-84. doi: 10.1016/j.freeradbiomed.2022.10.300 PMID: 36306991
  85. Garnock-Jones KP. Ripasudil: First global approval. Drugs 2014; 74(18): 2211-5. doi: 10.1007/s40265-014-0333-2 PMID: 25414122
  86. Naik M, Kapur M, Gupta V, Sethi H, Srivastava K. Ripasudil endgame: Role of rho-kinase inhibitor as a last-ditch-stand towards maximally tolerated medical therapy to a patient of advanced glaucoma. Clin Ophthalmol 2021; 15: 2683-92. doi: 10.2147/OPTH.S318897 PMID: 34194222

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers