ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimers Disease
- Authors: Ouyang X.1, Collu R.2, Benavides G.1, Tian R.1, Darley-Usmar V.1, Xia W.2, Zhang J.1
-
Affiliations:
- Department of Pathology, University of Alabama at Birmingham
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System
- Issue: Vol 21, No 3 (2024)
- Pages: 183-200
- Section: Medicine
- URL: https://vietnamjournal.ru/1567-2050/article/view/643754
- DOI: https://doi.org/10.2174/0115672050317608240531130204
- ID: 643754
Cite item
Full Text
Abstract
Background:The pathological manifestations of Alzheimers disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-- tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation.
Methods:While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions.
Results:Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities.
Conclusion:Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.
Keywords
About the authors
Xiaosen Ouyang
Department of Pathology, University of Alabama at Birmingham
Email: info@benthamscience.net
Roberto Collu
Geriatric Research Education and Clinical Center, Bedford VA Healthcare System
Email: info@benthamscience.net
Gloria Benavides
Department of Pathology, University of Alabama at Birmingham
Email: info@benthamscience.net
Ran Tian
Department of Pathology, University of Alabama at Birmingham
Email: info@benthamscience.net
Victor Darley-Usmar
Department of Pathology, University of Alabama at Birmingham
Email: info@benthamscience.net
Weiming Xia
Geriatric Research Education and Clinical Center, Bedford VA Healthcare System
Author for correspondence.
Email: info@benthamscience.net
Jianhua Zhang
Department of Pathology, University of Alabama at Birmingham
Author for correspondence.
Email: info@benthamscience.net
References
- Alzheimers disease facts and figures. Alzheimers Dement 2022; 18(4): 700-89. doi: 10.1002/alz.12638 PMID: 35289055
- Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimers disease: Recent advances. Mol Neurodegener 2020; 15(1): 30. doi: 10.1186/s13024-020-00376-6 PMID: 32471464
- Austad SNBS, Buford TW, Carter CS, Smith DL Jr, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimers disease. Acta Pharm Sin B 2021; 12(2): 511-31. PMID: 35256932
- Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 2019; 20(3): 148-60. doi: 10.1038/s41583-019-0132-6 PMID: 30737462
- Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimers disease. Lancet Neurol 2015; 14(4): 388-405. doi: 10.1016/S1474-4422(15)70016-5 PMID: 25792098
- Selkoe DJ. Alzheimers disease is a synaptic failure. Science 2002; 298(5594): 789-91. doi: 10.1126/science.1074069 PMID: 12399581
- van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early alzheimers disease. N Engl J Med 2023; 388(1): 9-21. doi: 10.1056/NEJMoa2212948 PMID: 36449413
- Gueorguieva I, Willis BA, Chua L, et al. Donanemab population pharmacokinetics, amyloid plaque reduction, and safety in participants with alzheimers disease. Clin Pharmacol Ther 2023; 113(6): 1258-67. doi: 10.1002/cpt.2875 PMID: 36805552
- Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early symptomatic alzheimer disease. JAMA 2023; 330(6): 512-27. doi: 10.1001/jama.2023.13239 PMID: 37459141
- Reardon S. Alzheimers drug donanemab helps most when taken at earliest disease stage, study finds. Nature 2023; 619(7971): 682-3. doi: 10.1038/d41586-023-02321-1 PMID: 37460689
- Manly JJ, Deters KD. Donanemab for alzheimer diseasewho benefits and who is harmed? JAMA 2023; 330(6): 510-1. doi: 10.1001/jama.2023.11704 PMID: 37459138
- Gueorguieva I, Willis BA, Chua L, et al. Donanemab exposure and efficacy relationship using modeling in Alzheimers disease. Alzheimers Dement 2023; 9(2): e12404. doi: 10.1002/trc2.12404 PMID: 37388759
- Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: Current status and future directions. Nat Rev Neurol 2023; 19(12): 715-36. doi: 10.1038/s41582-023-00883-2 PMID: 37875627
- Ayalon G, Lee SH, Adolfsson O, et al. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimers disease. Sci Transl Med 2021; 13(593): eabb2639. doi: 10.1126/scitranslmed.abb2639 PMID: 33980574
- Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19(9): 609-33. doi: 10.1038/s41573-020-0072-x PMID: 32709961
- Tai YH, Engels D, Locatelli G, et al. Targeting the TCA cycle can ameliorate widespread axonal energy deficiency in neuroinflammatory lesions. Nat Metab 2023; 5(8): 1364-81. doi: 10.1038/s42255-023-00838-3 PMID: 37430025
- Pålsson-McDermott EM, ONeill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 2020; 30(4): 300-14. doi: 10.1038/s41422-020-0291-z PMID: 32132672
- Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 2018; 10: 192. doi: 10.3389/fnagi.2018.00192 PMID: 29988480
- Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: a potential therapeutic target to treat alzheimers disease. Mol Neurobiol 2020; 57(7): 3075-88. doi: 10.1007/s12035-020-01945-y PMID: 32462551
- Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96. doi: 10.1016/j.bioorg.2018.12.017 PMID: 30605887
- Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35. doi: 10.1016/j.ejmech.2018.11.049 PMID: 30503937
- Lee DH, Lee JY, Hong DY, et al. ROCK and PDE-5 inhibitors for the treatment of dementia: literature review and meta-analysis. Biomedicines 2022; 10(6): 1348. doi: 10.3390/biomedicines10061348 PMID: 35740369
- Chong CM, Ai N, Lee S. ROCK in CNS: Different roles of isoforms and therapeutic target for neurodegenerative disorders. Curr Drug Targets 2017; 18(4): 455-62. doi: 10.2174/1389450117666160401123825 PMID: 27033194
- Henderson BW, Gentry EG, Rush T, et al. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimers disease and ROCK 1 depletion reduces amyloid-β levels in brain. J Neurochem 2016; 138(4): 525-31. doi: 10.1111/jnc.13688 PMID: 27246255
- Weber AJ, Herskowitz JH. Perspectives on ROCK2 as a therapeutic target for alzheimers disease. Front Cell Neurosci 2021; 15: 636017. doi: 10.3389/fncel.2021.636017 PMID: 33790742
- Herskowitz JH, Feng Y, Mattheyses AL, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimers disease mouse model. J Neurosci 2013; 33(49): 19086-98. doi: 10.1523/JNEUROSCI.2508-13.2013 PMID: 24305806
- Cai R, Wang Y, Huang Z, et al. Role of RhoA/ROCK signaling in Alzheimers disease. Behav Brain Res 2021; 414: 113481. doi: 10.1016/j.bbr.2021.113481 PMID: 34302876
- Ono-Saito N, Niki I, Hidaka H. H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther 1999; 82(2-3): 123-31. doi: 10.1016/S0163-7258(98)00070-9 PMID: 10454191
- Couch BA, DeMarco GJ, Gourley SL, Koleske AJ. Increased dendrite branching in AbetaPP/PS1 mice and elongation of dendrite arbors by fasudil administration. J Alzheimers Dis 2010; 20(4): 1003-8. doi: 10.3233/JAD-2010-091114 PMID: 20413901
- Zhao Y, Tseng I-C, Heyser CJ, et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron 2015; 87(5): 963-75. doi: 10.1016/j.neuron.2015.08.020 PMID: 26335643
- Guo H, Zhao Z, Zhang R, et al. Monocytes in the peripheral clearance of amyloid-β and alzheimers disease. J Alzheimers Dis 2019; 68(4): 1391-400. doi: 10.3233/JAD-181177 PMID: 30958361
- Hamano T, Shirafuji N, Yen SH, et al. Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiol Aging 2020; 89: 41-54. doi: 10.1016/j.neurobiolaging.2019.12.009 PMID: 31982202
- Elliott C, Rojo AI, Ribe E, et al. A role for APP in Wnt signalling links synapse loss with β-amyloid production. Transl Psychiatry 2018; 8(1): 179. doi: 10.1038/s41398-018-0231-6 PMID: 30232325
- Guo MF, Zhang HY, Zhang PJ, et al. Fasudil reduces β-amyloid levels and neuronal apoptosis in APP/PS1 transgenic mice via inhibition of the Nogo-A/NgR/RhoA signaling axis. J Integr Neurosci 2020; 19(4): 651-62. doi: 10.31083/j.jin.2020.04.243 PMID: 33378839
- Wei W, Wang Y, Zhang J, et al. Fasudil ameliorates cognitive deficits, oxidative stress and neuronal apoptosis via inhibiting ROCK/MAPK and activating Nrf2 signalling pathways in APP/PS1 mice. Folia Neuropathol 2021; 59(1): 32-49. doi: 10.5114/fn.2021.105130 PMID: 33969676
- Yan Y, Gao Y, Fang Q, et al. Inhibition of Rho kinase by fasudil ameliorates cognition impairment in APP/PS1 transgenic mice via modulation of gut microbiota and metabolites. Front Aging Neurosci 2021; 13: 755164. doi: 10.3389/fnagi.2021.755164 PMID: 34721000
- Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53(3): 337-51. doi: 10.1016/j.neuron.2007.01.010 PMID: 17270732
- Benavides GA, Mueller T, Darley-Usmar V, Zhang J. Optimization of measurement of mitochondrial electron transport activity in postmortem human brain samples and measurement of susceptibility to rotenone and 4-hydroxynonenal inhibition. Redox Biol 2022; 50: 102241. doi: 10.1016/j.redox.2022.102241 PMID: 35066289
- Huynh VN, Benavides GA, Johnson MS, et al. Acute inhibition of OGA sex-dependently alters the networks associated with bioenergetics, autophagy, and neurodegeneration. Mol Brain 2022; 15(1): 22. doi: 10.1186/s13041-022-00906-x PMID: 35248135
- Ha C, Bakshi S, Brahma MK, et al. Sustained increases in cardiomyocyte protein O-linked β-N-acetylglucosamine levels lead to cardiac hypertrophy and reduced mitochondrial function without systolic contractile impairment. J Am Heart Assoc. 2023; 12: p. (19)e029898.
- Kane MS, Benavides GA, Osuma E, et al. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics. Sci Rep 2023; 13(1): 21638. doi: 10.1038/s41598-023-49018-z PMID: 38062139
- Ouyang X, Bakshi S, Benavides GA, et al. Cardiomyocyte ZKSCAN3 regulates remodeling following pressure-overload. Physiol Rep 2023; 11(9): e15686. doi: 10.14814/phy2.15686 PMID: 37144628
- Acin-Perez R, Benador IY, Petcherski A, et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020; 39(13): e104073. doi: 10.15252/embj.2019104073 PMID: 32432379
- Yang W, Wei H, Benavides GA, et al. Protein kinase CK2 controls CD8+ T cell effector and memory function during infection. J Immunol 2022; 209(5): 896-906. doi: 10.4049/jimmunol.2101080 PMID: 35914835
- Ouyang X, Ahmad I, Johnson MS, et al. Nuclear receptor binding factor 2 (NRBF2) is required for learning and memory. Lab Invest 2020; 100(9): 1238-51. doi: 10.1038/s41374-020-0433-4 PMID: 32350405
- Wright JN, Benavides GA, Johnson MS, et al. Acute increases in O -GlcNAc indirectly impair mitochondrial bioenergetics through dysregulation of LonP1-mediated mitochondrial protein complex turnover. Am J Physiol Cell Physiol 2019; 316(6): C862-75. doi: 10.1152/ajpcell.00491.2018 PMID: 30865517
- Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture. Redox Biol 2018; 17: 59-69. doi: 10.1016/j.redox.2018.04.005 PMID: 29677567
- Bernard K, Logsdon NJ, Benavides GA, et al. Glutaminolysis is required for transforming growth factor-β1induced myofibroblast differentiation and activation. J Biol Chem 2018; 293(4): 1218-28. doi: 10.1074/jbc.RA117.000444 PMID: 29222329
- Dodson M, Wani WY, Redmann M, et al. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy 2017; 13(11): 1828-40. doi: 10.1080/15548627.2017.1356948 PMID: 28837411
- Wani WY, Ouyang X, Benavides GA, et al. O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinsons disease. Mol Brain 2017; 10(1): 32. doi: 10.1186/s13041-017-0311-1 PMID: 28724388
- Bernard K, Logsdon NJ, Miguel V, et al. NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J Biol Chem 2017; 292(7): 3029-38. doi: 10.1074/jbc.M116.752261 PMID: 28049732
- Redmann M, Benavides GA, Berryhill TF, et al. Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons. Redox Biol 2017; 11: 73-81. doi: 10.1016/j.redox.2016.11.004 PMID: 27889640
- Boyer-Guittaut M, Poillet L, Liang Q, et al. The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells. Autophagy 2014; 10(6): 986-1003. doi: 10.4161/auto.28390 PMID: 24879149
- Benavides GA, Liang Q, Dodson M, Darley-Usmar V, Zhang J. Inhibition of autophagy and glycolysis by nitric oxide during hypoxiareoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Free Radic Biol Med 2013; 65: 1215-28. doi: 10.1016/j.freeradbiomed.2013.09.006 PMID: 24056030
- Liang Q, Benavides GA, Vassilopoulos A, Gius D, Darley-Usmar V, Zhang J. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts. Biochem J 2013; 454(2): 249-57. doi: 10.1042/BJ20130414 PMID: 23767918
- Higdon AN, Benavides GA, Chacko BK, et al. Hemin causes mitochondrial dysfunction in endothelial cells through promoting lipid peroxidation: The protective role of autophagy. Am J Physiol Heart Circ Physiol 2012; 302(7): H1394-409. doi: 10.1152/ajpheart.00584.2011 PMID: 22245770
- Hill BG, Benavides GA, Lancaster JR Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. bchm 2012; 393(12): 1485-512. doi: 10.1515/hsz-2012-0198 PMID: 23092819
- Schneider L, Giordano S, Zelickson BR, et al. Differentiation of SH-SY5Y cells to a neuronal phenotype changes cellular bioenergetics and the response to oxidative stress. Free Radic Biol Med 2011; 51(11): 2007-17. doi: 10.1016/j.freeradbiomed.2011.08.030 PMID: 21945098
- Dranka BP, Benavides GA, Diers AR, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 2011; 51(9): 1621-35. doi: 10.1016/j.freeradbiomed.2011.08.005 PMID: 21872656
- Xia Y, Prokop S, Gorion KMM, et al. Tau Ser208 phosphorylation promotes aggregation and reveals neuropathologic diversity in Alzheimers disease and other tauopathies. Acta Neuropathol Commun 2020; 8(1): 88. doi: 10.1186/s40478-020-00967-w PMID: 32571418
- Luan W, Wang Y, Chen X, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget 2015; 6(15): 13006-18. doi: 10.18632/oncotarget.3514 PMID: 25948776
- Morita M, Sato T, Nomura M, et al. PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell 2018; 33(3): 355-367.e7. doi: 10.1016/j.ccell.2018.02.004 PMID: 29533781
- Davidson SM, Schmidt DR, Heyman JE, et al. Pyruvate kinase M1 suppresses development and progression of prostate adenocarcinoma. Cancer Res 2022; 82(13): 2403-16. doi: 10.1158/0008-5472.CAN-21-2352 PMID: 35584006
- Li Q, Li C, Elnwasany A, et al. PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart. Circulation 2021; 144(9): 712-27. doi: 10.1161/CIRCULATIONAHA.121.054885 PMID: 34102853
- Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimers disease. Pharmacol Res 2018; 131: 87-101. doi: 10.1016/j.phrs.2018.03.010 PMID: 29551631
- Wiegand G, Remington SJ. Citrate synthase: Structure, control, and mechanism. Annu Rev Biophys Biophys Chem 1986; 15(1): 97-117. doi: 10.1146/annurev.bb.15.060186.000525 PMID: 3013232
- Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu S. The voltage-dependent anion channel (VDAC): Function in intracellular signalling, cell life and cell death. Curr Pharm Des 2006; 12(18): 2249-70. doi: 10.2174/138161206777585111 PMID: 16787253
- Baumgart M, Priebe S, Groth M, et al. Longitudinal RNA-Seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst 2016; 2(2): 122-32. doi: 10.1016/j.cels.2016.01.014 PMID: 27135165
- Copeland JM, Cho J, Lo T Jr, et al. Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 2009; 19(19): 1591-8. doi: 10.1016/j.cub.2009.08.016 PMID: 19747824
- Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimers disease. Acta Pharm Sin B 2022; 12(2): 483-95. doi: 10.1016/j.apsb.2021.11.003 PMID: 35256930
- Collu R, Yin Z, Giunti E, et al. Effect of the ROCK inhibitor fasudil on the brain proteomic profile in the tau transgenic mouse model of Alzheimers disease. Front Aging Neurosci 2024; 16: 1323563. doi: 10.3389/fnagi.2024.1323563 PMID: 38440100
- Escartin C, Galea E, Lakatos A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24(3): 312-25. doi: 10.1038/s41593-020-00783-4 PMID: 33589835
- Allen NJ. Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 2014; 30(1): 439-63. doi: 10.1146/annurev-cellbio-100913-013053 PMID: 25288116
- Perego C, Vanoni C, Bossi M, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000; 75(3): 1076-84. doi: 10.1046/j.1471-4159.2000.0751076.x PMID: 10936189
- Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481-7. doi: 10.1038/nature21029 PMID: 28099414
- Bernardinelli Y, Randall J, Janett E, et al. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 2014; 24(15): 1679-88. doi: 10.1016/j.cub.2014.06.025 PMID: 25042585
- Taday J, Fróes FT, Seady M, Gonçalves CA, Leite MC. In vitro astroglial dysfunction induced by neurotoxins: Mimicking astrocytic metabolic alterations of alzheimers disease. Metabolites 2024; 14(3): 151. doi: 10.3390/metabo14030151 PMID: 38535311
- Moolman DL, Vitolo OV, Vonsattel JPG, Shelanski ML. Dendrite and dendritic spine alterations in alzheimer models. J Neurocytol 2004; 33(3): 377-87. doi: 10.1023/B:NEUR.0000044197.83514.64 PMID: 15475691
- Johansson C, Thordardottir S, Laffita-Mesa J, et al. Plasma biomarker profiles in autosomal dominant Alzheimers disease. Brain 2023; 146(3): 1132-40. doi: 10.1093/brain/awac399 PMID: 36626935
- Paciotti S, Wojdała AL, Bellomo G, et al. Potential diagnostic value of CSF metabolism-related proteins across the Alzheimers disease continuum. Alzheimers Res Ther 2023; 15(1): 124. doi: 10.1186/s13195-023-01269-8 PMID: 37454217
- Han J, Hyun J, Park J, et al. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimers disease. Cell Rep 2021; 37(10): 110102. doi: 10.1016/j.celrep.2021.110102 PMID: 34879266
- da Silva EMG, Santos LGC, de Oliveira FS, et al. Proteogenomics reveals orthologous alternatively spliced proteoforms in the same human and mouse brain regions with differential abundance in an alzheimers disease mouse model. Cells 2021; 10(7): 1583. doi: 10.3390/cells10071583 PMID: 34201730
- Martire S, Fuso A, Mosca L, et al. Bioenergetic impairment in animal and cellular models of alzheimers disease: PARP-1 inhibition rescues metabolic dysfunctions. J Alzheimers Dis 2016; 54(1): 307-24. doi: 10.3233/JAD-151040 PMID: 27567805
- Day NJ, Zhang T, Gaffrey MJ, et al. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model. Free Radic Biol Med 2022; 193(Pt 1): 373-84. doi: 10.1016/j.freeradbiomed.2022.10.300 PMID: 36306991
- Garnock-Jones KP. Ripasudil: First global approval. Drugs 2014; 74(18): 2211-5. doi: 10.1007/s40265-014-0333-2 PMID: 25414122
- Naik M, Kapur M, Gupta V, Sethi H, Srivastava K. Ripasudil endgame: Role of rho-kinase inhibitor as a last-ditch-stand towards maximally tolerated medical therapy to a patient of advanced glaucoma. Clin Ophthalmol 2021; 15: 2683-92. doi: 10.2147/OPTH.S318897 PMID: 34194222
Supplementary files
