Anti-seizure Effects and Mechanisms of Berberine: A Systematic Review
- Authors: Jivad N.1, Heidari-Soureshjani S.2, Bagheri H.3, Sherwin C.4, Rostamian S.5
-
Affiliations:
- Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences
- Modeling in Health Research Center, Shahrekord University of Medical Sciences
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences
- Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital
- Department of Medicine, Harvard Medical School
- Issue: Vol 25, No 17 (2024)
- Pages: 2253-2265
- Section: Biotechnology
- URL: https://vietnamjournal.ru/1389-2010/article/view/645307
- DOI: https://doi.org/10.2174/0113892010283237240107121749
- ID: 645307
Cite item
Full Text
Abstract
Background:Epilepsy is one of the most common in all age groups and disabling neurologic disorders around the world.
Objectives:This systematic review was to explore whether berberine (BBR) has any anti-seizure or anti-epileptic effects and also reviewed this possible mechanism.
Methods:The EMBASE, Scopus, Cochrane Library, PubMed, and Web of Science databases were searched before Sep 2023. All types of studies that investigated the effects of BBR on epilepsy or chemical-induced seizures were eligible for inclusion. Two authors independently evaluated and reviewed titles/abstracts to identify publications for potential eligibility, and a third team member resolved discrepancies. Data were extracted in an Excel form, and the outcomes were discussed.
Results:BBR showed its neuroprotective properties by reducing oxidative stress, neuroinflammation, and anti-apoptosis effects. It also increases brain-derived neurotrophic factor (BDNF) release and reduces transforming growth factor-beta (TGF-β1) and hypoxia-inducible factor 1α (HIF-1α). BBR by increasing scavenging reactive oxygen species (ROS), nuclear factor erythroid 2related factor 2 (Nrf2), endogenous antioxidant enzymes, heme oxygenase-1 (HO-1), and inhibition of lipid peroxidation insert its antioxidant activity. Moreover, BBR showed antiinflammatory activity by reducing Interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) levels and through inhibiting cyclooxygenase-2 (COX-2), and including nuclear factor κB (NF-κB). In addition, it modulated c-fos expression and neuronal excitability in the brain.
Conclusion:BBR indicated promising anti-seizure effects with remarkable antioxidant, antiinflammatory, anti-apoptotic, and neuroprotective activity. Future studies should be based on well-designed clinical trial studies that are integrated with new methods related to increasing bioavailability.
Keywords
About the authors
Nahid Jivad
Department of Neurology, School of Medicine, Shahrekord University of Medical Sciences
Email: info@benthamscience.net
Saeid Heidari-Soureshjani
Modeling in Health Research Center, Shahrekord University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Hesamaldin Bagheri
Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences
Email: info@benthamscience.net
Catherine Sherwin
Pediatric Clinical Pharmacology and Toxicology, Department of Pediatrics, Wright State University Boonshoft School of Medicine, Dayton Children's Hospital
Email: info@benthamscience.net
Sahar Rostamian
Department of Medicine, Harvard Medical School
Email: info@benthamscience.net
References
- Beghi, E. The epidemiology of epilepsy. Neuroepidemiology, 2020, 54(2), 185-191. doi: 10.1159/000503831 PMID: 31852003
- Stafstrom, C.E.; Carmant, L. Seizures and epilepsy: An overview for neuroscientists. Cold Spring Harb. Perspect. Med., 2015, 5(6), a022426. doi: 10.1101/cshperspect.a022426 PMID: 26033084
- Anwar, H.; Khan, Q.U.; Nadeem, N.; Pervaiz, I.; Ali, M.; Cheema, F.F. Epileptic seizures. Discoveries, 2020, 8(2), e110. doi: 10.15190/d.2020.7 PMID: 32577498
- Talevi, A. Antiseizure medication discovery: Recent and future paradigm shifts. Epilepsia Open, 2022, 7(S1), S133-S141.
- Kalra, S.; Jiwan, T.; Singh, G.; Gautam, P.L.; Bansal, A. A comparison of the quality of life of people with epilepsy receiving home-based and clinic-based epilepsy care using the european quality of life five-dimension three-level (EQ-5D-3L) scale. Cureus, 2023, 15(2), e35045. doi: 10.7759/cureus.35045 PMID: 36938287
- Espinosa-Garcia, C.; Zeleke, H.; Rojas, A. Impact of stress on epilepsy: Focus on neuroinflammationa mini review. Int. J. Mol. Sci., 2021, 22(8), 4061. doi: 10.3390/ijms22084061 PMID: 33920037
- Ai, X.; Yu, P.; Peng, L.; Luo, L.; Liu, J.; Li, S.; Lai, X.; Luan, F.; Meng, X. Berberine: A review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front. Pharmacol., 2021, 12, 762654. doi: 10.3389/fphar.2021.762654 PMID: 35370628
- Gunasekera, C.L.; Sirven, J.I.; Feyissa, A.M. The evolution of antiseizure medication therapy selection in adults: Is artificial intelligence -assisted antiseizure medication selection ready for prime time? J. Cent. Nerv. Syst. Dis., 2023, 15, 11795735231209209. doi: 10.1177/11795735231209209 PMID: 37868934
- Abou-Khalil, B.W. Update on antiseizure medications 2022. Continuum, 2022, 28(2), 500-535. doi: 10.1212/CON.0000000000001104 PMID: 35393968
- Sarma, A.K.; Khandker, N.; Kurczewski, L.; Brophy, G.M. Medical management of epileptic seizures: Challenges and solutions. Neuropsychiatr. Dis. Treat., 2016, 12, 467-485. PMID: 26966367
- Khaledifar, A.; Khosravi Farsani, M.R.; Raeisi, E. Berberine efficacy against Doxorubicin-induced cardiotoxicity: A systematic review. J. HerbMed Pharmacol., 2023, 12(2), 187-193. doi: 10.34172/jhp.2023.19
- Amini Chermahini, F.; Raeisi, E.; Aazami, M.H.; Mirzaei, A.; Heidarian, E.; Lemoigne, Y. Does, bromelain-cisplatin combination afford in-vitro synergistic anticancer effects on human prostatic carcinoma cell line PC3? Galen Med. J., 2020, 9, e1749. doi: 10.31661/gmj.v9i0.1749 PMID: 34466585
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177. doi: 10.3389/fphar.2013.00177 PMID: 24454289
- Behl, T.; Singh, S.; Sharma, N.; Zahoor, I.; Albarrati, A.; Albratty, M.; Meraya, A.M.; Najmi, A.; Bungau, S. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: Current and future trends. Molecules, 2022, 27(12), 3705. doi: 10.3390/molecules27123705 PMID: 35744831
- Berberine. 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Berberine
- Och, A.; Podgórski, R.; Nowak, R. Biological activity of berberinea summary update. Toxins, 2020, 12(11), 713. doi: 10.3390/toxins12110713 PMID: 33198257
- Mohammadzadeh, N.; Mehri, S.; Hosseinzadeh, H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. Iran. J. Basic Med. Sci., 2017, 20(5), 538-551. PMID: 28656089
- Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; mejkal, K.; Malaník, M.; Sychrová, A.; Barreca, D.; Ziberna, L.; Mahomoodally, M.F.; Zengin, G.; Xu, S.; Nabavi, S.M.; Shen, A.Z. Berberine in cardiovascular and metabolic diseases: From mechanisms to therapeutics. Theranostics, 2019, 9(7), 1923-1951. doi: 10.7150/thno.30787 PMID: 31037148
- Xia, S.; Ma, L.; Wang, G.; Yang, J.; Zhang, M.; Wang, X.; Su, J.; Xie, M. In vitro antimicrobial activity and the mechanism of berberine against methicillin-resistant staphylococcus aureus isolated from bloodstream infection patients. Infect. Drug Resist., 2022, 15, 1933-1944. doi: 10.2147/IDR.S357077 PMID: 35469308
- Zheng, Y.M.; Zhang, J.P.; Tang, S.; Song, D.Q. Establish and use of an epilepsy model in larval zebrafish. Yao Xue Xue Bao, 2016, 51(4), 580-587. PMID: 29859527
- Wang, X.L.; Jin, G.Z.; Zhou, T.C. On the central inhibition action of tetrahydroberberine without relevance to GABA receptors. Sheng Li Xue Bao, 1994, 46(5), 505-508. PMID: 7846552
- Hosseinzadeh, H.; Ramezani, M.; Shafaei, H.; Taghiabadi, E. Anticonvulsant effect of Berberis integerrima L. root extracts in mice. J. Acupunct. Meridian Stud., 2013, 6(1), 12-17. doi: 10.1016/j.jams.2012.07.018 PMID: 23433050
- Gawel, K.; Kukula-Koch, W.; Nieoczym, D.; Stepnik, K.; van der Ent, W.; Banono, N.S.; Tarabasz, D.; Turski, W.A.; Esguerra, C.V. The influence of palmatine isolated from berberis sibirica radix on pentylenetetrazole-induced seizures in zebrafish. Cells, 2020, 9(5), 1233. doi: 10.3390/cells9051233 PMID: 32429356
- El-Nahas, A.E.; Elbedaiwy, H.M.; Helmy, M.W.; El-Kamel, A.H. Simultaneous estimation of berberine and piperine in a novel nanoformulation for epilepsy control via HPLC. J. Chromatogr. Sci., 2023, bmad073. doi: 10.1093/chromsci/bmad073 PMID: 37635418
- Bhutada, P.; Mundhada, Y.; Bansod, K.; Dixit, P.; Umathe, S.; Mundhada, D. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav., 2010, 18(3), 207-210. doi: 10.1016/j.yebeh.2010.03.007 PMID: 20638957
- Gao, F.; Gao, Y.; Liu, Y.; Wang, L.; Li, Y. Berberine exerts an anticonvulsant effect and ameliorates memory impairment and oxidative stress in a pilocarpine-induced epilepsy model in the rat. Neuropsychiatr. Dis. Treat., 2014, 10, 2139-2145. doi: 10.2147/NDT.S73210 PMID: 25419137
- Mojarad, T.B.; Roghani, M. The anticonvulsant and antioxidant effects of berberine in kainate-induced temporal lobe epilepsy in rats. Basic Clin. Neurosci., 2014, 5(2), 124-130. PMID: 25337370
- Mathew, S.; Faheem, M.; Al-Malki, A.; Kumosani, T.A.; Qadri, I. In silico inhibition of GABARAP activity using antiepileptic medicinal derived compounds. Bioinformation, 2015, 11(4), 189-195. doi: 10.6026/97320630011189 PMID: 26124559
- Sadeghnia, H.R.; Taji, A.R.; Forouzanfar, F.; Hosseinzadeh, H. Berberine attenuates convulsing behavior and extracellular glutamate and aspartate changes in 4-aminopyridine treated rats. Iran. J. Basic Med. Sci., 2017, 20(5), 588-593. PMID: 28656093
- Sedaghat, R.; Taab, Y.; Kiasalari, Z.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Berberine ameliorates intrahippocampal kainate-induced status epilepticus and consequent epileptogenic process in the rat: Underlying mechanisms. Biomed. Pharmacother., 2017, 87, 200-208. doi: 10.1016/j.biopha.2016.12.109 PMID: 28061403
- Guna, V.; Saha, L.; Bhatia, A.; Banerjee, D.; Chakrabarti, A. Anti-oxidant and anti-apoptotic effects of berberine in pentylenetetrazole-induced kindling model in rat. J. Epilepsy Res., 2018, 8(2), 66-73. doi: 10.14581/jer.18011 PMID: 30809499
- Zheng, Y.M.; Chen, B.; Jiang, J.D.; Zhang, J.P. Syntaxin 1B mediates berberines roles in epilepsy-like behavior in a pentylenetetrazole-induced seizure zebrafish model. Front. Mol. Neurosci., 2018, 11, 378. doi: 10.3389/fnmol.2018.00378 PMID: 30534049
- Senthilvel, C.K.; Karuppaiyan, K.; Moideen, M.M.J. Development of capsules filled with phenytoin and berberine loaded nanoparticles- a new approach to improve anticonvulsant efficacy. IJPER, 2019, 53(3), 468-479. doi: 10.5530/ijper.53.3.79
- Zhang, B.; Wang, L.; Ji, X.; Zhang, S.; Sik, A.; Liu, K.; Jin, M. Anti-inflammation associated protective mechanism of berberine and its derivatives on attenuating pentylenetetrazole-induced seizures in zebrafish. J. Neuroimmune Pharmacol., 2020, 15(2), 309-325. doi: 10.1007/s11481-019-09902-w PMID: 31909440
- Ghanem, H.B.; Emam, M.N.; Ali, D.A.M.; Abd-Ellatif, R.N. Impact of berberine on some epigenetic, transcription regulation and inflammatory biomarkers in a mice model of epilepsy. Rep. Biochem. Mol. Biol., 2021, 10(3), 362-372. doi: 10.52547/rbmb.10.3.362 PMID: 34981012
- Asadollah-salmanpour, Y.; Hassanpour, S.; Vazir, B. Effects of berberine on pentylenetetrazole-induced seizures during estrus cycle in rats. Comp. Clin. Pathol., 2023, 32(6), 919-924. doi: 10.1007/s00580-023-03502-0
- El-Nahas, A.E.; Elbedaiwy, H.M.; Masoud, I.M.; Aly, R.G.; Helmy, M.W.; El-Kamel, A.H. Berberine-loaded zein/hyaluronic acid composite nanoparticles for efficient brain uptake to alleviate neuro-degeneration in the pilocarpine model of epilepsy. Eur. J. Pharm. Biopharm., 2023, 188, 182-200. doi: 10.1016/j.ejpb.2023.04.008 PMID: 37068561
- Saha, L.; Kumari, P.; Rawat, K.; Gautam, V.; Sandhu, A.; Singh, N.; Bhatia, A.; Bhattacharya, S.; Sinha, V.R.; Chakrabarti, A. Neuroprotective effect of berberine nanoparticles against seizures in pentylenetetrazole induced kindling model of epileptogenesis: Role of anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. Neurochem. Res., 2023, 48(10), 3055-3072. doi: 10.1007/s11064-023-03967-z PMID: 37329447
- Cheng, Z.; Kang, C.; Che, S.; Su, J.; Sun, Q.; Ge, T.; Guo, Y.; Lv, J.; Sun, Z.; Yang, W.; Li, B.; Li, X.; Cui, R. Berberine: A promising treatment for neurodegenerative diseases. Front. Pharmacol., 2022, 13, 845591. doi: 10.3389/fphar.2022.845591 PMID: 35668943
- Sharma, A. Neuroprotective agents. In: Advances in Structure and Activity Relationship of Coumarin Derivatives; Penta, S., Ed.; Academic Press: Boston, 2016; pp. 77-99. doi: 10.1016/B978-0-12-803797-3.00004-7
- Fabisiak, T.; Patel, M. Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front. Cell Dev. Biol., 2022, 10, 976953. doi: 10.3389/fcell.2022.976953 PMID: 36035987
- Sadeghnia, H.R.; Kolangikhah, M.; Asadpour, E.; Forouzanfar, F.; Hosseinzadeh, H. Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran. J. Basic Med. Sci., 2017, 20(5), 594-603. PMID: 28656094
- Falcicchia, C.; Paolone, G.; Emerich, D.F.; Lovisari, F.; Bell, W.J.; Fradet, T.; Wahlberg, L.U.; Simonato, M. Seizure-suppressant and neuroprotective effects of encapsulated BDNF-producing cells in a rat model of temporal lobe epilepsy. Mol. Ther. Methods Clin. Dev., 2018, 9, 211-224. doi: 10.1016/j.omtm.2018.03.001 PMID: 29766029
- Gliwińska, A.; Czubilińska-Łada, J.; Więckiewicz, G.; Świętochowska, E.; Badeński, A.; Dworak, M.; Szczepańska, M. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and alzheimers disease as highly drug-resistant diseases: A narrative review. Brain Sci., 2023, 13(2), 163. doi: 10.3390/brainsci13020163 PMID: 36831706
- Iughetti, L.; Lucaccioni, L.; Fugetto, F.; Predieri, B.; Berardi, A.; Ferrari, F. Brain-derived neurotrophic factor and epilepsy: A systematic review. Neuropeptides, 2018, 72, 23-29. doi: 10.1016/j.npep.2018.09.005 PMID: 30262417
- Spiers, J.G.; Steinert, J.R. Nitrergic modulation of ion channel function in regulating neuronal excitability. Channels, 2021, 15(1), 666-679. doi: 10.1080/19336950.2021.2002594 PMID: 34802368
- Khazipov, R. GABAergic synchronization in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022764. doi: 10.1101/cshperspect.a022764 PMID: 26747834
- Chen, S.; Sang, N. Hypoxia-inducible factor-1: A critical player in the survival strategy of stressed cells. J. Cell. Biochem., 2016, 117(2), 267-278. doi: 10.1002/jcb.25283 PMID: 26206147
- Zalpoor, H.; Akbari, A.; Nabi-Afjadi, M.; Forghaniesfidvajani, R.; Tavakol, C.; Barzegar, Z.; Iravanpour, F.; Hosseini, M.; Mousavi, S.R.; Farrokhi, M.R. Hypoxia‐inducible factor 1 alpha (HIF‐1α) stimulated and P2X7 receptor activated by COVID-19, as a potential therapeutic target and risk factor for epilepsy. Hum. Cell, 2022, 35(5), 1338-1345. doi: 10.1007/s13577-022-00747-9 PMID: 35831562
- Feast, A.; Martinian, L.; Liu, J.; Catarino, C.B.; Thom, M.; Sisodiya, S.M. Investigation of hypoxia‐inducible factor‐1α in hippocampal sclerosis: A postmortem study. Epilepsia, 2012, 53(8), 1349-1359. doi: 10.1111/j.1528-1167.2012.03591.x PMID: 22812626
- Long, Q.; Fan, C.; Kai, W.; Luo, Q.; Xin, W.; Wang, P.; Wang, A.; Wang, Z.; Han, R.; Fei, Z.; Qiu, B.; Liu, W. Hypoxia inducible factor-1α expression is associated with hippocampal apoptosis during epileptogenesis. Brain Res., 2014, 1590, 20-30. doi: 10.1016/j.brainres.2014.09.028 PMID: 25242614
- Yang, J.; He, F.; Meng, Q.; Sun, Y.; Wang, W.; Wang, C. Inhibiting HIF-1α decreases expression of TNF-α and caspase-3 in specific brain regions exposed kainic acid-induced status epilepticus. Cell. Physiol. Biochem., 2016, 38(1), 75-82. doi: 10.1159/000438610 PMID: 26741705
- Kukec, E.; Goričar, K.; Dolan, V.; Rener-Primec, Z. HIF1A polymorphisms do not modify the risk of epilepsy nor cerebral palsy after neonatal hypoxic-ischemic encephalopathy. Brain Res., 2021, 1757, 147281. doi: 10.1016/j.brainres.2021.147281 PMID: 33515534
- Bar-Klein, G.; Cacheaux, L.P.; Kamintsky, L.; Prager, O.; Weissberg, I.; Schoknecht, K.; Cheng, P.; Kim, S.Y.; Wood, L.; Heinemann, U.; Kaufer, D.; Friedman, A. Losartan prevents acquired epilepsy via TGF‐β signaling suppression. Ann. Neurol., 2014, 75(6), 864-875. doi: 10.1002/ana.24147 PMID: 24659129
- Qian, L.; Wei, S.J.; Zhang, D.; Hu, X.; Xu, Z.; Wilson, B.; El-Benna, J.; Hong, J.S.; Flood, P.M. Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J. Immunol., 2008, 181(1), 660-668. doi: 10.4049/jimmunol.181.1.660 PMID: 18566433
- Chitra, P.; Saiprasad, G.; Manikandan, R.; Sudhandiran, G. Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: A biphasic experimental study. Toxicol. Lett., 2013, 219(2), 178-193. doi: 10.1016/j.toxlet.2013.03.009 PMID: 23523906
- Borowicz-Reutt, K.K.; Czuczwar, S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol. Rep., 2020, 72(5), 1218-1226. doi: 10.1007/s43440-020-00143-w PMID: 32865811
- Shou, J.W.; Shaw, P.C. Therapeutic efficacies of berberine against neurological disorders: An update of pharmacological effects and mechanisms. Cells, 2022, 11(5), 796. doi: 10.3390/cells11050796 PMID: 35269418
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
- Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 2009, 47(9), 1304-1309. doi: 10.1016/j.freeradbiomed.2009.07.035 PMID: 19666107
- Carmona-Aparicio, L.; Pérez-Cruz, C.; Zavala-Tecuapetla, C.; Granados-Rojas, L.; Rivera-Espinosa, L.; Montesinos-Correa, H.; Hernández- Damián, J.; Pedraza-Chaverri, J.; Sampieri, A., III; Coballase-Urrutia, E.; Cárdenas-Rodríguez, N. Overview of Nrf2 as therapeutic target in epilepsy. Int. J. Mol. Sci., 2015, 16(8), 18348-18367. doi: 10.3390/ijms160818348 PMID: 26262608
- Wagener, F.A.D.T.G.; van Beurden, H.E.; von den Hoff, J.W.; Adema, G.J.; Figdor, C.G. The heme-heme oxygenase system: A molecular switch in wound healing. Blood, 2003, 102(2), 521-528. doi: 10.1182/blood-2002-07-2248 PMID: 12649161
- Itoh, K.; Wakabayashi, N.; Katoh, Y.; Ishii, T.; OConnor, T.; Yamamoto, M. Keap1 regulates both cytoplasmic‐nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells, 2003, 8(4), 379-391. doi: 10.1046/j.1365-2443.2003.00640.x PMID: 12653965
- Lin, T.K.; Chen, S.D.; Lin, K.J.; Chuang, Y.C. Seizure-induced oxidative stress in status epilepticus: Is antioxidant beneficial? Antioxidants, 2020, 9(11), 1029. doi: 10.3390/antiox9111029 PMID: 33105652
- Vezzani, A.; Lang, B.; Aronica, E. Immunity and inflammation in epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(2), a022699. doi: 10.1101/cshperspect.a022699 PMID: 26684336
- Gakharia, T.; Bakhtadze, S.; Lim, M.; Khachapuridze, N.; Kapanadze, N. Alterations of plasma pro-inflammatory cytokine levels in children with refractory epilepsies. Children, 2022, 9(10), 1506. doi: 10.3390/children9101506 PMID: 36291442
- Youn, Y.; Sung, I.K.; Lee, I.G. The role of cytokines in seizures: Interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J. Pediatr., 2013, 56(7), 271-274. doi: 10.3345/kjp.2013.56.7.271 PMID: 23908665
- Riazi, K.; Galic, M.A.; Kuzmiski, J.B.; Ho, W.; Sharkey, K.A.; Pittman, Q.J. Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc. Natl. Acad. Sci., 2008, 105(44), 17151-17156. doi: 10.1073/pnas.0806682105 PMID: 18955701
- Rawat, C.; Kukal, S.; Dahiya, U.R.; Kukreti, R. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management. J. Neuroinflammation, 2019, 16(1), 197. doi: 10.1186/s12974-019-1592-3 PMID: 31666079
- Kenney, M.J.; Ganta, C.K. Autonomic nervous system and immune system interactions. Compr. Physiol., 2014, 4(3), 1177-1200. doi: 10.1002/cphy.c130051 PMID: 24944034
- Li, L.; Yu, Y.; Hou, R.; Hao, J.; Jiang, J. Inhibiting the PGE 2 receptor EP2 mitigates excitotoxicity and ischemic injury. ACS Pharmacol. Transl. Sci., 2020, 3(4), 635-643. doi: 10.1021/acsptsci.0c00040 PMID: 32832866
- Domitrović, R.; Jakovac, H.; Blagojević, G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl4-intoxicated mice. Toxicology, 2011, 280(1-2), 33-43. doi: 10.1016/j.tox.2010.11.005 PMID: 21095217
- Hayatdavoudi, P.; Hosseini, M.; Hajali, V.; Hosseini, A.; Rajabian, A. The role of astrocytes in epileptic disorders. Physiol. Rep., 2022, 10(6), e15239. doi: 10.14814/phy2.15239 PMID: 35343625
- Sanz, P.; Garcia-Gimeno, M.A. Reactive glia inflammatory signaling pathways and epilepsy. Int. J. Mol. Sci., 2020, 21(11), 4096. doi: 10.3390/ijms21114096 PMID: 32521797
- Cai, M.; Lin, W. The function of NF-kappa B during epilepsy, a potential therapeutic target. Front. Neurosci., 2022, 16, 851394. doi: 10.3389/fnins.2022.851394 PMID: 35360161
- Staba, R.J.; Stead, M.; Worrell, G.A. Electrophysiological biomarkers of epilepsy. Neurotherapeutics, 2014, 11(2), 334-346. doi: 10.1007/s13311-014-0259-0 PMID: 24519238
- Bertram, E. Electrophysiology in epilepsy surgery: Roles and limitations. Ann. Indian Acad. Neurol., 2014, 17(5), 40. doi: 10.4103/0972-2327.128649 PMID: 24791088
- Mikkilineni, S.; Cantuti-Castelvetri, I.; Cahill, C.M.; Balliedier, A.; Greig, N.H.; Rogers, J.T. The anticholinesterase phenserine and its enantiomer posiphen as 5'untranslated-region-directed translation blockers of the Parkinsons alpha synuclein expression. Parkinsons Dis., 2012, 2012, 1-13. doi: 10.1155/2012/142372 PMID: 22693681
- Zhou, G.; Yan, M.; Guo, G.; Tong, N. Ameliorative effect of berberine on neonatally induced type 2 diabetic neuropathy via modulation of BDNF, IGF-1, PPAR-γ, and AMPK expressions. Dose Response, 2019, 17(3) doi: 10.1177/1559325819862449 PMID: 31360147
- Mittli, D. Inflammatory processes in the prefrontal cortex induced by systemic immune challenge: Focusing on neurons. Brain Behav. Immun Health, 2023, 34, 100703. doi: 10.1016/j.bbih.2023.100703 PMID: 38033612
- Chawla, M.K.; Penner, M.R.; Olson, K.M.; Sutherland, V.L.; Mittelman-Smith, M.A.; Barnes, C.A. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats. Neurobiol. Aging, 2013, 34(4), 1184-1198. doi: 10.1016/j.neurobiolaging.2012.10.017 PMID: 23158763
- Baraban, S.C.; Taylor, M.R.; Castro, P.A.; Baier, H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005, 131(3), 759-768. doi: 10.1016/j.neuroscience.2004.11.031 PMID: 15730879
- Wang, S.; Zhou, L.; He, C.; Wang, D.; Cai, X.; Yu, Y.; Chen, L.; Lu, D.; Bian, L.; Du, S.; Wu, Q.; Han, Y. The association between STX1B polymorphisms and treatment response in patients with epilepsy. Front. Pharmacol., 2021, 12, 701575. doi: 10.3389/fphar.2021.701575 PMID: 34305610
- Ye, Y.; Liu, X.; Wu, N.; Han, Y.; Wang, J.; Yu, Y.; Chen, Q. Efficacy and safety of berberine alone for several metabolic disorders: A systematic review and meta-analysis of randomized clinical trials. Front. Pharmacol., 2021, 12, 653887. doi: 10.3389/fphar.2021.653887 PMID: 33981233
- Chang, C.F.; Lee, Y.C.; Lee, K.H.; Lin, H.C.; Chen, C.L.; Shen, C.K.J.; Huang, C.C. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J. Biomed. Sci., 2016, 23(1), 72. doi: 10.1186/s12929-016-0290-z PMID: 27769241
- Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. Front. Mol. Biosci., 2018, 5, 21. doi: 10.3389/fmolb.2018.00021 PMID: 29616225
- Rad, S.Z.K.; Rameshrad, M.; Hosseinzadeh, H. Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: A review. Iran. J. Basic Med. Sci., 2017, 20(5), 516-529. PMID: 28656087
- Kwon, I.H.; Choi, H.S.; Shin, K.S.; Lee, B.K.; Lee, C.K.; Hwang, B.Y.; Lim, S.C.; Lee, M.K. Effects of berberine on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and a rat model of Parkinsons disease. Neurosci. Lett., 2010, 486(1), 29-33. doi: 10.1016/j.neulet.2010.09.038 PMID: 20851167
- Kysenius, K.; Brunello, C.A.; Huttunen, H.J. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. PLoS One, 2014, 9(9), e107129. doi: 10.1371/journal.pone.0107129 PMID: 25192195
Supplementary files
