Pegylation, a Successful Strategy to Address the Storage and Instability Problems of Blood Products: Review 2011-2021


Citar

Texto integral

Resumo

Conjugation of polyethylene glycol (PEGylation) to blood proteins and cells has emerged as a successful approach to address some of the issues attributed to the storage of blood products, including their short half-life and instability. In this regard, this review study aims to compare the influence of different PEGylation strategies on the quality of several blood products like red blood cells (RBCs), platelets, plasma proteins, i.e., albumin, coagulation factor VIII, and antibodies. The results indicated that conjugating succinimidyl carbonate methoxyPEG (SCmPEG) to platelets could improve blood transfusion safety by preventing these cells from being attached to low-load hidden bacteria in blood products. Moreover, coating of 20 kD succin- imidyl valerate (SVA)-mPEG to RBCs was able to extend the half-life and stability of these cells during storage, as well as immune camouflage their surface antigens to prevent alloimmunisation. As regards albumin products, PEGylation improved the albumin stability, especially during sterilization, and there was a relationship between the molecular weight (MW) of PEG molecules and the biological half-life of the conjugate. Although coating antibodies with short-chain PEG molecules could enhance their stabilities, these modified proteins were cleared from the blood faster. Also, branched PEG molecules enhanced the retention and shielding of the fragmented and bispecific antibodies. Overall, the results of this literature review indicate that PEGylation can be considered a useful tool for enhancing the stability and storage of blood components.

Sobre autores

Tahereh Mehrizi

Vaccine Research Center,, Iran University of Medical Sciences,

Autor responsável pela correspondência
Email: info@benthamscience.net

Mehdi Mirzaei

Deputy Ministry for Education, Ministry of Health and Medical Education

Email: info@benthamscience.net

Mehdi Ardestani

Department of Radiopharmacy, Faculty of Pharmacy,, Tehran University of Medical Sciences

Email: info@benthamscience.net

Bibliografia

  1. Hess, J.R. Conventional blood banking and blood component storage regulation: opportunities for improvement. Blood Transfus., 2010, 8(S3), s9-s15. PMID: 20606757
  2. Medvecz, A.; Bernard, A.; Hamilton, C.; Schuster, K.M.; Guillamondegui, O.; Davenport, D. Transfusion rates in emergency general surgery: High but modifiable. Trauma Surg. Acute Care Open, 2020, 5(1), e000371. doi: 10.1136/tsaco-2019-000371 PMID: 32154373
  3. Wang, D.; Kyluik, D.L.; Murad, K.L.; Toyofuku, W.M.; Scott, M.D. Polymer-mediated immunocamouflage of red blood cells: Effects of polymer size on antigenic and immunogenic recognition of allogeneic donor blood cells. Sci. China Life Sci., 2011, 54(7), 589-598. doi: 10.1007/s11427-011-4190-x PMID: 21701803
  4. Tarasev, M.; Chakraborty, S.; Light, L.; Davenport, R. Impact of environment on red blood cell ability to withstand mechanical stress. Clin. Hemorheol. Microcirc., 2016, 64(1), 21-33. doi: 10.3233/CH-152037 PMID: 26890109
  5. Mehrizi, T.Z. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: A recent review study. Nano, 2021, 16(8), 2130007. doi: 10.1142/S1793292021300073
  6. Zadeh Mehrizi, T.; Amini Kafiabad, S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: A review. J. Pharm. Pharmacol., 2022, 74(2), 179-190. doi: 10.1093/jpp/rgab089 PMID: 34244798
  7. Mehrizi, T.Z. An overview of the latest applications of platelet-derived microparticles and nanoparticles in medical technology 2010-2020. Curr. Mol. Med., 2022, 22(6), 524-539. doi: 10.2174/1566524021666210928152015 PMID: 34602037
  8. Zadeh, M.T.; Mousavi, H.K. An overview on the investigation of nanomaterials’ effect on plasma components: Immunoglobulins and coagulation factor VIII, 2010–2020 review. Nanoscale Adv., 2021, 3(13), 3730-3745. doi: 10.1039/D1NA00119A PMID: 36133015
  9. Zadeh, M.T.; Pirali, H.M.; Ebrahimi, S.H.; Mirzaei, M.; Shafiee, A.M.; Haji, M.H.M.; Mosaffa, N.; Khamesipour, A.; Javanmard, A.; Rezazadeh, S.; Ramezani, A. Effective materials of medicinal plants for leishmania treatment in vivo environment. Faslnamah-i Giyahan-i Daruyi, 2020, 19(74), 39-62. doi: 10.29252/jmp.19.74.39
  10. Zadeh, M.T.; Mosaffa, N.; Shafiee, A.M.; Khamesipour, A.; Ebrahimi, S.H.; Pirali, H.M. In vivo therapeutic effects of four synthesized antileishmanial nanodrugs in the treatment of Leishmaniasis. Arch. Clin. Infect. Dis., 2018, 13(5) doi: 10.5812/archcid.80314
  11. Shahabi, J.; Shahmabadi, H.E.; Alavi, S.E.; Movahedi, F.; Esfahani, M.K.M.; Mehrizi, T.Z.; Akbarzadeh, A. Effect of gold nanoparticles on properties of nanoliposomal hydroxyurea: an in vitro study. Indian J. Clin. Biochem., 2014, 29(3), 315-320. doi: 10.1007/s12291-013-0355-7 PMID: 24966479
  12. Fatemeh, D.R.A.; Ebrahimi, S.H.; Abedi, A.; Alavi, S.E.; Movahedi, F.; Koohi, M.E.M.; Zadeh, M.T.; Akbarzadeh, A. Polybutylcyanoacrylate nanoparticles and drugs of the platinum family: last status. Indian J. Clin. Biochem., 2014, 29(3), 333-338. doi: 10.1007/s12291-013-0364-6 PMID: 24966482
  13. Mehrizi, T.Z.; Ardestani, M.S.; Kafiabad, S.A. A review study of the influences of dendrimer nanoparticles on stored platelet in order to treat patients (2001-2020). Curr. Nanosci., 2022, 18(3), 304-318. doi: 10.2174/1566524021666210708154736
  14. Mehrizi, T.Z.; Kafiabad, S.A.; Eshghi, P. Effects and treatment applications of polymeric nanoparticles on improving platelets’ storage time: A review of the literature from 2010 to 2020. Blood Res., 2021, 56(4), 215-228. doi: 10.5045/br.2021.2021094 PMID: 34880140
  15. Mehrizi, T.Z. Impact of metallic, quantum dots and carbon-based nanoparticles on quality and storage of albumin products for clinical use. Nano, 2021, 16(14), 2130013. doi: 10.1142/S1793292021300139
  16. Mehrizi, T.Z.; Rezayat, S.M.; Ardestani, M.S.; Shahmabadi, H.E.; Ramezani, A. A review study about the effect of chitosan nanocarrier on improving the efficacy of amphotericin b in the treatment of leishmania from 2010 to 2020. Curr. Drug Deliv., 2021, 18(9), 1234-1243. doi: 10.2174/1567201818666210316111941 PMID: 33726648
  17. Zadeh, M.T.; Shafiee, A.M.; Haji, M.H.M.; Khamesipour, A.; Mosaffa, N.; Ramezani, A. Novel nanosized chitosan-betulinic acid against resistant leishmania major and first clinical observation of such parasite in kidney. Sci. Rep., 2018, 8(1), 11759. doi: 10.1038/s41598-018-30103-7 PMID: 30082741
  18. Zadeh, M.T.; Khamesipour, A.; Shafiee, A.M.; Ebrahimi, A.H.; Haji, M.H.M.; Mosaffa, N.; Ramezani, A. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int. J. Nanomedicine, 2019, 14, 7593-7607. doi: 10.2147/IJN.S220410 PMID: 31802863
  19. Zadeh, M.T.; Mosaffa, N.; Khamesipour, A.; Haji, M.H.M.; Ebrahimi, S.H.; Shafiee, A.M. A novel nanoformulation for reducing the toxicity and increasing the efficacy of betulinic acid using anionic globular dendrimer. J Nanostruct., 2020, 11(1), 143-152.
  20. Mangla, S. Engineering PEGylated Antibody Fragments for Enhanced Properties and Cancer Detection; The Ohio State University, 2016.
  21. Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem., 1977, 252(11), 3578-3581. doi: 10.1016/S0021-9258(17)40291-2 PMID: 405385
  22. Freches, D.; Rocks, N.; Patil, H.P.; Perin, F.; Van Snick, J.; Vanbever, R.; Cataldo, D. Preclinical evaluation of topically-administered PEGylated Fab’ lung toxicity. Int. J. Pharm. X, 2019, 1, 100019. doi: 10.1016/j.ijpx.2019.100019 PMID: 31517284
  23. D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv., 2016, 13(9), 1257-1275. doi: 10.1080/17425247.2016.1182485 PMID: 27116988
  24. Roque, C.; Sheung, A.; Rahman, N.; Ausar, S.F. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab’). Mol. Pharm., 2015, 12(2), 562-575. doi: 10.1021/mp500658w PMID: 25548945
  25. Bjørnsdottir, I.; Støvring, B.; Søeborg, T.; Jacobsen, H.; Sternebring, O. Plasma polyethylene glycol (PEG) levels reach steady state following repeated treatment with N8-GP (Turoctocog Alfa Pegol; Esperoct®). Drugs R D., 2020, 20(2), 75-82. doi: 10.1007/s40268-020-00297-1 PMID: 32152818
  26. Wynn, T.; Gumuscu, B. Potential role of a new PEGylated recombinant factor VIII for hemophilia A. J. Blood Med., 2016, 7, 121-128. doi: 10.2147/JBM.S82457 PMID: 27382347
  27. Zhang, F.; Liu, M.; Wan, H. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol. Pharm. Bull., 2014, 37(3), 335-339. doi: 10.1248/bpb.b13-00661 PMID: 24334536
  28. Garay, R.P.; El-Gewely, R.; Armstrong, J.K.; Garratty, G.; Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv., 2012, 9(11), 1319-1323. doi: 10.1517/17425247.2012.720969 PMID: 22931049
  29. Baumann, A. PEGylated biologics in haemophilia treatment: Current understanding of their long-term safety. Haemophilia, 2020, 26(1), e11-e13. doi: 10.1111/hae.13875 PMID: 31742794
  30. Scott, M.D.; Nakane, N. Maurer-Spurej, E Cryoprotection of Platelets by Grafted Polymers. Cryopreservation-Current Advances and Evaluations; IntechOpen, 2019.
  31. Sauter, A.; Richter, G.; Micoulet, A.; Martinez, A.; Spatz, J.P.; Appel, S. Effective polyethylene glycol passivation for the inhibition of surface interactions of peripheral blood mononuclear cells and platelets. Biointerphases, 2013, 8(1), 14. doi: 10.1186/1559-4106-8-14 PMID: 24706127
  32. Maurer, E.; Scott, M.D.; Kitamura, N. Cold storage of pegylated platelets at about or below 0°C. Patent US8067151B2, 2011.
  33. Tarrand, J.; Andersson, B. Compositions and methods for prolonged cell storage. Patent US20180070581A1, 2021.
  34. Greco, C.A.; Maurer-Spurej, E.; Scott, M.D.; Kalab, M.; Nakane, N.; Ramírez-Arcos, S.M. PEGylation prevents bacteria-induced platelet activation and biofilm formation in platelet concentrates. Vox Sang., 2011, 100(3), 336-339. doi: 10.1111/j.1423-0410.2010.01419.x PMID: 21392023
  35. Wufuer, Y.; Shan, X.; Sailike, M.; Adilaimu, K.; Ma, S.; Wang, H. GPVI-Fc-PEG improves cerebral infarct volume and cerebral thrombosis in mouse model with cerebral thrombosis. Mol. Med. Rep., 2017, 16(5), 7561-7568. doi: 10.3892/mmr.2017.7556 PMID: 28944903
  36. Bakhaidar, R.; Green, J.; Alfahad, K.; Samanani, S.; Moollan, N.; O’Neill, S.; Ramtoola, Z. Effect of size and concentration of PLGA-PEG nanoparticles on activation and aggregation of washed human platelets. Pharmaceutics, 2019, 11(10), 514. doi: 10.3390/pharmaceutics11100514 PMID: 31590303
  37. Fuentes, E.; Yameen, B.; Bong, S.J.; Salvador-Morales, C.; Palomo, I.; Vilos, C. Antiplatelet effect of differentially charged PEGylated lipid-polymer nanoparticles. Nanomedicine, 2017, 13(3), 1089-1094. doi: 10.1016/j.nano.2016.10.010 PMID: 27789259
  38. Mehrizi, T.Z.; Ardestani, M.S.; Molla Hoseini, M.H.; Khamesipour, A.; Mosaffa, N.; Ramezani, A. Novel nano-sized chitosan amphotericin B formulation with considerable improvement against Leishmania major. Nanomedicine, 2018, 13(24), 3129-3147. doi: 10.2217/nnm-2018-0063 PMID: 30463469
  39. Mehrizi, T.Z.; Ardestani, M.S.; Khamesipour, A.; Hoseini, M.H.M.; Mosaffa, N.; Anissian, A.; Ramezani, A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. J. Mater. Sci. Mater. Med., 2018, 29(8), 125-138. doi: 10.1007/s10856-018-6122-9 PMID: 30056571
  40. Zadeh, M.T.; Shafiee, A.M.; Mirzaei, M.J. review study on the application of polymeric-based nanoparticles as a novel approach for enhancing the stability of albumins. Nanomed. J., 2022, 9(4), 261-272.
  41. Belousov, A; Malygon, E; Yavorskiy, V; Belousova, E Stabilization of molecular structure membranes of preserved rbcs by means nanotechnology. Ann Med & Surg Case Rep: AMSCR., 2019, 2019(100001)
  42. Bakhaidar, R.; O’Neill, S.; Ramtoola, Z. PLGA-PEG nanoparticles show minimal risks of interference with platelet function of human platelet-rich plasma. Int. J. Mol. Sci., 2020, 21(24), 9716. doi: 10.3390/ijms21249716 PMID: 33352749
  43. Wang, W.; Xiong, W.; Zhu, Y.; Xu, H.; Yang, X. Protective effect of PEGylation against poly(amidoamine) dendrimer-induced hemolysis of human red blood cells. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 9999B(1), NA. doi: 10.1002/jbm.b.31558 PMID: 20186802
  44. Gholami, Z.; Hashemi Najafabadi, S.; Soleimani, M. Simultaneous camouflage of major and minor antigens on red blood cell surface with activated mPEGs. Iran. J. Biotechnol., 2014, 12(2), 15-25. doi: 10.5812/ijb.17776
  45. Scott, M.; Toyofuku, W.; Yang, X.; Raj, M.; Kang, N. Immunocamouflaged RBC for alloimmunized patients. In: Transfusion Medicine and Scientific Developments Croatia; INTECH, 2017; pp. 23-42. doi: 10.5772/intechopen.68647
  46. Rzigalinski, B.A.; Giovinco, H.M.; Cheatham, B.J. Cerium oxide nanoparticles improve lifespan of stored blood. Mil. Med., 2020, 185(S1), 103-109. doi: 10.1093/milmed/usz210 PMID: 32074312
  47. Webster, K.D.; Dahhan, D.; Otto, A.M.; Frosti, C.L.; Dean, W.L.; Chaires, J.B.; Olsen, K.W. "Inside-Out" PEGylation of bovine β-cross-linked hemoglobin. Artif. Organs, 2017, 41(4), 351-358. doi: 10.1111/aor.12928 PMID: 28321886
  48. Webster, K.D. Development of" inside-out" PEGylated crosslinked hemoglobin polymers: Novel hemoglobin-based oxygen carriers (HBOC); Loyola University Chicago, 2016.
  49. Wang, Q.; Sun, L.; Ji, S.; Zhao, D.; Liu, J.; Su, Z.; Hu, T. Reversible protection of Cys-93(β) by PEG alters the structural and functional properties of the PEGylated hemoglobin. Biochim. Biophys. Acta. Proteins Proteomics, 2014, 1844(7), 1201-1207. doi: 10.1016/j.bbapap.2014.04.005 PMID: 24747784
  50. Chapanian, R.; Constantinescu, I.; Rossi, N.A.A.; Medvedev, N.; Brooks, D.E.; Scott, M.D.; Kizhakkedathu, J.N. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells. Biomaterials, 2012, 33(31), 7871-7883. doi: 10.1016/j.biomaterials.2012.07.015 PMID: 22840223
  51. Chapanian, R.; Constantinescu, I.; Medvedev, N.; Scott, M.D.; Brooks, D.E.; Kizhakkedathu, J.N. Therapeutic cells via functional modification: influence of molecular properties of polymer grafts on in vivo circulation, clearance, immunogenicity, and antigen protection. Biomacromolecules, 2013, 14(6), 2052-2062. doi: 10.1021/bm4003943 PMID: 23713758
  52. Wang, D.; Toyofuku, W.M.; Scott, M.D. The potential utility of methoxypoly(ethylene glycol)-mediated prevention of rhesus blood group antigen RhD recognition in transfusion medicine. Biomaterials, 2012, 33(10), 3002-3012. doi: 10.1016/j.biomaterials.2011.12.041 PMID: 22264524
  53. Leung, V.L.; Kizhakkedathu, J.N. The mechanism and modulation of complement activation on polymer grafted cells. Acta Biomater., 2016, 31, 252-263. doi: 10.1016/j.actbio.2015.11.022 PMID: 26593783
  54. Brockman, E.C.; Jackson, T.C.; Dixon, C.E.; Bayɪr, H.; Clark, R.S.B.; Vagni, V.; Feldman, K.; Byrd, C.; Ma, L.; Hsia, C.; Kochanek, P.M. Polynitroxylated pegylated hemoglobin—a novel, small volume therapeutic for traumatic brain injury resuscitation: Comparison to whole blood and dose response evaluation. J. Neurotrauma, 2017, 34(7), 1337-1350. doi: 10.1089/neu.2016.4656 PMID: 27869558
  55. Moore, M.S.; Okelberry, E.; Cordingley, K.; Drake, A.; Robinett, Z. DePEGylation studies: PEG-RBC stability in conditions consistent with massive transfusion. Clin. Lab. Sci., 2011, 24(4), 227-232. doi: 10.29074/ascls.24.4.227 PMID: 22288221
  56. Li, L.; Noumsi, G.T.; Kwok, Y.Y.E.; Moulds, J.M.; Scott, M.D. Inhibition of phagocytic recognition of anti-D opsonized Rh D+ RBC by polymer-mediated immunocamouflage. Am. J. Hematol., 2015, 90(12), 1165-1170. doi: 10.1002/ajh.24211 PMID: 26440218
  57. Kyluik-Price, D.L.; Li, L.; Scott, M.D. Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline. Biomaterials, 2014, 35(1), 412-422. doi: 10.1016/j.biomaterials.2013.09.016 PMID: 24074839
  58. Chapanian, R.; Constantinescu, I.; Brooks, D.E.; Scott, M.D.; Kizhakkedathu, J.N. In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. Biomaterials, 2012, 33(10), 3047-3057. doi: 10.1016/j.biomaterials.2011.12.053 PMID: 22261097
  59. Haghdoost, S.; Hashemi-Najafabadi, S.; Soleimani, M. Investigating the stability of polymer coating of methoxy polyethylene glycol activated by succinimidyl valerate on the surface of red blood cells under in vitro and in vivo conditions. Pathobiology Research., 2015, 18(2), 13-26.
  60. Zemlianskykh, N.G.; Babijchuk, L.A. The changes in erythrocyte Ca2+-ATPase activity induced by PEG-1500 and low temperatures. Cell Tissue Biol., 2017, 11(2), 104-110. doi: 10.1134/S1990519X17020109
  61. Abuchowski, A. PEGylated bovine carboxyhemoglobin (SANGUINATE™): results of clinical safety testing and use in patients. Oxygen transport to tissue XXXVII; Springer, 2016, pp. 461-467.
  62. Romito, B.T.; McBroom, M.M.; Bryant, D.; Gamez, J.; Merchant, A.; Hill, S.E. The effect of SANGUINATE ® (PEGylated carboxyhemoglobin bovine) on cardiopulmonary bypass functionality using a bovine whole blood model of normovolemic hemodilution. Perfusion, 2020, 35(1), 19-25. doi: 10.1177/0267659119850681 PMID: 31144581
  63. Abuchowski, A. SANGUINATE (PEGylated carboxyhemoglobin bovine): Mechanism of action and clinical update. Artif. Organs, 2017, 41(4), 346-350. doi: 10.1111/aor.12934 PMID: 28397407
  64. Misra, H.; Bainbridge, J.; Berryman, J.; Abuchowski, A.; Galvez, K.M.; Uribe, L.F.; Hernandez, A.L.; Sosa, N.R. A Phase Ib open label, randomized, safety study of SANGUINATE™ in patients with sickle cell anemia. Rev. Bras. Hematol. Hemoter., 2017, 39(1), 20-27. doi: 10.1016/j.bjhh.2016.08.004 PMID: 28270341
  65. Ananthakrishnan, R.; Li, Q.; O’Shea, K.M.; Quadri, N.; Wang, L.; Abuchowski, A.; Schmidt, A.M.; Ramasamy, R. Carbon monoxide form of PEGylated hemoglobin protects myocardium against ischemia/reperfusion injury in diabetic and normal mice. Artif. Cells Nanomed. Biotechnol., 2013, 41(6), 428-436. doi: 10.3109/21691401.2012.762370 PMID: 23342967
  66. Buontempo, P.; Jubin, R.G.; Buontempo, C.; Real, R.; Kazo, F.; O’Brien, S. Pegylated carboxyhemoglobin bovine (SANGUINATE®) restores RBCs roundness and reduces pain during a sickle cell vaso-occlusive crisis; American Society of Hematology Washington: DC, 2017. doi: 10.1182/blood.V130.Suppl_1.969.969
  67. Nugent, W.H.; Cestero, R.F.; Ward, K.; Jubin, R.; Abuchowski, A.; Song, B.K. Effects of Sanguinate on systemic and microcirculatory variables in a model of prolonged hemorrhagic shock. Shock, 2019, 52(1S), 108-115. doi: 10.1097/SHK.0000000000001082 PMID: 29252939
  68. Wang, Q.; Hu, T.; Sun, L.; Ji, S.; Zhao, D.; Liu, J.; Ma, G.; Su, Z. CO binding improves the structural, functional, physical and antioxidation properties of the PEGylated hemoglobin. Artif. Cells Nanomed. Biotechnol., 2015, 43(1), 18-25. doi: 10.3109/21691401.2014.885444 PMID: 24641771
  69. Cooper, C.E.; Silkstone, G.G.A.; Simons, M.; Gretton, S.; Rajagopal, B.S.; Allen-Baume, V.; Syrett, N.; Shaik, T.; Popa, G.; Sheng, X.; Bird, M.; Choi, J.W.; Piano, R.; Ronda, L.; Bettati, S.; Paredi, G.; Mozzarelli, A.; Reeder, B.J. Engineering hemoglobin to enable homogenous PEGylation without modifying protein functionality. Biomater. Sci., 2020, 8(14), 3896-3906. doi: 10.1039/C9BM01773A PMID: 32539053
  70. Matsuhira, T.; Kure, T.; Yamamoto, K.; Sakai, H. Analysis of dimeric αβ subunit exchange between pegylated and native hemoglobins (α 2 β 2 Tetramer) in an equilibrated state by intramolecular ββ-cross-linking. Biomacromolecules, 2018, 19(8), 3412-3420. doi: 10.1021/acs.biomac.8b00728 PMID: 29952544
  71. Meng, F.; Tsai, A.G.; Intaglietta, M.; Acharya, S.A. PEGylation of αα-Hb using succinimidyl propionic acid PEG 5K: Conjugation chemistry and PEG shell structure dictate respectively the oxygen affinity and resuscitation fluid like properties of PEG αα-Hbs. Artif. Cells Nanomed. Biotechnol., 2015, 43(4), 270-281. doi: 10.3109/21691401.2014.885443 PMID: 24597567
  72. Hu, T.; Li, D.; Meng, F.; Prabhakaran, M.; Acharya, S.A. Increased inter dimeric interaction of oxy hemoglobin is necessary for attenuation of reductive pegylation promoted dissociation of tetramer. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(2), 69-78. doi: 10.3109/10731199.2010.501756 PMID: 20653337
  73. Coppola, D.; Bruno, S.; Ronda, L.; Viappiani, C.; Abbruzzetti, S.; di Prisco, G.; Verde, C.; Mozzarelli, A. Low affinity PEGylated hemoglobin from trematomus bernacchii, a model for hemoglobin-based blood substitutes. BMC Biochem., 2011, 12(1), 66. doi: 10.1186/1471-2091-12-66 PMID: 22185675
  74. Kawaguchi, A.T.; Salybekov, A.A.; Yamano, M.; Kitagishi, H.; Sekine, K.; Tamaki, T. PEGylated carboxyhemoglobin bovine (SANGUINATE) ameliorates myocardial infarction in a rat model. Artif. Organs, 2018, 42(12), 1174-1184. doi: 10.1111/aor.13384 PMID: 30375680
  75. Wang, Y.; Wang, L.; Yu, W.; Gao, D.; You, G.; Li, P.; Zhang, S.; Zhang, J.; Hu, T.; Zhao, L.; Zhou, H. A PEGylated bovine hemoglobin as a potent hemoglobin-based oxygen carrier. Biotechnol. Prog., 2017, 33(1), 252-260. doi: 10.1002/btpr.2380 PMID: 27696787
  76. Nalley, C.M.; Abuchowski, A.; Hsu, S.; Lanzkron, S. Successful Use of Pegylated Carboxyhemoglobin Bovine As an Emergency Treatment for Severe Anemia in a Patient with Sickle Cell Disease and Hyperhemolysis: A Case Report; American Society of Hematology Washington: DC, 2014. doi: 10.1182/blood.V124.21.4928.4928
  77. Zhang, L.; Wang, X.; Qi, D. The study of terminated PEG maleimide synthesis and modification of hemoglobin. Proceedings of the 2nd International Conference on Electronic & Mechanical Engineering and Information Technology (EMEIT 2012), 2012, pp. 1951-6851. doi: 10.2991/emeit.2012.222
  78. Cao, S.; Zhang, J.; Ma, L.; Hsia, C.J.C.; Koehler, R.C. Transfusion of polynitroxylated pegylated hemoglobin stabilizes pial arterial dilation and decreases infarct volume after transient middle cerebral artery occlusion. J. Am. Heart Assoc., 2017, 6(9), e006505. doi: 10.1161/JAHA.117.006505 PMID: 28899897
  79. Shellington, D.K.; Du, L.; Wu, X.; Exo, J.; Vagni, V.; Ma, L.; Janesko-Feldman, K.; Clark, R.S.B.; Bayir, H.; Dixon, C.E.; Jenkins, L.W.; Hsia, C.J.C.; Kochanek, P.M. Polynitroxylated pegylated hemoglobin: A novel neuroprotective hemoglobin for acute volume-limited fluid resuscitation after combined traumatic brain injury and hemorrhagic hypotension in mice. Crit. Care Med., 2011, 39(3), 494-505. doi: 10.1097/CCM.0b013e318206b1fa PMID: 21169820
  80. Brockman, E.C.; Bayir, H.; Blasiole, B.; Shein, S.L.; Fink, E.L.; Dixon, C.E.; Clark, R.S.B.; Vagni, V.A.; Ma, L.; Hsia, C.J.C.; Tisherman, S.A.; Kochanek, P.M. Polynitroxylated-pegylated hemoglobin attenuates fluid requirements and brain edema in combined traumatic brain injury plus hemorrhagic shock in mice. J. Cereb. Blood Flow Metab., 2013, 33(9), 1457-1464. doi: 10.1038/jcbfm.2013.104 PMID: 23801241
  81. Akbarzadehlaleh, P.; Mirzaei, M.; Mashahdi-keshtiban, M.; Heidari, H.R. The effect of length and structure of attached polyethylene glycol chain on hydrodynamic radius, and separation of pegylated human serum albumin by chromatography. Adv. Pharm. Bull., 2020, 11(4), 728-738. doi: 10.34172/apb.2021.082 PMID: 34888220
  82. Plesner, B.; Fee, C.J.; Westh, P.; Nielsen, A.D. Effects of PEG size on structure, function and stability of PEGylated BSA. Eur. J. Pharm. Biopharm., 2011, 79(2), 399-405. doi: 10.1016/j.ejpb.2011.05.003 PMID: 21620970
  83. Zhao, T.; Yang, Y.; Zong, A.; Tan, H.; Song, X.; Meng, S.; Song, C.; Pang, G.; Wang, F. N-terminal PEGylation of human serum albumin and investigation of its pharmacokinetics and pulmonary microvascular retention. Biosci. Trends, 2012, 6(2), 81-88. doi: 10.5582/bst.2012.v6.2.81 PMID: 22621990
  84. Akbarzadehlaleh, P.; Mirzaei, M.; Mashahdi-Keshtiban, M.; Shamsasenjan, K.; Heydari, H. PEGylated human serum albumin: Review of PEGylation, purification and characterization methods. Adv. Pharm. Bull., 2016, 6(3), 309-317. doi: 10.15171/apb.2016.043 PMID: 27766215
  85. Yu, M.; Ding, Z.; Jiang, F.; Ding, X.; Sun, J.; Chen, S.; Lv, G. Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 83(1), 453-460. doi: 10.1016/j.saa.2011.08.065 PMID: 21945127
  86. Hightower, C.M.; Salazar Vázquez, B.Y.; Cabrales, P.; Tsai, A.G.; Acharya, S.A.; Intaglietta, M. Plasma expander and blood storage effects on capillary perfusion in transfusion after hemorrhage. Transfusion, 2013, 53(1), 49-59. doi: 10.1111/j.1537-2995.2012.03679.x PMID: 22554380
  87. Hill, JA. Characterization of Multi-Albumin Pegylated Complexes Synthesized Using" Click" Chemistry as Drug Delivery Systems; Loyola University Chicago, 2017.
  88. Samanta, N.; Mahanta, D.D.; Hazra, S.; Kumar, G.S.; Mitra, R.K. Short chain polyethylene glycols unusually assist thermal unfolding of human serum albumin. Biochimie, 2014, 104, 81-89. doi: 10.1016/j.biochi.2014.05.009 PMID: 24911290
  89. Hoorang, M.; Tamaddon, A.; Yousefi, G. Synthesis of PEGylated human serum albumin by maleimide-thiol chemistry and histopathological evaluation in a mice model of carrageenan-induced inflammation. Trends Pharmacol. Sci., 2019, 5(1), 47-56.
  90. Zhao, T.; Cheng, Y.N.; Tan, H.N.; Liu, J.F.; Xu, H.L.; Pang, G.L.; Wang, F.S. Site-specific chemical modification of human serum albumin with polyethylene glycol prolongs half-life and improves intravascular retention in mice. Biol. Pharm. Bull., 2012, 35(3), 280-288. doi: 10.1248/bpb.35.280 PMID: 22382312
  91. Sriram, K.; Tsai, A.G.; Cabrales, P.; Meng, F.; Acharya, S.A.; Tartakovsky, D.M.; Intaglietta, M. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(12), H2489-H2497. doi: 10.1152/ajpheart.01090.2011 PMID: 22505638
  92. Chatpun, S.; Cabrales, P. Effects on cardiac function of a novel low viscosity plasma expander based on polyethylene glycol conjugated albumin. Minerva Anestesiol., 2011, 77(7), 704-714. PMID: 21709658
  93. Acharya, S.A.; Intaglietta, M. Method of enhancing efficacy of blood transfusions. Patent US9498537B2, 2014.
  94. Chatpun, S.; Nacharaju, P.; Cabrales, P. Improving cardiac function with new-generation plasma volume expanders. Am. J. Emerg. Med., 2013, 31(1), 54-63. doi: 10.1016/j.ajem.2012.05.031 PMID: 22867830
  95. Ananda, K.; Manjula, B.N.; Meng, F.; Acharya, V.N.; Intaglietta, M.; Acharya, S.A. Packing density of the PEG-shell in PEG-albumins: PEGylation induced viscosity and COP are inverse correlate of packing density. Artif. Cells Blood Substit. Immobil. Biotechnol., 2012, 40(1-2), 14-27. doi: 10.3109/10731199.2011.579568 PMID: 21623695
  96. Munasinghe, A.; Mathavan, A.; Mathavan, A.; Lin, P.; Colina, C.M. Atomistic insight towards the impact of polymer architecture and grafting density on structure-dynamics of PEGylated bovine serum albumin and their applications. J. Chem. Phys., 2021, 154(7), 075101. doi: 10.1063/5.0038306 PMID: 33607915
  97. Munasinghe, A.; Mathavan, A.; Mathavan, A.; Lin, P.; Colina, C.M. Molecular insight into the protein–polymer interactions in N-terminal PEGylated bovine serum albumin. J. Phys. Chem. B, 2019, 123(25), 5196-5205. doi: 10.1021/acs.jpcb.8b12268 PMID: 30939013
  98. Di Minno, M.N.D.; Di Minno, A.; Calcaterra, I.; Cimino, E.; Dell’Aquila, F.; Franchini, M. Eds. Enhanced half-life recombinant factor VIII concentrates for hemophilia A: insights from pivotal and extension studies. Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc., 2020.
  99. Pastoft, A.E.; Ezban, M.; Tranholm, M.; Lykkesfeldt, J.; Lauritzen, B. Prolonged effect of a new O-glycoPEGylated FVIII (N8-GP) in a murine saphenous vein bleeding model. Haemophilia, 2013, 19(6), 913-919. doi: 10.1111/hae.12198 PMID: 23730746
  100. Stennicke, H.R.; Kjalke, M.; Karpf, D.M.; Balling, K.W.; Johansen, P.B.; Elm, T.; Øvlisen, K.; Möller, F.; Holmberg, H.L.; Gudme, C.N.; Persson, E.; Hilden, I.; Pelzer, H.; Rahbek-Nielsen, H.; Jespersgaard, C.; Bogsnes, A.; Pedersen, A.A.; Kristensen, A.K.; Peschke, B.; Kappers, W.; Rode, F.; Thim, L.; Tranholm, M.; Ezban, M.; Olsen, E.H.N.; Bjørn, S.E. A novel B-domain O-glycoPEGylated FVIII (N8-GP) demonstrates full efficacy and prolonged effect in hemophilic mice models. Blood, 2013, 121(11), 2108-2116. doi: 10.1182/blood-2012-01-407494 PMID: 23335368
  101. Tiede, A.; Brand, B.; Fischer, R.; Kavakli, K.; Lentz, S.R.; Matsushita, T.; Rea, C.; Knobe, K.; Viuff, D. Enhancing the pharmacokinetic properties of recombinant factor VIII: first-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A. J. Thromb. Haemost., 2013, 11(4), 670-678. doi: 10.1111/jth.12161 PMID: 23398640
  102. Rasmussen, C.E.; Nowak, J.; Larsen, J.M.; Moore, E.; Bell, D.; Liu, K.C. Long-term safety of PEGylated coagulation factor VIII in the immune-deficient Rowett nude rat. J. Toxicol., 2017, 2017, 8496246. doi: 10.1155/2017/8496246
  103. Hampton, K.; Chowdary, P.; Dunkley, S.; Ehrenforth, S.; Jacobsen, L.; Neff, A.; Santagostino, E.; Sathar, J.; Takedani, H.; Takemoto, C.M.; Négrier, C. First report on the safety and efficacy of an extended half-life glycoPEGylated recombinant FVIII for major surgery in severe haemophilia A. Haemophilia, 2017, 23(5), 689-696. doi: 10.1111/hae.13246 PMID: 28470862
  104. Chowdary, P. N8‐GP: A new extended half‐life recombinant factor VIII product for hemophilia A; Wiley Online Library, 2020.
  105. Giangrande, P.; Andreeva, T.; Chowdary, P.; Ehrenforth, S.; Hanabusa, H.; Leebeek, F.W.G.; Lentz, S.R.; Nemes, L.; Poulsen, L.H.; Santagostino, E.; You, C.W.; Ong Clausen, W.H.; Jönsson, P.G.; Oldenburg, J. Clinical evaluation of glycoPEGylated recombinant FVIII: Efficacy and safety in severe haemophilia A. Thromb. Haemost., 2017, 117(2), 252-261. doi: 10.1160/TH16-06-0444 PMID: 27904904
  106. Meunier, S.; Alamelu, J.; Ehrenforth, S.; Hanabusa, H.; Karim, F.A.; Kavakli, K.; Khodaie, M.; Staber, J.; Stasyshyn, O.; Yee, D.; Rageliene, L. Safety and efficacy of a glycoPEGylated rFVIII (turoctocog alpha pegol, N8-GP) in paediatric patients with severe haemophilia A. Thromb. Haemost., 2017, 117(9), 1705-1713. doi: 10.1160/TH17-03-0166 PMID: 28692108
  107. Rode, F.; Almholt, K.; Petersen, M.; Kreilgaard, M.; Kjalke, M.; Karpf, D.M.; Groth, A.V.; Johansen, P.B.; Larsen, L.F.; Loftager, M.; Haaning, J. Preclinical pharmacokinetics and biodistribution of subcutaneously administered glycoPEGylated recombinant factor VIII (N8‐GP) and development of a human pharmacokinetic prediction model. J. Thromb. Haemost., 2018, 16(6), 1141-1152. doi: 10.1111/jth.14013 PMID: 29582559
  108. Ivens, I.A.; Banczyk, D.; Gutberlet, K.; Jackman, S.; Vauléon, S.; Frisk, A.L. Nonclinical safety assessment of a long-acting recombinant PEGylated factor eight (BAY 94-9027) with a 60 kDa PEG. Toxicol. Pathol., 2019, 47(5), 585-597. doi: 10.1177/0192623319852300 PMID: 31132933
  109. Solms, A.; Shah, A.; Berntorp, E.; Tiede, A.; Iorio, A.; Linardi, C.; Ahsman, M.; Mancuso, M.E.; Zhivkov, T.; Lissitchkov, T. Direct comparison of two extended half-life PEGylated recombinant FVIII products: A randomized, crossover pharmacokinetic study in patients with severe hemophilia A. Ann. Hematol., 2020, 99(11), 2689-2698. doi: 10.1007/s00277-020-04280-3 PMID: 32974838
  110. Santagostino, E.; Kenet, G.; Fischer, K.; Biss, T.; Ahuja, S.; Steele, M.; Martínez, M.; Male, C.; van Geet, C.; Mondelaers, V.; Kaleva, V.; Stoyanova-Deleva, A.; Bobev, D.; Blanchette, V.; Zanon, E.; Gagliano, F.; Rageliene, L.; Peters, M.; Mlynarski, W.; Badowska, W.; Serban, M.; Rusen, L.; Uscatescu, V.; Will, A.; Payne, J.; Tunstall, O.; Kerlin, B.; Gruppo, R.; Eyster, M.E.; Ducore, J.; Schwartz, J. PROTECT VIII kids: BAY 94‐9027 (PEGylated recombinant factor VIII) safety and efficacy in previously treated children with severe haemophilia A. Haemophilia, 2020, 26(3), e55-e65. doi: 10.1111/hae.13963 PMID: 32212300
  111. Mullins, E.S.; Stasyshyn, O.; Alvarez-Román, M.T.; Osman, D.; Liesner, R.; Engl, W.; Sharkhawy, M.; Abbuehl, B.E. Extended half-life pegylated, full-length recombinant factor VIII for prophylaxis in children with severe haemophilia A. Haemophilia, 2017, 23(2), 238-246. doi: 10.1111/hae.13119 PMID: 27891721
  112. Konkle, B.A.; Stasyshyn, O.; Chowdary, P.; Bevan, D.H.; Mant, T.; Shima, M.; Engl, W.; Dyck-Jones, J.; Fuerlinger, M.; Patrone, L.; Ewenstein, B.; Abbuehl, B. Pegylated, full-length, recombinant factor VIII for prophylactic and on-demand treatment of severe hemophilia A. Blood, 2015, 126(9), 1078-1085. doi: 10.1182/blood-2015-03-630897 PMID: 26157075
  113. Schermeyer, M-T.; Wöll, A.K.; Kokke, B.; Eppink, M.; Hubbuch, J. Eds. Characterization of highly concentrated antibody solution-A toolbox for the description of protein long-term solution stability. MAbs; Taylor & Francis, 2017.
  114. Heywood, S.P.; Humphreys, D.P. Polymer Fusions to Increase Antibody Half-Lives: PEGylation and Other Modifications; Recombinant Antibodies for Immunotherapy, 2009, p. 275.
  115. Pasut, G. Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. BioDrugs, 2014, 28(S1), 15-23. doi: 10.1007/s40259-013-0064-z PMID: 24687235
  116. Jevševar, S.; Kusterle, M.; Kenig, M. PEGylation of antibody fragments for half-life extension. Antibody methods and protocols; Springer, 2012, pp. 233-246.
  117. Toprani, V.M.; Joshi, S.B.; Kueltzo, L.A.; Schwartz, R.M.; Middaugh, C.R.; Volkin, D.B. A micro–polyethylene glycol precipitation assay as a relative solubility screening tool for monoclonal antibody design and formulation development. J. Pharm. Sci., 2016, 105(8), 2319-2327. doi: 10.1016/j.xphs.2016.05.021 PMID: 27368120
  118. Lee, W.; Bobba, K.N.; Kim, J.Y.; Park, H.; Bhise, A.; Kim, W.; Lee, K.; Rajkumar, S.; Nam, B.; Lee, K.C.; Lee, S.H.; Ko, S.; Lee, H.J.; Jung, S.T.; Yoo, J. A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(13), 2993-2997. doi: 10.1039/D0TB02911D PMID: 33725072
  119. Wälchli, R.; Fanizzi, F.; Massant, J.; Arosio, P. Relationship of PEG-induced precipitation with protein-protein interactions and aggregation rates of high concentration mAb formulations at 5°C. Eur. J. Pharm. Biopharm., 2020, 151, 53-60. doi: 10.1016/j.ejpb.2020.03.011 PMID: 32197816
  120. Satzer, P.; Burgstaller, D.; Krepper, W.; Jungbauer, A. Fractal dimension of antibody‐PEG precipitate: Light microscopy for the reconstruction of 3D precipitate structures. Eng. Life Sci., 2020, 20(3-4), 67-78. doi: 10.1002/elsc.201900110 PMID: 32874171
  121. Chan, L.J.; Ascher, D.B.; Yadav, R.; Bulitta, J.B.; Williams, C.C.; Porter, C.J.H.; Landersdorfer, C.B.; Kaminskas, L.M. Conjugation of 10 kDa linear PEG onto trastuzumab Fab′ is sufficient to significantly enhance lymphatic exposure while preserving in vitro biological activity. Mol. Pharm., 2016, 13(4), 1229-1241. doi: 10.1021/acs.molpharmaceut.5b00749 PMID: 26871003
  122. Kholodenko, I.V.; Kalinovsky, D.V.; Svirshchevskaya, E.V.; Doronin, I.I.; Konovalova, M.V.; Kibardin, A.V.; Shamanskaya, T.V.; Larin, S.S.; Deyev, S.M.; Kholodenko, R.V. Multimerization through pegylation improves pharmacokinetic properties of scFv fragments of GD2-specific antibodies. Molecules, 2019, 24(21), 3835. doi: 10.3390/molecules24213835 PMID: 31653037
  123. Koussoroplis, S.J.; Paulissen, G.; Tyteca, D.; Goldansaz, H.; Todoroff, J.; Barilly, C.; Uyttenhove, C.; Van Snick, J.; Cataldo, D.; Vanbever, R. PEGylation of antibody fragments greatly increases their local residence time following delivery to the respiratory tract. J. Control. Release, 2014, 187, 91-100. doi: 10.1016/j.jconrel.2014.05.021 PMID: 24845126
  124. Reichard, E.E.; Nanaware-Kharade, N.; Gonzalez, G.A., III; Thakkar, S.; Owens, S.M.; Peterson, E.C. PEGylation of a high-affinity anti-(+) methamphetamine single chain antibody fragment extends functional half-life by reducing clearance. Pharm. Res., 2016, 33(12), 2954-2966. doi: 10.1007/s11095-016-2017-y PMID: 27620175
  125. Patil, H.P.; Freches, D.; Karmani, L.; Duncan, G.A.; Ucakar, B.; Suk, J.S.; Hanes, J.; Gallez, B.; Vanbever, R. Fate of PEGylated antibody fragments following delivery to the lungs: Influence of delivery site, PEG size and lung inflammation. J. Control. Release, 2018, 272, 62-71. doi: 10.1016/j.jconrel.2017.12.009 PMID: 29247664
  126. Storage stability studies of anti-VEGF FpF antibody mimetics. Khalili, H.; Brocchini, S.; Khaw, P.T.; Filippov, S., Eds.; 2016 AAPS Annual Meeting and Exposition, 2016.
  127. Davarpanah, F.; Khalili Yazdi, A.; Barani, M.; Mirzaei, M.; Torkzadeh-Mahani, M. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. Daru, 2018, 26(1), 57-64. doi: 10.1007/s40199-018-0215-3 PMID: 30209759
  128. Howard, C.B.; Fletcher, N.; Houston, Z.H.; Fuchs, A.V.; Boase, N.R.B.; Simpson, J.D.; Raftery, L.J.; Ruder, T.; Jones, M.L.; de Bakker, C.J.; Mahler, S.M.; Thurecht, K.J. Overcoming instability of antibody‐nanomaterial conjugates: Next generation targeted nanomedicines using bispecific antibodies. Adv. Healthc. Mater., 2016, 5(16), 2055-2068. doi: 10.1002/adhm.201600263 PMID: 27283923
  129. Selis, F.; Focà, G.; Sandomenico, A.; Marra, C.; Di Mauro, C.; Saccani Jotti, G.; Scaramuzza, S.; Politano, A.; Sanna, R.; Ruvo, M.; Tonon, G. Pegylated trastuzumab fragments acquire an increased in vivo stability but show a largely reduced affinity for the target antigen. Int. J. Mol. Sci., 2016, 17(4), 491. doi: 10.3390/ijms17040491 PMID: 27043557
  130. Kim, S-H.; Lee, Y-S.; Hwang, S-Y.; Bae, G-W.; Nho, K.; Kang, SW.; Kwak, Y.G.; Moon, C.S.; Han, Y.S.; Kim, T.Y.; Kho, W.G. Effects of PEGylated scFv antibodies against Plasmodium vivax duffy binding protein on the biological activity and stability in vitro. J. Microbiol. Biotechnol., 2007, 17(10), 1670-1674. PMID: 18156783
  131. Freches, D.; Patil, H.P.; Machado Franco, M.; Uyttenhove, C.; Heywood, S.; Vanbever, R. PEGylation prolongs the pulmonary retention of an anti-IL-17A Fab’ antibody fragment after pulmonary delivery in three different species. Int. J. Pharm., 2017, 521(1-2), 120-129. doi: 10.1016/j.ijpharm.2017.02.021 PMID: 28192159

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024