Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens


Cite item

Full Text

Abstract

Background:Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis.

Objectives:This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens.

Methods:The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters.

Results:Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 µg/ml, 5 µg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23mm and 21mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies.

Conclusion:The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.

About the authors

Smarita Lenka

Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University

Email: info@benthamscience.net

Debasmita Dubey

Department of Medical Research, IMS and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University

Author for correspondence.
Email: info@benthamscience.net

Santosh Swain

Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences

Email: info@benthamscience.net

Goutam Rath

School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan Deemed to be University

Email: info@benthamscience.net

Ajit Mishra

School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan Deemed to be University

Email: info@benthamscience.net

Ajit Bishoyi

Clinical Hematology, IMS and SUM Hospital, Siksha ‘O’ Anusandhan Deemed to be University

Email: info@benthamscience.net

Gopal Purohit

, Heredity Biosciences LLP.

Email: info@benthamscience.net

References

  1. Roscoe, D.L.; Hoang, L. Microbiologic investigations for head and neck infections. Infect. Dis. Clin. North Am., 2007, 21(2), 283-304. v. doi: 10.1016/j.idc.2007.03.012 PMID: 17561072
  2. Puri, A.; Mohite, P.; Patil, S.; Chidrawar, V.R.; Ushir, Y.V.; Dodiya, R.; Singh, S. Facile green synthesis and characterization of Terminalia arjuna bark phenolic–selenium nanogel: A biocompatible and green nano-biomaterial for multifaceted biological applications. Front Chem., 2023, 11, 1273360. doi: 10.3389/fchem.2023.1273360 PMID: 37810585
  3. Kumar, A.; Shah, S.R.; Jayeoye, T.J.; Kumar, A.; Parihar, A.; Prajapati, B.; Singh, S.; Kapoor, D.U. Biogenic metallic nanoparticles: Biomedical, analytical, food preservation, and applications in other consumable products. Front. Nanotechnol., 2023, 5, 1175149. doi: 10.3389/fnano.2023.1175149
  4. Bordiwala, R.V. Green synthesis and applications of metal nanoparticles-A review article. Results Chem., 2023, 3, 100832.
  5. Singh, S.; Nwabor, O.F.; Sukri, D.M.; Wunnoo, S.; Dumjun, K.; Lethongkam, S.; Kusolphat, P.; Hemtanon, N.; Klinprathum, K.; Sunghan, J.; Dejyong, K.; Lertwittayanon, K.; Pisuchpen, S.; Voravuthikunchai, S.P. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application. Int. J. Biol. Macromol., 2022, 216, 235-250. doi: 10.1016/j.ijbiomac.2022.06.172 PMID: 35780920
  6. Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M. Issaabadi, Z Green nanotechnology. In: Interface science and technology; Elsevier, 2019. doi: 10.1016/B978-0-12-813586-0.00005-5
  7. Nwabor, O.F.; Singh, S.; Ontong, J.C.; Vongkamjan, K.; Voravuthikunchai, S.P. Valorization of wastepaper through antimicrobial functionalization with biogenic silver nanoparticles, a sustainable packaging composite. Waste Biomass Valoriz., 2021, 12(6), 3287-3301. doi: 10.1007/s12649-020-01237-5
  8. Nagime, P.V.; Singh, S.; Shaikh, N.M.; Gomare, K.S.; Chitme, H.; Abdel-Wahab, B.A.; Alqahtany, Y.S.; Khateeb, M.M.; Habeeb, M.S.; Bakir, M.B. Biogenic fabrication of silver nanoparticles using calotropis procera flower extract with enhanced biomimetics attributes. Materials, 2023, 16(11), 4058. doi: 10.3390/ma16114058 PMID: 37297192
  9. Anees Ahmad, S.; Sachi Das, S.; Khatoon, A.; Tahir Ansari, M.; Afzal, M.; Saquib Hasnain, M.; Kumar Nayak, A. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol., 2020, 3, 756-769. doi: 10.1016/j.mset.2020.09.002
  10. Veerasamy, R.; Xin, T.Z.; Gunasagaran, S.; Xiang, T.F.W.; Yang, E.F.C.; Jeyakumar, N.; Dhanaraj, S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc., 2011, 15(2), 113-120. doi: 10.1016/j.jscs.2010.06.004
  11. Jayeoye, T.J.; Eze, F.N.; Olatunde, O.O.; Singh, S.; Zuo, J.; Olatunji, O.J. Multifarious biological applications and toxic Hg2+ sensing potentiality of biogenic silver nanoparticles based on securidaca inappendiculata hassk stem extract. Int. J. Nanomedicine, 2021, 16, 7557-7574. doi: 10.2147/IJN.S325996 PMID: 34803379
  12. Syafiuddin, A.; Fulazzaky, M.A.; Salmiati, S.; Roestamy, M.; Fulazzaky, M.; Sumeru, K.; Yusop, Z. Sticky silver nanoparticles and surface coatings of different textile fabrics stabilised by Muntingia calabura leaf extract. SN Appl. Sci., 2020, 2(4), 733. doi: 10.1007/s42452-020-2534-5
  13. Daengngam, C.; Lethongkam, S.; Srisamran, P.; Paosen, S.; Wintachai, P.; Anantravanit, B.; Vattanavanit, V.; Voravuthikunchai, S. Green fabrication of anti-bacterial biofilm layer on endotracheal tubing using silver nanoparticles embedded in polyelectrolyte multilayered film. Mater. Sci. Eng. C, 2019, 101, 53-63. doi: 10.1016/j.msec.2019.03.061 PMID: 31029348
  14. Luceri, A.; Francese, R.; Lembo, D.; Ferraris, M.; Balagna, C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms, 2023, 11(3), 629. doi: 10.3390/microorganisms11030629 PMID: 36985203
  15. Syukri, D.M.; Nwabor, O.F.; Singh, S.; Ontong, J.C.; Wunnoo, S.; Paosen, S.; Munah, S.; Voravuthikunchai, S.P. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections. J. Microbiol. Methods, 2020, 174, 105955. doi: 10.1016/j.mimet.2020.105955 PMID: 32442657
  16. Baygar, T.; Sarac, N.; Ugur, A.; Karaca, I.R. Antimicrobial characteristics and biocompatibility of the surgical sutures coated with biosynthesized silver nanoparticles. Bioorg. Chem., 2019, 86, 254-258. doi: 10.1016/j.bioorg.2018.12.034 PMID: 30716622
  17. Cai, Y.; Yang, H.; Li, J.; Gu, R.; Dong, Y.; Zhao, Q.; Chen, Y.; Li, Y.; Wang, R. Antibacterial AgNPs-PAAm-CS-PVP nanocomposite hydrogel coating for urinary catheters. Eur. Polym. J., 2023, 196, 112260. doi: 10.1016/j.eurpolymj.2023.112260
  18. Nwabor, O.F.; Singh, S.; Paosen, S.; Vongkamjan, K.; Voravuthikunchai, S.P. Enhancement of food shelf life with polyvinyl alcohol-chitosan nanocomposite films from bioactive Eucalyptus leaf extracts. Food Biosci., 2020, 36, 100609. doi: 10.1016/j.fbio.2020.100609
  19. Ontong, J.C.; Singh, S.; Nwabor, O.F.; Chusri, S.; Voravuthikunchai, S.P. Potential of antimicrobial topical gel with synthesized biogenic silver nanoparticle using Rhodomyrtus tomentosa leaf extract and silk sericin. Biotechnol. Lett., 2020, 42(12), 2653-2664. doi: 10.1007/s10529-020-02971-5 PMID: 32683522
  20. Das, S.; Langbang, L.; Haque, M.; Belwal, V.K.; Aguan, K.; Singha Roy, A. Biocompatible silver nanoparticles: An investigation into their protein binding efficacies, anti-bacterial effects and cell cytotoxicity studies. J. Pharm. Anal., 2021, 11(4), 422-434. doi: 10.1016/j.jpha.2020.12.003 PMID: 34513118
  21. Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control, 2019, 8(1), 76. doi: 10.1186/s13756-019-0533-3 PMID: 31131107
  22. Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharm. J., 2016, 24(4), 473-484. doi: 10.1016/j.jsps.2014.11.013 PMID: 27330378
  23. Mallmann, E.J.J.; Cunha, F.A.; Castro, B.N.M.F.; Maciel, A.M.; Menezes, E.A.; Fechine, P.B.A. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. São Paulo, 2015, 57(2), 165-167. doi: 10.1590/S0036-46652015000200011 PMID: 25923897
  24. Dubey, D.; Swain, S.K.; Lenka, S.; Meher, R.K.; Kar, B.; Rath, S. Evaluation of the antibacterial activity of Coccinia grandis, against bacteria isolated from chronic suppurative otitis media infection. J. Appl. Biol. Biotechnol., 2022, 11(1), 139-145. doi: 10.7324/JABB.2023.110119
  25. Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14. doi: 10.1186/s12951-018-0334-5 PMID: 29452593
  26. Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28. doi: 10.1016/j.jare.2015.02.007 PMID: 26843966
  27. Mansfield, J.M.; Campbell, J.H.; Bhandari, A.R.; Jesionowski, A.M.; Vickerman, M.M. Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars. J. Oral Maxillofac. Surg., 2012, 70(7), 1507-1514.e6, 6. doi: 10.1016/j.joms.2011.09.049 PMID: 22326171
  28. Dogiparthi, L.K.; Sana, S.S.; Shaik, S.Z.; Kalvapalli, M.R.; Kurupati, G.; Kumar, G.S.; Gangadhar, L. Phytochemical mediated synthesis of silver nanoparticles and their antibacterial activity. SN Appl. Sci., 2021, 3(6), 631. doi: 10.1007/s42452-021-04641-1
  29. Dubey, D.; Padhy, R.N. Antibacterial activity of Lantana camara L. against multidrug resistant pathogens from ICU patients of a teaching hospital. J. Herb. Med., 2013, 3(2), 65-75. doi: 10.1016/j.hermed.2012.12.002
  30. Ibrahim, E.; Fouad, H.; Zhang, M.; Zhang, Y.; Qiu, W.; Yan, C.; Li, B.; Mo, J.; Chen, J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Advances, 2019, 9(50), 29293-29299. doi: 10.1039/C9RA04246F PMID: 35528426
  31. Ngobeni, B.; Mashele, S.S.; Malebo, N.J.; van der Watt, E.; Manduna, I.T. Disruption of microbial cell morphology by Buxus macowanii. BMC Complemen. Med. Thera., 2020, 20(1), 266. doi: 10.1186/s12906-020-03049-5 PMID: 32867768
  32. Chandrasekharan, S.; Chinnasamy, G.; Bhatnagar, S. Sustainable phyto-fabrication of silver nanoparticles using Gmelina arborea exhibit antimicrobial and biofilm inhibition activity. Sci. Rep., 2022, 12(1), 156. doi: 10.1038/s41598-021-04025-w PMID: 34997051
  33. Swain, S.K.; Samal, S.; Meher, R.K.; Dubey, D.; Mir, S.A.; Nayak, B.; Sahu, M.C.; Naik, P.K.; Rath, G. In-silico and in-vitro evaluation of docetaxel and berberine as potential p53 modulating apoptotic inducers in oral squamous cell carcinoma. Asian Pac. J. Trop. Biomed., 2022, 12(12), 530-540. doi: 10.4103/2221-1691.363879
  34. Hidaka, H.; Yamaguchi, T.; Hasegawa, J.; Yano, H.; Kakuta, R.; Ozawa, D.; Nomura, K.; Katori, Y. Clinical and bacteriological influence of diabetes mellitus on deep neck infection: Systematic review and meta‐analysis. Head Neck, 2015, 37(10), 1536-1546. doi: 10.1002/hed.23776 PMID: 24844194
  35. Cramer, J.D.; Purkey, M.R.; Smith, S.S.; Schroeder, J.W., Jr The impact of delayed surgical drainage of deep neck abscesses in adult and pediatric populations. Laryngoscope, 2016, 126(8), 1753-1760. doi: 10.1002/lary.25835 PMID: 27061116
  36. Gehrke, T.; Scherzad, A.; Hagen, R.; Hackenberg, S. Deep neck infections with and without mediastinal involvement: Treatment and outcome in 218 patients. Eur. Arch. Otorhinolaryngol., 2022, 279(3), 1585-1592. doi: 10.1007/s00405-021-06945-9 PMID: 34160666
  37. Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral Candida infection and therapeutic strategies. Front. Microbiol., 2015, 6, 1391. doi: 10.3389/fmicb.2015.01391 PMID: 26733948
  38. Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci., 2021, 22(13), 7202. doi: 10.3390/ijms22137202 PMID: 34281254
  39. Wahab, S.; Khan, T.; Adil, M.; Khan, A. Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria. Heliyon, 2021, 7(7), e07448. doi: 10.1016/j.heliyon.2021.e07448 PMID: 34286126
  40. Abeer Mohammed, A.B.; Abd Elhamid, M.M.; Khalil, M.K.M.; Ali, A.S.; Abbas, R.N. The potential activity of biosynthesized silver nanoparticles of Pseudomonas aeruginosa as an antibacterial agent against multidrug-resistant isolates from intensive care unit and anticancer agent. Environ. Sci. Eur., 2022, 34(1), 109. doi: 10.1186/s12302-022-00684-2
  41. Nayagam, V.; Gabriel, M.; Palanisamy, K. Green synthesis of silver nanoparticles mediated by Coccinia grandis and Phyllanthus emblica: A comparative comprehension. Appl. Nanosci., 2018, 8(3), 205-219. doi: 10.1007/s13204-018-0739-3
  42. Jayandran, M.; Haneefa, M.M.; Balasubramanian, V. Green synthesis of copper nanoparticles using natural reducer and stabilizer and an evaluation of antimicrobial activity. J. Chem. Pharm. Res., 2015, 7(2), 251-259.
  43. Zhangabay, Z.; Berillo, D. Antimicrobial and antioxidant activity of AgNPs stabilized with Calendula officinalis flower extract. Results. Surf. Interfaces, 2023, 11, 100109. doi: 10.1016/j.rsurfi.2023.100109
  44. Haseeb, M.; Khan, M.S.; Baker, A.; Khan, I.; Wahid, I.; Jaabir, M.M. Anticancer and antibacterial potential of MDR Staphylococcus aureus mediated synthesized silver nanoparticles. Biosci. Biotechnol. Res. Commun., 2019, 12, 26-35.
  45. Barbhuiya, R.I.; Singha, P.; Asaithambi, N.; Singh, S.K. Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. Food Chem., 2022, 385, 132602. doi: 10.1016/j.foodchem.2022.132602 PMID: 35278731
  46. Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C, 2020, 112, 110901. doi: 10.1016/j.msec.2020.110901 PMID: 32409057
  47. Otunola, G.A.; Afolayan, A.J. In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnol. Biotechnol. Equip., 2018, 32(3), 724-733. doi: 10.1080/13102818.2018.1448301
  48. Seralathan, J.; Stevenson, P.; Subramaniam, S.; Raghavan, R.; Pemaiah, B.; Sivasubramanian, A.; Veerappan, A. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 118, 349-355. doi: 10.1016/j.saa.2013.08.114 PMID: 24056313
  49. Settu, S.; Arunachalam, S. Comparison of Phytochemical analysis and in vitro Pharmacological activities of most commonly available medicinal plants belonging to the Cucurbitaceae family. Res. J. Pharma. Technol., 2019, 12(4), 1541-1546. doi: 10.5958/0974-360X.2019.00255.5
  50. Pratoomsoot, C.; Wongkattiya, N.; Sanguansermsri, D. Synergistic antimicrobial and antioxidant properties of Coccinia grandis (L.) Voigt, Clerodendrum inerme (L.) Gaertn. and Acanthus ebracteatus Vahl. extracts and their potential as a treatment for xerosis cutis. Complement. Med. Res., 2020, 27(6), 410-420. doi: 10.1159/000507606 PMID: 32526744
  51. Muthulakshmi, G.M.P.; Neelanarayanan, N. Antibacterial and antifungal activity of Coccinia grandis leaves’ extracts against fish pathogens. Asian J. Biol. Life Sci., 2021, 9(3), 424-430. doi: 10.5530/ajbls.2020.9.65
  52. Alshahrani, M.Y.; Ibrahim, E.H.; Asiri, M.; Kilany, M.; Alshehri, A.; Alkhathami, A.G.; Morsy, K.; Chandramoorthy, H.C. Inhibition realization of multidrug resistant bacterial and fungal isolates using Coccinia indica extracts. Saudi J. Biol. Sci., 2022, 29(5), 3207-3212. doi: 10.1016/j.sjbs.2022.01.045 PMID: 35844424
  53. Mussin, J.; Robles-Botero, V.; Casañas-Pimentel, R.; Rojas, F.; Angiolella, L.; San Martín-Martínez, E.; Giusiano, G. Antimicrobial and cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Sci. Rep., 2021, 11(1), 14566. doi: 10.1038/s41598-021-94012-y PMID: 34267298
  54. Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 2020, 15, 2555-2562. doi: 10.2147/IJN.S246764 PMID: 32368040
  55. Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831. doi: 10.3389/fmicb.2016.01831 PMID: 27899918
  56. Mollick, M.M.R.; Rana, D.; Dash, S.K.; Chattopadhyay, S.; Bhowmick, B.; Maity, D.; Mondal, D.; Pattanayak, S.; Roy, S.; Chakraborty, M.; Chattopadhyay, D. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab. J. Chem., 2019, 12(8), 2572-2584. doi: 10.1016/j.arabjc.2015.04.033
  57. Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; Chen, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2019, 14, 1469-1487. doi: 10.2147/IJN.S191340 PMID: 30880959
  58. Ahamad, I.; Bano, F.; Anwer, R.; Srivastava, P.; Kumar, R.; Fatma, T. Antibiofilm activities of biogenic silver nanoparticles against Candida albicans. Front. Microbiol., 2022, 12, 741493. doi: 10.3389/fmicb.2021.741493 PMID: 35069463
  59. Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomedicine, 2018, 13, 8013-8024. doi: 10.2147/IJN.S189295 PMID: 30568442
  60. Hamouda, R.A.; Abd El-Mongy, M.; Eid, K.F. Comparative study between two red algae for biosynthesis silver nanoparticles capping by SDS: Insights of characterization and antibacterial activity. Microb. Pathog., 2019, 129, 224-232. doi: 10.1016/j.micpath.2019.02.016 PMID: 30769027
  61. Liu, X.; Chen, J.L.; Yang, W.Y.; Qian, Y.C.; Pan, J.Y.; Zhu, C.N.; Liu, L.; Ou, W.B.; Zhao, H.X.; Zhang, D.P. Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Sci. Rep., 2021, 11(1), 15795. doi: 10.1038/s41598-021-95262-6 PMID: 34349183
  62. Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci., 2019, 20(10), 2468. doi: 10.3390/ijms20102468 PMID: 31109079
  63. Lara, H.H.; Romero-Urbina, D.G.; Pierce, C.; Lopez-Ribot, J.L.; Arellano-Jiménez, M.J.; Jose-Yacaman, M. Effect of silver nanoparticles on Candida albicans biofilms: An ultrastructural study. J. Nanobiotechnology, 2015, 13(1), 91. doi: 10.1186/s12951-015-0147-8 PMID: 26666378
  64. Rajeshkumar, S.; Malarkodi, C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl., 2014, 2014, 581890. doi: 10.1155/2014/581890
  65. Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedicine, 2013, 8, 4277-4290. PMID: 24235826
  66. Mikhailova, E.O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater., 2020, 11(4), 84. doi: 10.3390/jfb11040084 PMID: 33255874
  67. Ibraheem, D.R.; Hussein, N.N.; Sulaiman, G.M.; Mohammed, H.A.; Khan, R.A.; Al Rugaie, O. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials, 2022, 12(16), 2808. doi: 10.3390/nano12162808 PMID: 36014673
  68. Albukhari, S.M.; Ismail, M.; Akhtar, K.; Danish, E.Y. Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf. A Physicochem. Eng. Asp., 2019, 577, 548-561. doi: 10.1016/j.colsurfa.2019.05.058
  69. Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dentis., 2020, 7(1), 105-109.
  70. Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555. doi: 10.3389/fmicb.2018.01555 PMID: 30061871
  71. Zawadzka, K.; Kądzioła, K.; Felczak, A.; Wrońska, N.; Piwoński, I.; Kisielewska, A.; Lisowska, K. Surface area or diameter - which factor really determines the antibacterial activity of silver nanoparticles grown on TiO 2 coatings? New J. Chem., 2014, 38(7), 3275-3281. doi: 10.1039/C4NJ00301B
  72. Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; Batiha, G.E.S.; Elkady, A.A.; Mohamed, N.A.; Algammal, A.M. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep., 2021, 11(1), 10751. doi: 10.1038/s41598-021-90208-4 PMID: 34031472
  73. Nwabor, O.F.; Singh, S.; Wunnoo, S.; Lerwittayanon, K.; Voravuthikunchai, S.P. Facile deposition of biogenic silver nanoparticles on porous alumina discs, an efficient antimicrobial, antibiofilm, and antifouling strategy for functional contact surfaces. Biofouling, 2021, 37(5), 538-554. doi: 10.1080/08927014.2021.1934457 PMID: 34148443
  74. Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnology, 2012, 10(1), 19. doi: 10.1186/1477-3155-10-19 PMID: 22559747
  75. Durán, N.; Nakazato, G.; Seabra, A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol., 2016, 100(15), 6555-6570. doi: 10.1007/s00253-016-7657-7 PMID: 27289481
  76. Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Sivagurunathan, P.; Saratale, G.D.; Dung, T.N.B.; Kannapiran, E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol. Rep., 2017, 14, 1-7. doi: 10.1016/j.btre.2017.02.001 PMID: 28459002
  77. Bhandi, S.; Mehta, D.; Mashyakhy, M.; Chohan, H.; Testarelli, L.; Thomas, J.; Dhillon, H.; Raj, A.T.; Madapusi Balaji, T.; Varadarajan, S.; Patil, S. Antimicrobial efficacy of silver nanoparticles as root canal irrigant’s: A systematic review. J. Clin. Med., 2021, 10(6), 1152. doi: 10.3390/jcm10061152 PMID: 33801820
  78. Thangavelu, L.; Adil, A.H.; Arshad, S.; Devaraj, E.; Mallineni, S.K.; Sajja, R.; Chakradhar, A.; Karobari, M.I. Antimicrobial properties of silver nitrate nanoparticle and its application in endodontics and dentistry: A review of literature. J. Nanomater., 2021, 2021, 1-12. doi: 10.1155/2021/9132714
  79. Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503. doi: 10.1002/adhm.201701503 PMID: 29808627
  80. Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Rehman, A.U.; Khan, A.; Ullah, S.; Yuan, Q. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microb. Pathog., 2017, 102, 133-142. doi: 10.1016/j.micpath.2016.11.030 PMID: 27916692
  81. Choi, J.E.; Kim, S.; Ahn, J.H.; Youn, P.; Kang, J.S.; Park, K.; Yi, J.; Ryu, D.Y. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat. Toxicol., 2010, 100(2), 151-159. doi: 10.1016/j.aquatox.2009.12.012 PMID: 20060176
  82. Paciorek, P.; Żuberek, M.; Grzelak, A. Products of lipid peroxidation as a factor in the toxic effect of silver nanoparticles. Materials, 2020, 13(11), 2460. doi: 10.3390/ma13112460 PMID: 32481688
  83. Massarsky, A.; Abraham, R.; Nguyen, K.C.; Rippstein, P.; Tayabali, A.F.; Trudeau, V.L.; Moon, T.W. Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes and hepatocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 159, 10-21. doi: 10.1016/j.cbpc.2013.09.008 PMID: 24096131
  84. Shaluei, F.; Hedayati, A.; Jahanbakhshi, A.; Kolangi, H.; Fotovat, M. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Hum. Exp. Toxicol., 2013, 32(12), 1270-1277. doi: 10.1177/0960327113485258 PMID: 23632006
  85. Bian, Y.; Kim, K.; Ngo, T.; Kim, I.; Bae, O.N.; Lim, K.M.; Chung, J.H. Silver nanoparticles promote procoagulant activity of red blood cells: A potential risk of thrombosis in susceptible population. Part. Fibre Toxicol., 2019, 16(1), 9. doi: 10.1186/s12989-019-0292-6 PMID: 30764834
  86. Lee, I.Y.; Joo, N. Identification and quantification of key phytochemicals, phytohormones, and antioxidant properties in Coccinia grandis during fruit ripening. Antioxidants, 2022, 11(11), 2218. doi: 10.3390/antiox11112218 PMID: 36358590

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers