hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning
- 作者: Wu H.1, Chen H.1, Zhang S.1, Hu Q.1, Lai H.1, Fuller C.2, Yang G.3, Chi H.1, Song G.4
-
隶属关系:
- Clinical Medical College, Southwest Medical University
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University
- Department of Specialty Medicine, Ohio University
- School of Stomatology, Southwest Medical University
- 期: 卷 21, 编号 2 (2024)
- 页面: 120-140
- 栏目: Medicine
- URL: https://vietnamjournal.ru/1567-2050/article/view/643736
- DOI: https://doi.org/10.2174/0115672050314171240527064514
- ID: 643736
如何引用文章
全文:
详细
Background:Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis.
Methods:In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors.
Results:We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes.
Conclusion:This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.
作者简介
Haoyang Wu
Clinical Medical College, Southwest Medical University
Email: info@benthamscience.net
Haiqing Chen
Clinical Medical College, Southwest Medical University
Email: info@benthamscience.net
Shengke Zhang
Clinical Medical College, Southwest Medical University
Email: info@benthamscience.net
Qingwen Hu
Clinical Medical College, Southwest Medical University
Email: info@benthamscience.net
Haotian Lai
Clinical Medical College, Southwest Medical University
Email: info@benthamscience.net
Claire Fuller
Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University
Email: info@benthamscience.net
Guanhu Yang
Department of Specialty Medicine, Ohio University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Hao Chi
Clinical Medical College, Southwest Medical University
编辑信件的主要联系方式.
Email: info@benthamscience.net
Guobin Song
School of Stomatology, Southwest Medical University
Email: info@benthamscience.net
参考
- De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimers Disease. Subcell Biochem 2012; 65: 329-52. doi: 10.1007/978-94-007-5416-4_14 PMID: 23225010
- Alzheimers disease facts and figures. Alzheimers Dement 2023; 19(4): 1598-695. doi: 10.1002/alz.13016 PMID: 36918389
- Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimers Disease. Neurotherapeutics 2022; 19(1): 173-85. doi: 10.1007/s13311-021-01146-y PMID: 34729690
- Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep 2019; 19(1): 1. doi: 10.1007/s11910-019-0917-z PMID: 30627880
- Mattson MP. Pathways towards and away from Alzheimers disease. Nature 2004; 430(7000): 631-9. doi: 10.1038/nature02621 PMID: 15295589
- Song P, An J, Zou MH. Immune clearance of senescent cells to combat ageing and chronic diseases. Cells 2020; 9(3): 671. doi: 10.3390/cells9030671 PMID: 32164335
- Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of several immune functions and redox state in blood cells of alzheimers disease patients. relevant role of neutrophils in oxidative stress. Front Immunol 2018; 8: 1974. doi: 10.3389/fimmu.2017.01974 PMID: 29375582
- Brauning A, Rae M, Zhu G, et al. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells 2022; 11(6): 1017. doi: 10.3390/cells11061017 PMID: 35326467
- Lu Y, Li K, Hu Y, Wang X. Expression of immune related genes and possible regulatory mechanisms in alzheimers disease. Front Immunol 2021; 12: 768966. doi: 10.3389/fimmu.2021.768966 PMID: 34804058
- Zhang Y, Fung ITH, Sankar P, et al. Depletion of NK cells improves cognitive function in the alzheimer disease mouse model. J Immunol 2020; 205(2): 502-10. doi: 10.4049/jimmunol.2000037 PMID: 32503894
- Zenaro E, Pietronigro E, Bianca VD, et al. Neutrophils promote Alzheimers diseaselike pathology and cognitive decline via LFA-1 integrin. Nat Med 2015; 21(8): 880-6. doi: 10.1038/nm.3913 PMID: 26214837
- Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimers disease. Mol Neurobiol 2020; 57(7): 3075-88. doi: 10.1007/s12035-020-01945-y PMID: 32462551
- Xu J, Gou S, Huang X, et al. Uncovering the impact of aggrephagy in the development of alzheimers disease: Insights into diagnostic and therapeutic approaches from machine learning analysis. Curr Alzheimer Res 2023; 20(9): 618-35. doi: 10.2174/0115672050280894231214063023 PMID: 38141185
- MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome 2021; 64(4): 416-25. doi: 10.1139/gen-2020-0131 PMID: 33091314
- Li R. Data mining and machine learning methods for dementia research. Methods Mol Biol 2018; 1750: 363-70. doi: 10.1007/978-1-4939-7704-8_25 PMID: 29512086
- Zhao S, Zhang L, Ji W, et al. Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinsons disease. Front Genet 2022; 13: 1010361. doi: 10.3389/fgene.2022.1010361 PMID: 36338988
- Li Z, Jiang X, Wang Y, Kim Y. Applied machine learning in Alzheimers disease research: Omics, imaging, and clinical data. Emerg Top Life Sci 2021; 5(6): 765-77. doi: 10.1042/ETLS20210249 PMID: 34881778
- Narayanan M, Huynh JL, Wang K, et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol 2014; 10(7): 743. doi: 10.15252/msb.20145304 PMID: 25080494
- Maes OC, Schipper HM, Chertkow HM, Wang E. Methodology for discovery of Alzheimers disease blood-based biomarkers. J Gerontol Ser A 2009; 64A(6): 636-45. doi: 10.1093/gerona/glp045 PMID: 19366883
- Xu H, Jia J. Single-cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimers disease. Front Immunol 2021; 12: 645666. doi: 10.3389/fimmu.2021.645666 PMID: 34447367
- Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell 2019; 177: 1888-902. doi: 10.1016/j.cell.2019.05.031
- Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5): 1202-14. doi: 10.1016/j.cell.2015.05.002 PMID: 26000488
- Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2018. PMID: 30531897
- Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72. doi: 10.1038/s41590-018-0276-y PMID: 30643263
- Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Reports Methods 2023; 3(6): 100498. doi: 10.1016/j.crmeth.2023.100498 PMID: 37426759
- Samuel M, Fairlie R, Negin R, Emily M, Vivek S. High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. bioRxiv 2022; 2022.2009.2022.509094.
- Xia P, Ouyang S, Shen R, et al. Macrophage-related testicular inflammation in individuals with idiopathic non-obstructive azoospermia: A single-cell analysis. Int J Mol Sci 2023; 24(10): 8819. doi: 10.3390/ijms24108819 PMID: 37240164
- Vu R, Jin S, Sun P, et al. Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell- cell communication. Cell Rep 2022; 40(5): 111155. doi: 10.1016/j.celrep.2022.111155 PMID: 35926463
- Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088. doi: 10.1038/s41467-021-21246-9 PMID: 33597522
- Fang Z, Tian Y, Sui C, et al. Single-cell transcriptomics of proliferative phase endometrium: Systems analysis of cellcell communication network using cellchat. Front Cell Dev Biol 2022; 10: 919731. doi: 10.3389/fcell.2022.919731 PMID: 35938159
- Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47. doi: 10.1093/nar/gkv007 PMID: 25605792
- Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 46(W1): W60-4. doi: 10.1093/nar/gky311 PMID: 29912392
- Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res 2015; 43(Database issue): D1049-56. PMID: 25428369
- Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61. doi: 10.1093/nar/gkw1092 PMID: 27899662
- Chiesa M, Colombo GI, Piacentini L. DaMiRseqan R/Bioconductor package for data mining of RNA-Seq data: Normalization, feature selection and classification. Bioinformatics 2018; 34(8): 1416-8. doi: 10.1093/bioinformatics/btx795 PMID: 29236969
- Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7. doi: 10.1089/omi.2011.0118 PMID: 22455463
- Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics 2019; 11(1): 123. doi: 10.1186/s13148-019-0730-1 PMID: 31443682
- Ishwaran H, Kogalur UB. Consistency of random survival forests. Stat Probab Lett 2010; 80(13-14): 1056-64. doi: 10.1016/j.spl.2010.02.020 PMID: 20582150
- Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci World J 2014; 2014: 1-10. doi: 10.1155/2014/795624 PMID: 25295306
- Song G, Peng G, Zhang J, et al. Uncovering the potential role of oxidative stress in the development of periodontitis and establishing a stable diagnostic model via combining single-cell and machine learning analysis. Front Immunol 2023; 14: 1181467. doi: 10.3389/fimmu.2023.1181467 PMID: 37475857
- Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12(1): 77. doi: 10.1186/1471-2105-12-77 PMID: 21414208
- Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
- Lane CA, Hardy J, Schott JM. Alzheimers disease. Eur J Neurol 2018; 25(1): 59-70. doi: 10.1111/ene.13439 PMID: 28872215
- Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96. doi: 10.1016/j.bioorg.2018.12.017 PMID: 30605887
- Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35. doi: 10.1016/j.ejmech.2018.11.049 PMID: 30503937
- Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112(4): 389-404. doi: 10.1007/s00401-006-0127-z PMID: 16906426
- Hyman BT, Phelps CH, Beach TG, et al. National Institute on AgingAlzheimers Association guidelines for the neuropathologic assessment of Alzheimers disease. Alzheimers Dement 2012; 8(1): 1-13. doi: 10.1016/j.jalz.2011.10.007 PMID: 22265587
- Alzheimers Association. 2016 Alzheimers disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509. doi: 10.1016/j.jalz.2016.03.001 PMID: 27570871
- Wang JH, Wu YJ, Tee BL, Lo RY. Medical comorbidity in Alzheimers disease: A nested case-control study. J Alzheimers Dis 2018; 63(2): 773-81. doi: 10.3233/JAD-170786 PMID: 29660933
- Liu JL, Hlavka JP, Hillestad R, Mattke S. Assessing the Preparedness of the US Health Care System Infrastructure for an Alzheimers Treatment. Santa Monica, CA: RAND Corporation 2017. doi: 10.7249/RR2272
- Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimers disease in the era of biomarkers. Lancet Neurol 2021; 20(3): 222-34. doi: 10.1016/S1474-4422(20)30440-3 PMID: 33609479
- Tian Y, Lu Y, Cao Y, et al. Identification of diagnostic signatures associated with immune infiltration in Alzheimers disease by integrating bioinformatic analysis and machine-learning strategies. Front Aging Neurosci 2022; 14: 919614. doi: 10.3389/fnagi.2022.919614 PMID: 35966794
- Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimers disease. Lancet Neurol 2015; 14(4): 388-405. doi: 10.1016/S1474-4422(15)70016-5 PMID: 25792098
- Solerte SB, Cravello L, Ferrari E, Fioravanti M. Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimers disease. Ann N Y Acad Sci 2000; 917(1): 331-40. doi: 10.1111/j.1749-6632.2000.tb05399.x PMID: 11268360
- Liu Z, Li H, Pan S. Discovery and validation of key biomarkers based on immune infiltrates in Alzheimers disease. Front Genet 2021; 12: 658323. doi: 10.3389/fgene.2021.658323
- Brassart B, Da Silva J, Donet M, et al. Tumour cell blebbing and extracellular vesicle shedding: Key role of matrikines and ribosomal protein SA. Br J Cancer 2019; 120(4): 453-65. doi: 10.1038/s41416-019-0382-0 PMID: 30739912
- Suzuki M, Tezuka K, Handa T, et al. Upregulation of ribosome complexes at the blood-brain barrier in Alzheimers disease patients. J Cereb Blood Flow Metab 2022; 42(11): 2134-50. doi: 10.1177/0271678X221111602 PMID: 35766008
- Da Costa Dias B, Jovanovic K, Gonsalves D, et al. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization. Sci Rep 2014; 4(1): 5556. doi: 10.1038/srep05556 PMID: 24990253
- Jovanovic K, Gonsalves D, Da Costa Dias B, et al. Anti-LRP/LR specific antibodies and shRNAs impede amyloid beta shedding in Alzheimers disease. Sci Rep 2013; 3(1): 2699. doi: 10.1038/srep02699 PMID: 24048412
- Yang HW, Kim HD, Kim TS, Kim J. Senescent cells differentially translate senescence-related mrnas via ribosome heterogeneity. J Gerontol A Biol Sci Med Sci 2019; 74(7): 1015-24. doi: 10.1093/gerona/gly228 PMID: 30285098
- Chen MB, Yang AC, Yousef H, et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep 2020; 30(13): 4418-4432.e4. doi: 10.1016/j.celrep.2020.03.012 PMID: 32234477
- Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 2022; 601(7894): 637-42. doi: 10.1038/s41586-021-04295-4 PMID: 35046576
- Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 2018; 10: 192. doi: 10.3389/fnagi.2018.00192 PMID: 29988480
- Wang ZB, Ma YH, Sun Y, Tan L, Wang HF, Yu JT. Interleukin-3 is associated with sTREM2 and mediates the correlation between amyloid-β and tau pathology in Alzheimers disease. J Neuroinflammation 2022; 19(1): 316. doi: 10.1186/s12974-022-02679-5 PMID: 36578067
- Chen X, Kendler KS. Interleukin 3 and Schizophrenia. Am J Psychiatry 2008; 165(1): 13-4. doi: 10.1176/appi.ajp.2007.07121868 PMID: 18178751
- Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis 2020; 76(1): 3-19. doi: 10.3233/JAD-200581 PMID: 32538857
- Xia X, Wang Y, Zheng J. COVID-19 and Alzheimers disease: How one crisis worsens the other. Transl Neurodegener 2021; 10(1): 15. doi: 10.1186/s40035-021-00237-2 PMID: 33941272
- Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, China. JAMA Neurol 2020; 77(6): 683-90. doi: 10.1001/jamaneurol.2020.1127 PMID: 32275288
补充文件
