Evaluation and Characterization of Modified K114 Method to Localize Plaques in Rodent and Plaques and Tangles in Human Brain Tissue


Цитировать

Полный текст

Аннотация

Background:A plethora of studies has shown the utility of several chemical dyes due to their affinity to bind Aβ to enable visualization of plaques under light or fluorescence microscope, and some of them showed affinity to bind neurofibrillary tangles (NFT) as well. However, only a few of them have the propensity to bind both senile plaques (SP) and NFT simultaneously.

Objective:In our current study, we aimed to modify the K114 dye and the staining procedure to substantially improve the staining of amyloid plaques in both human and rodent brains and neurofibrillary tangles in the human brain

Methods:We modified the K114 solution and the staining procedure using Sudan Black as a modifier. Additionally, to evaluate the target of the modified K114, we performed double labeling of K114 and increased Aβ against three different epitopes. We used 5 different antibodies to detect phosphorylated tau to understand the specific targets that modified K114 binds.

method:We have modified the K114 solution and the staining procedure using Sudan Black as modifier. Additionally, to evaluate the target of the modified K114, we performed double labeling of K114, and Aβ raised against three different epitopes. We used 5 different antibodies to detect phosphorylated Tau to understand the potential binding targets.

Results:Dual labeling using hyperphosphorylated antibodies against AT8, pTau, and TNT1 revealed that more than 80% hyperphosphorylated tau colocalized with tangles that were positive for modified K114, whereas more than 70% of the hyperphosphorylated tau colocalized with modified K114. On the other hand, more than 80% of the plaques that were stained with Aβ MOAB-2 were colocalized with modified K114.

result:We have found more than 80% hyperphosphorylated Tau against AT8, PTau and TNT1 colocalized with K114 labeled tangles, whereas more than 70% of the hyperphosphorylated Tau colocalized with modified K114. On the other hand, more than 80% of the plaques that were stained with amyloid beta MOAB-2 were colocalized with modified K114.

Conclusion:Our modified method can label amyloid plaques within 5 min in the rat brain and within 20 min in the human brain. Our results indicated that modified K114 could be used as a valuable tool for detecting amyloid plaques and tangles with high contrast and resolution relative to other conventional fluorescence markers.

Об авторах

Sanjana Padala

Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration

Email: info@benthamscience.net

Sharay Setti

Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration

Email: info@benthamscience.net

James Raymick

Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration

Email: info@benthamscience.net

Joseph Hanig

Office of Testing & Research, Center for Drug Evaluation Research/FDA

Email: info@benthamscience.net

Sumit Sarkar

Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food & Drug Administration

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695. doi: 10.1002/alz.13016 PMID: 36918389
  2. Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci., 1991, 12(10), 383-388. doi: 10.1016/0165-6147(91)90609-V PMID: 1763432
  3. Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356. doi: 10.1126/science.1072994 PMID: 12130773
  4. Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185. doi: 10.1126/science.1566067 PMID: 1566067
  5. Alonso, A.C.; Grundke-Iqbal, I.; Barra, H.S.; Iqbal, K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. USA, 1997, 94(1), 298-303. doi: 10.1073/pnas.94.1.298 PMID: 8990203
  6. Alonso, A.C.; Grundke-Iqbal, I.; Iqbal, K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med., 1996, 2(7), 783-787. doi: 10.1038/nm0796-783 PMID: 8673924
  7. Alonso, A.; Li, B.; Grundke-Iqbal, I.; Iqbal, K. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2008, 5(4), 375-384. doi: 10.2174/156720508785132307 PMID: 18690834
  8. Iqbal, K.; Alonso, A.C.; Grundke-Iqbal, I. Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J. Alzheimers Dis., 2008, 14(4), 365-370. doi: 10.3233/JAD-2008-14402 PMID: 18688085
  9. Aghourian, M.; Aumont, É.; Grothe, M.J.; Soucy, J.P.; Rosa-Neto, P.; Bedard, M.A. FEOBV-PET to quantify cortical cholinergic denervation in AD: Relationship to basal forebrain volumetry. J. Neuroimaging, 2021, 31(6), 1077-1081. doi: 10.1111/jon.12921 PMID: 34462992
  10. Aghourian, M.; Legault-Denis, C.; Soucy, J-P.; Rosa-Neto, P.; Gauthier, S.; Kostikov, A.; Gravel, P.; Bédard, M-A. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with 18F-FEOBV. Mol. Psychiatry, 2017, 22(11), 1531-1538. doi: 10.1038/mp.2017.183 PMID: 28894304
  11. Bedard, M.A.; Aghourian, M.; Legault-Denis, C.; Postuma, R.B.; Soucy, J.P.; Gagnon, J.F.; Pelletier, A.; Montplaisir, J. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: A PET imaging study with 18F-FEOBV. Sleep Med., 2019, 58, 35-41. doi: 10.1016/j.sleep.2018.12.020 PMID: 31078078
  12. Nejad-Davarani, S.; Koeppe, R.A.; Albin, R.L.; Frey, K.A.; Müller, M.L.T.M.; Bohnen, N.I. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with 18F-FEOBV. Mol. Psychiatry, 2019, 24(3), 322-327. doi: 10.1038/s41380-018-0130-5 PMID: 30082840
  13. de la Torre, J.; Aliev, G.; Perry, G. Drug therapy in Alzheimer’s disease. N. Engl. J. Med., 2004, 351(18), 1911-1913. doi: 10.1056/NEJM200410283511822 PMID: 15509830
  14. de La Torre, J.C. Alzheimer’s disease is a vasocognopathy: A new term to describe its nature. Neurol. Res., 2004, 26(5), 517-524. doi: 10.1179/016164104225016254 PMID: 15265269
  15. de la Torre, J.C. Is Alzheimer’s disease a neurodegenrative or vascular disorder? (vol 3, pg 184, 2004). Lancet Neurol., 2004, 3(5), 270-270. PMID: 15099540
  16. Scheffer, S.; Hermkens, D.M.A.; van der Weerd, L.; de Vries, H.E.; Daemen, M.J.A.P. Vascular hypothesis of Alzheimer disease. Arterioscler. Thromb. Vasc. Biol., 2021, 41(4), 1265-1283. doi: 10.1161/ATVBAHA.120.311911 PMID: 33626911
  17. Bourgade, K. Anti-viral properties of Amyloid-β Peptides., J Alzheimers Dis., 2016, 54(3), 859-878.
  18. Bourgade, K.; Garneau, H.; Giroux, G.; Le Page, A.Y.; Bocti, C.; Dupuis, G.; Frost, E.H.; Fülöp, T., Jr β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 2015, 16(1), 85-98. doi: 10.1007/s10522-014-9538-8 PMID: 25376108
  19. Bourgade, K.; Le Page, A.; Bocti, C.; Witkowski, J.M.; Dupuis, G.; Frost, E.H.; Fülöp, T., Jr Protective effect of Amyloid-β Peptides against Herpes Simplex Virus-1 infection in a neuronal cell culture model. J. Alzheimers Dis., 2016, 50(4), 1227-1241. doi: 10.3233/JAD-150652 PMID: 26836158
  20. Fulop, T.; Ramassamy, C.; Lévesque, S.; Frost, E.H.; Laurent, B.; Lacombe, G.; Khalil, A.; Larbi, A.; Hirokawa, K.; Desroches, M.; Rodrigues, S.; Bourgade, K.; Cohen, A.A.; Witkowski, J.M. Viruses - a major cause of amyloid deposition in the brain. Expert Rev. Neurother., 2023, 23(9), 775-790. doi: 10.1080/14737175.2023.2244162 PMID: 37551672
  21. Fulop, T.; Witkowski, J.M.; Bourgade, K.; Khalil, A.; Zerif, E.; Larbi, A.; Hirokawa, K.; Pawelec, G.; Bocti, C.; Lacombe, G.; Dupuis, G.; Frost, E.H. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front. Aging Neurosci., 2018, 10, 224. doi: 10.3389/fnagi.2018.00224 PMID: 30087609
  22. Akiyama, H.; Arai, T.; Kondo, H.; Tanno, E.; Haga, C.; Ikeda, K. Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis. Assoc. Disord., 2000, 14(Suppl.), S47-S53. doi: 10.1097/00002093-200000001-00008 PMID: 10850730
  23. Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421. doi: 10.1016/S0197-4580(00)00124-X PMID: 10858586
  24. Pillai, J.A.; Bena, J.; Bebek, G.; Bekris, L.M.; Bonner-Jackson, A.; Kou, L.; Pai, A.; Sørensen, L.; Neilsen, M.; Rao, S.M.; Chance, M.; Lamb, B.T.; Leverenz, J.B. Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol., 2020, 7(7), 1225-1239. doi: 10.1002/acn3.51109 PMID: 32634865
  25. Pillai, J.A.; Maxwell, S.; Bena, J.; Bekris, L.M.; Rao, S.M.; Chance, M.; Lamb, B.T.; Leverenz, J.B. Key inflammatory pathway activations in the MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol., 2019, 6(7), 1248-1262. doi: 10.1002/acn3.50827 PMID: 31353852
  26. Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res. Ther., 2021, 13(1), 98. doi: 10.1186/s13195-021-00838-z PMID: 33971962
  27. Padala, S.P.; Yarns, B.C. Under-represented populations left out of alzheimer’s disease treatment with aducanumab: Commentary on ethics. J. Alzheimers Dis. Rep., 2022, 6(1), 345-348. doi: 10.3233/ADR-220023 PMID: 35891635
  28. Stepanchuk, A.A.; Heyne, B.; Stys, P.K. Complex photophysical properties of k114 make for a versatile fluorescent probe for amyloid detection. ACS Chem. Neurosci., 2021, 12(7), 1273-1280. doi: 10.1021/acschemneuro.1c00101 PMID: 33705095
  29. Setti, S.E.; Raymick, J.; Hanig, J.; Sarkar, S. In vivo demonstration of Congo Red labeled amyloid plaques via perfusion in the Alzheimer disease rat model. J. Neurosci. Methods, 2021, 353, 109082. doi: 10.1016/j.jneumeth.2021.109082 PMID: 33508413
  30. Iadanza, M.G.; Jackson, M.P.; Hewitt, E.W.; Ranson, N.A.; Radford, S.E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(12), 755-773. doi: 10.1038/s41580-018-0060-8 PMID: 30237470
  31. Selmani, V.; Robbins, K.J.; Ivancic, V.A.; Lazo, N.D. K114 ( trans, trans )-bromo-2,5-bis(4-hydroxystyryl)benzene is an efficient detector of cationic amyloid fibrils. Protein Sci., 2015, 24(3), 420-425. doi: 10.1002/pro.2620 PMID: 25524064
  32. LeVine, H., III Mechanism of Aβ(1−40) Fibril-Induced Fluorescence of ( trans, trans )-1-Bromo-2,5-bis(4-hydroxystyryl)benzene (K114). Biochemistry, 2005, 44(48), 15937-15943. doi: 10.1021/bi051252l PMID: 16313197
  33. Crystal, A.S.; Giasson, B.I.; Crowe, A.; Kung, M.P.; Zhuang, Z.P.; Trojanowski, J.Q.; Lee, V.M.Y. A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J. Neurochem., 2003, 86(6), 1359-1368. doi: 10.1046/j.1471-4159.2003.01949.x PMID: 12950445
  34. Stepanchuk, A.A.; Barber, P.A.; Lashley, T.; Joseph, J.T.; Stys, P.K. Quantitative detection of grey and white matter amyloid pathology using a combination of K114 and CRANAD-3 fluorescence. Neurobiol. Dis., 2021, 161, 105540. doi: 10.1016/j.nbd.2021.105540 PMID: 34751140
  35. Elghetany, M.T.; Saleem, A. Methods for staining amyloid in tissues: A review. Stain Technol., 1988, 63(4), 201-212. doi: 10.3109/10520298809107185 PMID: 2464206
  36. Glenner, G.G.; Eanes, E.D.; Page, D.L. The relation of the properties of Congo red-stained amyloid fibrils to the -conformation. J. Histochem. Cytochem., 1972, 20(10), 821-826. doi: 10.1177/20.10.821 PMID: 4638557
  37. Styren, S.D.; Hamilton, R.L.; Styren, G.C.; Klunk, W.E. X-34, a fluorescent derivative of Congo red: A novel histochemical stain for Alzheimer’s disease pathology. J. Histochem. Cytochem., 2000, 48(9), 1223-1232. doi: 10.1177/002215540004800906 PMID: 10950879
  38. Skovronsky, D.M.; Zhang, B.; Kung, M.P.; Kung, H.F.; Trojanowski, J.Q.; Lee, V.M.Y. In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7609-7614. doi: 10.1073/pnas.97.13.7609 PMID: 10861023
  39. Schmidt, M.L.; Schuck, T.; Sheridan, S.; Kung, M.P.; Kung, H.; Zhuang, Z.P.; Bergeron, C.; Lamarche, J.S.; Skovronsky, D.; Giasson, B.I.; Lee, V.M.Y.; Trojanowski, J.Q. The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB), labels diverse β-pleated sheet structures in postmortem human neurodegenerative disease brains. Am. J. Pathol., 2001, 159(3), 937-943. doi: 10.1016/S0002-9440(10)61769-5 PMID: 11549586
  40. Setti, S.E.; Das, N.; Raymick, J.; Hanig, J.; Sarkar, S. Evaluation of Styrylbenzene analog- FSB and its affinity to bind parenchymal plaques and tangles in patients of Alzheimer’s disease. Metab. Brain Dis., 2022, 37(3), 639-651. doi: 10.1007/s11011-021-00885-3 PMID: 35064472
  41. Puchtler, H.; Sweat, F. Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem., 1965, 13(8), 693-694. doi: 10.1177/13.8.693 PMID: 4160077
  42. Kelényi, G. Thioflavin S fluorescent and Congo red anisotropic stainings in the histologic demonstration of amyloid. Acta Neuropathol., 1967, 7(4), 336-348. doi: 10.1007/BF00688089 PMID: 4166287
  43. Schmued, L.; Raymick, J.; Tolleson, W.; Sarkar, S.; Zhang, Y.H.; Bell-Cohn, A. Introducing Amylo-Glo, a novel fluorescent amyloid specific histochemical tracer especially suited for multiple labeling and large scale quantification studies. J. Neurosci. Methods, 2012, 209(1), 120-126. doi: 10.1016/j.jneumeth.2012.05.019 PMID: 22705750
  44. Åslund, A.; Sigurdson, C.J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D.L.; Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; Holtzman, D.M.; Hof, P.R.; Heppner, F.L.; Gandy, S.; Jucker, M.; Aguzzi, A.; Hammarström, P.; Nilsson, K.P.R. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol., 2009, 4(8), 673-684. doi: 10.1021/cb900112v PMID: 19624097
  45. Sigurdson, C.J.; Nilsson, K.P.R.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarström, P.; Wüthrich, K.; Aguzzi, A. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods, 2007, 4(12), 1023-1030. doi: 10.1038/nmeth1131 PMID: 18026110

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024