Anti-seizure Effects and Mechanisms of Berberine: A Systematic Review


Cite item

Full Text

Abstract

Background:Epilepsy is one of the most common in all age groups and disabling neurologic disorders around the world.

Objectives:This systematic review was to explore whether berberine (BBR) has any anti-seizure or anti-epileptic effects and also reviewed this possible mechanism.

Methods:The EMBASE, Scopus, Cochrane Library, PubMed, and Web of Science databases were searched before Sep 2023. All types of studies that investigated the effects of BBR on epilepsy or chemical-induced seizures were eligible for inclusion. Two authors independently evaluated and reviewed titles/abstracts to identify publications for potential eligibility, and a third team member resolved discrepancies. Data were extracted in an Excel form, and the outcomes were discussed.

Results:BBR showed its neuroprotective properties by reducing oxidative stress, neuroinflammation, and anti-apoptosis effects. It also increases brain-derived neurotrophic factor (BDNF) release and reduces transforming growth factor-beta (TGF-β1) and hypoxia-inducible factor 1α (HIF-1α). BBR by increasing scavenging reactive oxygen species (ROS), nuclear factor erythroid 2–related factor 2 (Nrf2), endogenous antioxidant enzymes, heme oxygenase-1 (HO-1), and inhibition of lipid peroxidation insert its antioxidant activity. Moreover, BBR showed antiinflammatory activity by reducing Interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels and through inhibiting cyclooxygenase-2 (COX-2), and including nuclear factor κB (NF-κB). In addition, it modulated c-fos expression and neuronal excitability in the brain.

Conclusion:BBR indicated promising anti-seizure effects with remarkable antioxidant, antiinflammatory, anti-apoptotic, and neuroprotective activity. Future studies should be based on well-designed clinical trial studies that are integrated with new methods related to increasing bioavailability.

About the authors

Nahid Jivad

Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences

Email: info@benthamscience.net

Saeid Heidari-Soureshjani

Modeling in Health Research Center, Shahrekord University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Hesamaldin Bagheri

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences

Email: info@benthamscience.net

Catherine Sherwin

Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital

Email: info@benthamscience.net

Sahar Rostamian

Department of Medicine, Harvard Medical School

Email: info@benthamscience.net

References

  1. Beghi, E. The epidemiology of epilepsy. Neuroepidemiology, 2020, 54(2), 185-191. doi: 10.1159/000503831 PMID: 31852003
  2. Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med., 2015, 5(6), a022426. doi: 10.1101/cshperspect.a022426 PMID: 26033084
  3. Anwar, H.; Khan, Q.U.; Nadeem, N.; Pervaiz, I.; Ali, M.; Cheema, F.F. Epileptic seizures. Discoveries, 2020, 8(2), e110. doi: 10.15190/d.2020.7 PMID: 32577498
  4. Talevi, A. Antiseizure medication discovery: Recent and future paradigm shifts. Epilepsia Open, 2022, 7(S1), S133-S141.
  5. Kalra, S.; Jiwan, T.; Singh, G.; Gautam, P.L.; Bansal, A. A comparison of the quality of life of people with epilepsy receiving home-based and clinic-based epilepsy care using the european quality of life five-dimension three-level (EQ-5D-3L) scale. Cureus, 2023, 15(2), e35045. doi: 10.7759/cureus.35045 PMID: 36938287
  6. Espinosa-Garcia, C.; Zeleke, H.; Rojas, A. Impact of stress on epilepsy: Focus on neuroinflammation—a mini review. Int. J. Mol. Sci., 2021, 22(8), 4061. doi: 10.3390/ijms22084061 PMID: 33920037
  7. Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front. Pharmacol., 2021, 12, 762654. doi: 10.3389/fphar.2021.762654 PMID: 35370628
  8. Gunasekera, C.L.; Sirven, J.I.; Feyissa, A.M. The evolution of antiseizure medication therapy selection in adults: Is artificial intelligence -assisted antiseizure medication selection ready for prime time? J. Cent. Nerv. Syst. Dis., 2023, 15, 11795735231209209. doi: 10.1177/11795735231209209 PMID: 37868934
  9. Abou-Khalil, B.W. Update on antiseizure medications 2022. Continuum, 2022, 28(2), 500-535. doi: 10.1212/CON.0000000000001104 PMID: 35393968
  10. Sarma, A.K.; Khandker, N.; Kurczewski, L.; Brophy, G.M. Medical management of epileptic seizures: Challenges and solutions. Neuropsychiatr. Dis. Treat., 2016, 12, 467-485. PMID: 26966367
  11. Khaledifar, A.; Khosravi Farsani, M.R.; Raeisi, E. Berberine efficacy against Doxorubicin-induced cardiotoxicity: A systematic review. J. HerbMed Pharmacol., 2023, 12(2), 187-193. doi: 10.34172/jhp.2023.19
  12. Amini Chermahini, F.; Raeisi, E.; Aazami, M.H.; Mirzaei, A.; Heidarian, E.; Lemoigne, Y. Does, bromelain-cisplatin combination afford in-vitro synergistic anticancer effects on human prostatic carcinoma cell line PC3? Galen Med. J., 2020, 9, e1749. doi: 10.31661/gmj.v9i0.1749 PMID: 34466585
  13. Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177. doi: 10.3389/fphar.2013.00177 PMID: 24454289
  14. Behl, T.; Singh, S.; Sharma, N.; Zahoor, I.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Najmi, A.; Bungau, S. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: Current and future trends. Molecules, 2022, 27(12), 3705. doi: 10.3390/molecules27123705 PMID: 35744831
  15. Berberine. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Berberine
  16. Och, A.; Podgórski, R.; Nowak, R. Biological activity of berberine—a summary update. Toxins, 2020, 12(11), 713. doi: 10.3390/toxins12110713 PMID: 33198257
  17. Mohammadzadeh, N.; Mehri, S.; Hosseinzadeh, H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran. J. Basic Med. Sci., 2017, 20(5), 538-551. PMID: 28656089
  18. Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; Šmejkal, K.; Malaník, M.; Sychrová, A.; Barreca, D.; Ziberna, L.; Mahomoodally, M.F.; Zengin, G.; Xu, S.; Nabavi, S.M.; Shen, A.Z. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics, 2019, 9(7), 1923-1951. doi: 10.7150/thno.30787 PMID: 31037148
  19. Xia, S.; Ma, L.; Wang, G.; Yang, J.; Zhang, M.; Wang, X.; Su, J.; Xie, M. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant staphylococcus aureus isolated from bloodstream infection patients. Infect. Drug Resist., 2022, 15, 1933-1944. doi: 10.2147/IDR.S357077 PMID: 35469308
  20. Zheng, Y.M.; Zhang, J.P.; Tang, S.; Song, D.Q. Establish and use of an epilepsy model in larval zebrafish. Yao Xue Xue Bao, 2016, 51(4), 580-587. PMID: 29859527
  21. Wang, X.L.; Jin, G.Z.; Zhou, T.C. On the central inhibition action of tetrahydroberberine without relevance to GABA receptors. Sheng Li Xue Bao, 1994, 46(5), 505-508. PMID: 7846552
  22. Hosseinzadeh, H.; Ramezani, M.; Shafaei, H.; Taghiabadi, E. Anticonvulsant effect of Berberis integerrima L. root extracts in mice. J. Acupunct. Meridian Stud., 2013, 6(1), 12-17. doi: 10.1016/j.jams.2012.07.018 PMID: 23433050
  23. Gawel, K.; Kukula-Koch, W.; Nieoczym, D.; Stepnik, K.; van der Ent, W.; Banono, N.S.; Tarabasz, D.; Turski, W.A.; Esguerra, C.V. The influence of palmatine isolated from berberis sibirica radix on pentylenetetrazole-induced seizures in zebrafish. Cells, 2020, 9(5), 1233. doi: 10.3390/cells9051233 PMID: 32429356
  24. El-Nahas, A.E.; Elbedaiwy, H.M.; Helmy, M.W.; El-Kamel, A.H. Simultaneous estimation of berberine and piperine in a novel nanoformulation for epilepsy control via HPLC. J. Chromatogr. Sci., 2023, bmad073. doi: 10.1093/chromsci/bmad073 PMID: 37635418
  25. Bhutada, P.; Mundhada, Y.; Bansod, K.; Dixit, P.; Umathe, S.; Mundhada, D. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav., 2010, 18(3), 207-210. doi: 10.1016/j.yebeh.2010.03.007 PMID: 20638957
  26. Gao, F.; Gao, Y.; Liu, Y.; Wang, L.; Li, Y. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat. Neuropsychiatr. Dis. Treat., 2014, 10, 2139-2145. doi: 10.2147/NDT.S73210 PMID: 25419137
  27. Mojarad, T.B.; Roghani, M. The anticonvulsant and antioxidant effects of berberine in kainate-induced temporal lobe epilepsy in rats. Basic Clin. Neurosci., 2014, 5(2), 124-130. PMID: 25337370
  28. Mathew, S.; Faheem, M.; Al-Malki, A.; Kumosani, T.A.; Qadri, I. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds. Bioinformation, 2015, 11(4), 189-195. doi: 10.6026/97320630011189 PMID: 26124559
  29. Sadeghnia, H.R.; Taji, A.R.; Forouzanfar, F.; Hosseinzadeh, H. Berberine attenuates convulsing behavior and extracellular glutamate and aspartate changes in 4-aminopyridine treated rats. Iran. J. Basic Med. Sci., 2017, 20(5), 588-593. PMID: 28656093
  30. Sedaghat, R.; Taab, Y.; Kiasalari, Z.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: Underlying mechanisms. Biomed. Pharmacother., 2017, 87, 200-208. doi: 10.1016/j.biopha.2016.12.109 PMID: 28061403
  31. Guna, V.; Saha, L.; Bhatia, A.; Banerjee, D.; Chakrabarti, A. Anti-oxidant and anti-apoptotic effects of berberine in pentylenetetrazole-induced kindling model in rat. J. Epilepsy Res., 2018, 8(2), 66-73. doi: 10.14581/jer.18011 PMID: 30809499
  32. Zheng, Y.M.; Chen, B.; Jiang, J.D.; Zhang, J.P. Syntaxin 1B mediates berberine’s roles in epilepsy-like behavior in a pentylenetetrazole-induced seizure zebrafish model. Front. Mol. Neurosci., 2018, 11, 378. doi: 10.3389/fnmol.2018.00378 PMID: 30534049
  33. Senthilvel, C.K.; Karuppaiyan, K.; Moideen, M.M.J. Development of capsules filled with phenytoin and berberine loaded nanoparticles- a new approach to improve anticonvulsant efficacy. IJPER, 2019, 53(3), 468-479. doi: 10.5530/ijper.53.3.79
  34. Zhang, B.; Wang, L.; Ji, X.; Zhang, S.; Sik, A.; Liu, K.; Jin, M. Anti-inflammation associated protective mechanism of berberine and its derivatives on attenuating pentylenetetrazole-induced seizures in zebrafish. J. Neuroimmune Pharmacol., 2020, 15(2), 309-325. doi: 10.1007/s11481-019-09902-w PMID: 31909440
  35. Ghanem, H.B.; Emam, M.N.; Ali, D.A.M.; Abd-Ellatif, R.N. Impact of berberine on some epigenetic, transcription regulation and inflammatory biomarkers in a mice model of epilepsy. Rep. Biochem. Mol. Biol., 2021, 10(3), 362-372. doi: 10.52547/rbmb.10.3.362 PMID: 34981012
  36. Asadollah-salmanpour, Y.; Hassanpour, S.; Vazir, B. Effects of berberine on pentylenetetrazole-induced seizures during estrus cycle in rats. Comp. Clin. Pathol., 2023, 32(6), 919-924. doi: 10.1007/s00580-023-03502-0
  37. El-Nahas, A.E.; Elbedaiwy, H.M.; Masoud, I.M.; Aly, R.G.; Helmy, M.W.; El-Kamel, A.H. Berberine-loaded zein/hyaluronic acid composite nanoparticles for efficient brain uptake to alleviate neuro-degeneration in the pilocarpine model of epilepsy. Eur. J. Pharm. Biopharm., 2023, 188, 182-200. doi: 10.1016/j.ejpb.2023.04.008 PMID: 37068561
  38. Saha, L.; Kumari, P.; Rawat, K.; Gautam, V.; Sandhu, A.; Singh, N.; Bhatia, A.; Bhattacharya, S.; Sinha, V.R.; Chakrabarti, A. Neuroprotective effect of berberine nanoparticles against seizures in pentylenetetrazole induced kindling model of epileptogenesis: Role of anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. Neurochem. Res., 2023, 48(10), 3055-3072. doi: 10.1007/s11064-023-03967-z PMID: 37329447
  39. Cheng, Z.; Kang, C.; Che, S.; Su, J.; Sun, Q.; Ge, T.; Guo, Y.; Lv, J.; Sun, Z.; Yang, W.; Li, B.; Li, X.; Cui, R. Berberine: A promising treatment for neurodegenerative diseases. Front. Pharmacol., 2022, 13, 845591. doi: 10.3389/fphar.2022.845591 PMID: 35668943
  40. Sharma, A. Neuroprotective agents. In: Advances in Structure and Activity Relationship of Coumarin Derivatives; Penta, S., Ed.; Academic Press: Boston, 2016; pp. 77-99. doi: 10.1016/B978-0-12-803797-3.00004-7
  41. Fabisiak, T.; Patel, M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front. Cell Dev. Biol., 2022, 10, 976953. doi: 10.3389/fcell.2022.976953 PMID: 36035987
  42. Sadeghnia, H.R.; Kolangikhah, M.; Asadpour, E.; Forouzanfar, F.; Hosseinzadeh, H. Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran. J. Basic Med. Sci., 2017, 20(5), 594-603. PMID: 28656094
  43. Falcicchia, C.; Paolone, G.; Emerich, D.F.; Lovisari, F.; Bell, W.J.; Fradet, T.; Wahlberg, L.U.; Simonato, M. Seizure-suppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy. Mol. Ther. Methods Clin. Dev., 2018, 9, 211-224. doi: 10.1016/j.omtm.2018.03.001 PMID: 29766029
  44. Gliwińska, A.; Czubilińska-Łada, J.; Więckiewicz, G.; Świętochowska, E.; Badeński, A.; Dworak, M.; Szczepańska, M. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and alzheimer’s disease as highly drug-resistant diseases: A narrative review. Brain Sci., 2023, 13(2), 163. doi: 10.3390/brainsci13020163 PMID: 36831706
  45. Iughetti, L.; Lucaccioni, L.; Fugetto, F.; Predieri, B.; Berardi, A.; Ferrari, F. Brain-derived neurotrophic factor and epilepsy: A systematic review. Neuropeptides, 2018, 72, 23-29. doi: 10.1016/j.npep.2018.09.005 PMID: 30262417
  46. Spiers, J.G.; Steinert, J.R. Nitrergic modulation of ion channel function in regulating neuronal excitability. Channels, 2021, 15(1), 666-679. doi: 10.1080/19336950.2021.2002594 PMID: 34802368
  47. Khazipov, R. GABAergic synchronization in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022764. doi: 10.1101/cshperspect.a022764 PMID: 26747834
  48. Chen, S.; Sang, N. Hypoxia-inducible factor-1: A critical player in the survival strategy of stressed cells. J. Cell. Biochem., 2016, 117(2), 267-278. doi: 10.1002/jcb.25283 PMID: 26206147
  49. Zalpoor, H.; Akbari, A.; Nabi-Afjadi, M.; Forghaniesfidvajani, R.; Tavakol, C.; Barzegar, Z.; Iravanpour, F.; Hosseini, M.; Mousavi, S.R.; Farrokhi, M.R. Hypoxia‐inducible factor 1 alpha (HIF‐1α) stimulated and P2X7 receptor activated by COVID-19, as a potential therapeutic target and risk factor for epilepsy. Hum. Cell, 2022, 35(5), 1338-1345. doi: 10.1007/s13577-022-00747-9 PMID: 35831562
  50. Feast, A.; Martinian, L.; Liu, J.; Catarino, C.B.; Thom, M.; Sisodiya, S.M. Investigation of hypoxia‐inducible factor‐1α in hippocampal sclerosis: A postmortem study. Epilepsia, 2012, 53(8), 1349-1359. doi: 10.1111/j.1528-1167.2012.03591.x PMID: 22812626
  51. Long, Q.; Fan, C.; Kai, W.; Luo, Q.; Xin, W.; Wang, P.; Wang, A.; Wang, Z.; Han, R.; Fei, Z.; Qiu, B.; Liu, W. Hypoxia inducible factor-1α expression is associated with hippocampal apoptosis during epileptogenesis. Brain Res., 2014, 1590, 20-30. doi: 10.1016/j.brainres.2014.09.028 PMID: 25242614
  52. Yang, J.; He, F.; Meng, Q.; Sun, Y.; Wang, W.; Wang, C. Inhibiting HIF-1α decreases expression of TNF-α and caspase-3 in specific brain regions exposed kainic acid-induced status epilepticus. Cell. Physiol. Biochem., 2016, 38(1), 75-82. doi: 10.1159/000438610 PMID: 26741705
  53. Kukec, E.; Goričar, K.; Dolžan, V.; Rener-Primec, Z. HIF1A polymorphisms do not modify the risk of epilepsy nor cerebral palsy after neonatal hypoxic-ischemic encephalopathy. Brain Res., 2021, 1757, 147281. doi: 10.1016/j.brainres.2021.147281 PMID: 33515534
  54. Bar-Klein, G.; Cacheaux, L.P.; Kamintsky, L.; Prager, O.; Weissberg, I.; Schoknecht, K.; Cheng, P.; Kim, S.Y.; Wood, L.; Heinemann, U.; Kaufer, D.; Friedman, A. Losartan prevents acquired epilepsy via TGF‐β signaling suppression. Ann. Neurol., 2014, 75(6), 864-875. doi: 10.1002/ana.24147 PMID: 24659129
  55. Qian, L.; Wei, S.J.; Zhang, D.; Hu, X.; Xu, Z.; Wilson, B.; El-Benna, J.; Hong, J.S.; Flood, P.M. Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J. Immunol., 2008, 181(1), 660-668. doi: 10.4049/jimmunol.181.1.660 PMID: 18566433
  56. Chitra, P.; Saiprasad, G.; Manikandan, R.; Sudhandiran, G. Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: A biphasic experimental study. Toxicol. Lett., 2013, 219(2), 178-193. doi: 10.1016/j.toxlet.2013.03.009 PMID: 23523906
  57. Borowicz-Reutt, K.K.; Czuczwar, S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol. Rep., 2020, 72(5), 1218-1226. doi: 10.1007/s43440-020-00143-w PMID: 32865811
  58. Shou, J.W.; Shaw, P.C. Therapeutic efficacies of berberine against neurological disorders: An update of pharmacological effects and mechanisms. Cells, 2022, 11(5), 796. doi: 10.3390/cells11050796 PMID: 35269418
  59. Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
  60. Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 2009, 47(9), 1304-1309. doi: 10.1016/j.freeradbiomed.2009.07.035 PMID: 19666107
  61. Carmona-Aparicio, L.; Pérez-Cruz, C.; Zavala-Tecuapetla, C.; Granados-Rojas, L.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Hernández- Damián, J.; Pedraza-Chaverri, J.; Sampieri, A., III; Coballase-Urrutia, E.; Cárdenas-Rodríguez, N. Overview of Nrf2 as therapeutic target in epilepsy. Int. J. Mol. Sci., 2015, 16(8), 18348-18367. doi: 10.3390/ijms160818348 PMID: 26262608
  62. Wagener, F.A.D.T.G.; van Beurden, H.E.; von den Hoff, J.W.; Adema, G.J.; Figdor, C.G. The heme-heme oxygenase system: A molecular switch in wound healing. Blood, 2003, 102(2), 521-528. doi: 10.1182/blood-2002-07-2248 PMID: 12649161
  63. Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; O’Connor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic‐nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells, 2003, 8(4), 379-391. doi: 10.1046/j.1365-2443.2003.00640.x PMID: 12653965
  64. Lin, T.K.; Chen, S.D.; Lin, K.J.; Chuang, Y.C. Seizure-induced oxidative stress in status epilepticus: Is antioxidant beneficial? Antioxidants, 2020, 9(11), 1029. doi: 10.3390/antiox9111029 PMID: 33105652
  65. Vezzani, A.; Lang, B.; Aronica, E. Immunity and inflammation in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022699. doi: 10.1101/cshperspect.a022699 PMID: 26684336
  66. Gakharia, T.; Bakhtadze, S.; Lim, M.; Khachapuridze, N.; Kapanadze, N. Alterations of plasma pro-inflammatory cytokine levels in children with refractory epilepsies. Children, 2022, 9(10), 1506. doi: 10.3390/children9101506 PMID: 36291442
  67. Youn, Y.; Sung, I.K.; Lee, I.G. The role of cytokines in seizures: Interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J. Pediatr., 2013, 56(7), 271-274. doi: 10.3345/kjp.2013.56.7.271 PMID: 23908665
  68. Riazi, K.; Galic, M.A.; Kuzmiski, J.B.; Ho, W.; Sharkey, K.A.; Pittman, Q.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci., 2008, 105(44), 17151-17156. doi: 10.1073/pnas.0806682105 PMID: 18955701
  69. Rawat, C.; Kukal, S.; Dahiya, U.R.; Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. J. Neuroinflammation, 2019, 16(1), 197. doi: 10.1186/s12974-019-1592-3 PMID: 31666079
  70. Kenney, M.J.; Ganta, C.K. Autonomic nervous system and immune system interactions. Compr. Physiol., 2014, 4(3), 1177-1200. doi: 10.1002/cphy.c130051 PMID: 24944034
  71. Li, L.; Yu, Y.; Hou, R.; Hao, J.; Jiang, J. Inhibiting the PGE 2 receptor EP2 mitigates excitotoxicity and ischemic injury. ACS Pharmacol. Transl. Sci., 2020, 3(4), 635-643. doi: 10.1021/acsptsci.0c00040 PMID: 32832866
  72. Domitrović, R.; Jakovac, H.; Blagojević, G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice. Toxicology, 2011, 280(1-2), 33-43. doi: 10.1016/j.tox.2010.11.005 PMID: 21095217
  73. Hayatdavoudi, P.; Hosseini, M.; Hajali, V.; Hosseini, A.; Rajabian, A. The role of astrocytes in epileptic disorders. Physiol. Rep., 2022, 10(6), e15239. doi: 10.14814/phy2.15239 PMID: 35343625
  74. Sanz, P.; Garcia-Gimeno, M.A. Reactive glia inflammatory signaling pathways and epilepsy. Int. J. Mol. Sci., 2020, 21(11), 4096. doi: 10.3390/ijms21114096 PMID: 32521797
  75. Cai, M.; Lin, W. The function of NF-kappa B during epilepsy, a potential therapeutic target. Front. Neurosci., 2022, 16, 851394. doi: 10.3389/fnins.2022.851394 PMID: 35360161
  76. Staba, R.J.; Stead, M.; Worrell, G.A. Electrophysiological biomarkers of epilepsy. Neurotherapeutics, 2014, 11(2), 334-346. doi: 10.1007/s13311-014-0259-0 PMID: 24519238
  77. Bertram, E. Electrophysiology in epilepsy surgery: Roles and limitations. Ann. Indian Acad. Neurol., 2014, 17(5), 40. doi: 10.4103/0972-2327.128649 PMID: 24791088
  78. Mikkilineni, S.; Cantuti-Castelvetri, I.; Cahill, C.M.; Balliedier, A.; Greig, N.H.; Rogers, J.T. The anticholinesterase phenserine and its enantiomer posiphen as 5'untranslated-region-directed translation blockers of the Parkinson’s alpha synuclein expression. Parkinsons Dis., 2012, 2012, 1-13. doi: 10.1155/2012/142372 PMID: 22693681
  79. Zhou, G.; Yan, M.; Guo, G.; Tong, N. Ameliorative effect of berberine on neonatally induced type 2 diabetic neuropathy via modulation of BDNF, IGF-1, PPAR-γ, and AMPK expressions. Dose Response, 2019, 17(3) doi: 10.1177/1559325819862449 PMID: 31360147
  80. Mittli, D. Inflammatory processes in the prefrontal cortex induced by systemic immune challenge: Focusing on neurons. Brain Behav. Immun Health, 2023, 34, 100703. doi: 10.1016/j.bbih.2023.100703 PMID: 38033612
  81. Chawla, M.K.; Penner, M.R.; Olson, K.M.; Sutherland, V.L.; Mittelman-Smith, M.A.; Barnes, C.A. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats. Neurobiol. Aging, 2013, 34(4), 1184-1198. doi: 10.1016/j.neurobiolaging.2012.10.017 PMID: 23158763
  82. Baraban, S.C.; Taylor, M.R.; Castro, P.A.; Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005, 131(3), 759-768. doi: 10.1016/j.neuroscience.2004.11.031 PMID: 15730879
  83. Wang, S.; Zhou, L.; He, C.; Wang, D.; Cai, X.; Yu, Y.; Chen, L.; Lu, D.; Bian, L.; Du, S.; Wu, Q.; Han, Y. The association between STX1B polymorphisms and treatment response in patients with epilepsy. Front. Pharmacol., 2021, 12, 701575. doi: 10.3389/fphar.2021.701575 PMID: 34305610
  84. Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2021, 12, 653887. doi: 10.3389/fphar.2021.653887 PMID: 33981233
  85. Chang, C.F.; Lee, Y.C.; Lee, K.H.; Lin, H.C.; Chen, C.L.; Shen, C.K.J.; Huang, C.C. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J. Biomed. Sci., 2016, 23(1), 72. doi: 10.1186/s12929-016-0290-z PMID: 27769241
  86. Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21. doi: 10.3389/fmolb.2018.00021 PMID: 29616225
  87. Rad, S.Z.K.; Rameshrad, M.; Hosseinzadeh, H. Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: A review. Iran. J. Basic Med. Sci., 2017, 20(5), 516-529. PMID: 28656087
  88. Kwon, I.H.; Choi, H.S.; Shin, K.S.; Lee, B.K.; Lee, C.K.; Hwang, B.Y.; Lim, S.C.; Lee, M.K. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinson’s disease. Neurosci. Lett., 2010, 486(1), 29-33. doi: 10.1016/j.neulet.2010.09.038 PMID: 20851167
  89. Kysenius, K.; Brunello, C.A.; Huttunen, H.J. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. PLoS One, 2014, 9(9), e107129. doi: 10.1371/journal.pone.0107129 PMID: 25192195

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers